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Numerical Analysis – Lecture 21

Technique 4.33 (Preconditioning) In Ax = b, we change variables, x = PT x̂, where P is a non-
singular n × n matrix, and multiply both sides with P . Thus, instead of Ax = b, we are solving
the linear system

PAPT x̂ = Pb ⇔ Âx̂ = b̂ . (4.11)

Note that symmetry and positive definiteness of A imply that Â = PAPT is also symmetric and
positive definite since (Ây,y) = (PAPTy,y) = (APTy, PTy) > 0. Therefore, we can apply con-
jugate gradients to the new system. This results in the solution x̂, hence x = PT x̂. This procedure
is called the preconditioned conjugate gradient method and the matrix P is called the preconditioner.

The condition number of a matrixA is the value κ(A) := ‖A‖·‖A−1‖, so for a symmetric positive
definite matrix A it is the ratio between its largest and smallest eigenvalues,

κ(A) =
λmax(A)

λmin(A)
≥ 1 .

The closer is this number to 1, the faster is convergence of CGM. More precisely, for the rate of
convergnce of CGM, we have the uppper estimate

‖e(k)‖A ≤ 2ρk ‖e(0)‖A , ρ = ρA =

√
κ(A)− 1√
κ(A) + 1

< 1 . (4.12)

The main idea of preconditioning is to pick P in (4.11) so that κ(Â) is much smaller than κ(A),
thus accelerating convergence.

To this end, we note that the similarity transform B → C−1BC preserves spectrum, hence

κ(Â) = κ(PAPT ) = κ(P−1[PAPT ]P ) = κ(APTP ) ,

and if we set
S−1 := PTP =: (QQT )−1,

then it is suggestive to choose S as an approximation to A which is easy to Cholesky-factorize,
i.e., S = QQT (or already in this form), and then take P = Q−1. Then APTP = AS−1 is close to
identity, hence

κ(Â) = κ(APTP ) ≈ κ(I) = 1 ⇒ κ(Â)� κ(A) ,

and the preconditioned system (4.11) will be solved much faster because of (4.12).
Each step in the CGM for solving Ax = b requires one matrix-vector product Ay, so with

P = Q−1, additional expense in each step of the CGM for the preconditioned system (4.11) while
computing Ây = PAPTy is two additional computations

u = PTy = Q−Ty, v = Pz = Q−1z,

for some y, z ∈ Rn, but note that computingQ−1z is the same as solving the linear systemQv = z,
which is cheap (via forward substitution) as Q is a lower triangular matrix.

Example 4.34 1) The simplest choice of S is D = diagA, then P = D−1/2 in (4.11).
2) Another possibility is to choose S as a band matrix with small bandwidth. For example,

solving the Poisson equation with the five-point formula, we may take S to be the tridiagonal
part of A.

3) One can also take P = L−1, where L is the lower triangular part of A (maybe imposing
some changes). For example, for the Poisson equation, with m = 20 hence dealing with 400× 400
system, we take P−1 as the lower triangular part of A, but change the diagonal elements from 4
to 5

2 . Then we get a computer precision after just 30 iterations.
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Example 4.35 For the tridiagonal system Ax = b below, we choose the preconditioner as follows.

A =


2 −1
−1 2

. . .
. . .

. . . −1
−1 2

 , Q =


1

−1 1
. . .

. . .

−1 1

 , S = QQT =


1 −1
−1 2

. . .
. . .

. . . −1
−1 2

 .

The matrix S coincides with A except at the (1, 1)-entry. The matrix Â = Q−1AQ−T for the
preconditioned CGM has just two distinct eigenvalues, and we recover the exact solution just in
two steps. To see the latter, note that Â is similar to Q−TQ−1A = S−1A, hence it has the same
spectrum. Since A = S + e1e

T
1 , we have S−1A = I + ueT1 , a rank-1 perturbation of the identity

matrix, with all eigenvalues but one equal 1 (the remaining one equal 1 + u1).

Matlab demo: Download the Matlab GUI for Preconditioning of Conjugate Gradient from http:
//www.damtp.cam.ac.uk/user/naweb/ii/precond/precond.php. Run the GUI to solve
different systems of linear equations, trying different preconditioners P . You can select from some
preset preconditioners but can propose your own customised preconditioners as well. What does
preconditioning do to the spectrum of the system matrix?

Remark 4.36 (Rate of convergence of CGM [non-examinable]) Here, we prove (4.12). As we have seen,
every direction d(i) in CGM is a linear combination of the vectors (Asr(0))is=0, therefore, any vector of the
form x̂(k) = x(0) +

∑k−1
i=0 aid

(i) can be represented as

x̂(k) = x(0) +
∑k−1
i=0 ciA

ir(0) . (4.13)

Approximation of this kind also arises from various iterative methods of the form

x̂(k+1) = x̂(k) − τk(Ax̂(k) − b) ,

in particular for the steepest descent method.
Subtracting both parts of (4.13) from the exact solution x∗ we obtain ê(k) = e(0) −

∑k−1
i=0 ciA

ir(0), and
since r(0) = Ae(0), we can express the error ê(k) = x∗ − x̂(k) as

ê(k) = (I −
∑k
i=1 ciA

i) e(0) = Pk(A) e
(0), (4.14)

where Pk is a polynomial of degree ≤ k, which satisfies Pk(0) = 1.
Now recall (from the display in Theorem 4.26 on p.38, Lecture 19) that, at the k-th stage, the CGM

produces the vector x(k) that minimizes the functional

F (x̂(k)) = ‖ê(k)‖2A = (Aê(k), ê(k))

over all vectors x̂(k) of the form x̂(k) = x(0) +
∑k−1
i=0 aid

(i), hence over all ê(k) of the form (4.14). Expressing
e(0) as e(0) =

∑
γiwi, where (wi) are orthonormal eigenvectors of A, we find from (4.14) that ê(k) =∑

i γiPk(λi)wi, and Aê(k) =
∑
i γiPk(λi)λiwi, and respectively

‖ê(k)‖2A =
∑
i[Pk(λi)]

2λiγ
2
i ≤ max

λ∈σ(A)
[Pk(λ)]

2 ‖e(0)‖2A .

Hence, because of the minimization property of CGM,

‖e(k)‖A = min
Pk

‖ê(k)‖A ≤ min
Pk

max
λ∈σ(A)

|Pk(λ)| ‖e(0)‖A .

Now, assume that, for the spectrum σ(A), we know the largest and the smallest eigenvalues, or some
lower and upper bounds, say, 0 < m ≤ λ ≤ M . Then the following minimization problem, on the class of
polynomials of degree k, arises:

Pk(0) = 1, max
x∈[m,M ]

|Pk(x)| → min .

This problem has a classical solution P ∗k = T ∗k , where T ∗k is the Chebyshev polynomial on the interval
[m,M ], which is obtained by dilation and translation of the standard Chebyshev polynomial Tk given on
the interval [−1, 1]:

Tk(x) = cos kθ, x = cos θ, θ ∈ [0, π] .

One can show that |T ∗k (x)| ≤ 2ρk on the interval [m,M ], hence the rate of convergence of CGM admits the
following estimate:

‖e(k)‖A ≤ 2ρk‖e(0)‖A, ρ =

√
M−
√
m√

M+
√
m
< 1, σ(A) ∈ [m,M ] .
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