Mathematical Tripos Part II: Michaelmas Term 2020

Numerical Analysis – Lecture 21

Technique 4.33 (Preconditioning) In Ax = b, we change variables, $x = P^T \hat{x}$, where *P* is a nonsingular $n \times n$ matrix, and multiply both sides with *P*. Thus, instead of Ax = b, we are solving the linear system

$$PAP^T \widehat{\boldsymbol{x}} = P\boldsymbol{b} \iff \widehat{A}\widehat{\boldsymbol{x}} = \widehat{\boldsymbol{b}}.$$
 (4.11)

Note that symmetry and positive definiteness of A imply that $\hat{A} = PAP^T$ is also symmetric and positive definite since $(\hat{A}\boldsymbol{y}, \boldsymbol{y}) = (PAP^T\boldsymbol{y}, \boldsymbol{y}) = (AP^T\boldsymbol{y}, P^T\boldsymbol{y}) > 0$. Therefore, we can apply conjugate gradients to the new system. This results in the solution $\hat{\boldsymbol{x}}$, hence $\boldsymbol{x} = P^T \hat{\boldsymbol{x}}$. This procedure is called the *preconditioned conjugate gradient method* and the matrix P is called the *preconditioner*.

The *condition number* of a matrix *A* is the value $\kappa(A) := ||A|| \cdot ||A^{-1}||$, so for a symmetric positive definite matrix *A* it is the ratio between its largest and smallest eigenvalues,

$$\kappa(A) = \frac{\lambda_{\max}(A)}{\lambda_{\min}(A)} \ge 1.$$

The closer is this number to 1, the faster is convergence of CGM. More precisely, for the rate of convergnce of CGM, we have the uppper estimate

$$\|\boldsymbol{e}^{(k)}\|_{A} \le 2\rho^{k} \|\boldsymbol{e}^{(0)}\|_{A}, \qquad \rho = \rho_{A} = \frac{\sqrt{\kappa(A)} - 1}{\sqrt{\kappa(A)} + 1} < 1.$$
 (4.12)

The main idea of preconditioning is to pick *P* in (4.11) so that $\kappa(\hat{A})$ is much smaller than $\kappa(A)$, thus accelerating convergence.

To this end, we note that the similarity transform $B \to C^{-1}BC$ preserves spectrum, hence

$$\kappa(\widehat{A}) = \kappa(PAP^T) = \kappa(P^{-1}[PAP^T]P) = \kappa(AP^TP),$$

and if we set

$$S^{-1} := P^T P =: (QQ^T)^{-1},$$

then it is suggestive to choose S as an approximation to A which is easy to Cholesky-factorize, i.e., $S = QQ^T$ (or already in this form), and then take $P = Q^{-1}$. Then $AP^TP = AS^{-1}$ is close to identity, hence

$$\kappa(\widehat{A}) = \kappa(AP^T P) \approx \kappa(I) = 1 \quad \Rightarrow \quad \kappa(\widehat{A}) \ll \kappa(A) \,,$$

and the preconditioned system (4.11) will be solved much faster because of (4.12).

Each step in the CGM for solving Ax = b requires one matrix-vector product Ay, so with $P = Q^{-1}$, additional expense in each step of the CGM for the preconditioned system (4.11) while computing $\hat{A}y = PAP^Ty$ is two additional computations

$$\boldsymbol{u} = P^T \boldsymbol{y} = Q^{-T} \boldsymbol{y}, \qquad \boldsymbol{v} = P \boldsymbol{z} = Q^{-1} \boldsymbol{z},$$

for some $y, z \in \mathbb{R}^n$, but note that computing $Q^{-1}z$ is the same as solving the linear system Qv = z, which is cheap (via forward substitution) as Q is a lower triangular matrix.

Example 4.34 1) The simplest choice of S is D = diag A, then $P = D^{-1/2}$ in (4.11).

2) Another possibility is to choose S as a band matrix with small bandwidth. For example, solving the Poisson equation with the five-point formula, we may take S to be the tridiagonal part of A.

3) One can also take $P = L^{-1}$, where *L* is the lower triangular part of *A* (maybe imposing some changes). For example, for the Poisson equation, with m = 20 hence dealing with 400×400 system, we take P^{-1} as the lower triangular part of *A*, but change the diagonal elements from 4 to $\frac{5}{2}$. Then we get a computer precision after just 30 iterations.

Example 4.35 For the tridiagonal system Ax = b below, we choose the preconditioner as follows.

$$A = \begin{bmatrix} 2 & -1 \\ -1 & 2 & \ddots \\ & \ddots & \ddots & -1 \\ & & -1 & 2 \end{bmatrix}, \qquad Q = \begin{bmatrix} 1 \\ -1 & 1 \\ & \ddots & \ddots \\ & & -1 & 1 \end{bmatrix}, \qquad S = QQ^{T} = \begin{bmatrix} 1 & -1 \\ -1 & 2 & \ddots \\ & \ddots & \ddots & -1 \\ & & -1 & 2 \end{bmatrix}.$$

The matrix $\hat{A} = Q^{-1}AQ^{-T}$ for the preconditioned CGM has just two distinct eigenvalues, and we recover the exact solution just in two steps. To see the latter, note that \hat{A} is similar to $Q^{-T}Q^{-1}A = S^{-1}A$, hence it has the same spectrum. Since $A = S + e_1e_1^T$, we have $S^{-1}A = I + ue_1^T$, a rank-1 perturbation of the identity matrix, with all eigenvalues but one equal 1 (the remaining one equal $1 + u_1$).

Matlab demo: Download the Matlab GUI for *Preconditioning of Conjugate Gradient* from http: //www.damtp.cam.ac.uk/user/naweb/ii/precond/precond.php. Run the GUI to solve different systems of linear equations, trying different preconditioners *P*. You can select from some preset preconditioners but can propose your own customised preconditioners as well. What does preconditioning do to the spectrum of the system matrix?

Remark 4.36 (Rate of convergence of CGM [non-examinable]) Here, we prove (4.12). As we have seen, every direction $d^{(i)}$ in CGM is a linear combination of the vectors $(A^s r^{(0)})_{s=0}^i$, therefore, any vector of the form $\hat{x}^{(k)} = x^{(0)} + \sum_{i=0}^{k-1} a_i d^{(i)}$ can be represented as

$$\widehat{\boldsymbol{x}}^{(k)} = \boldsymbol{x}^{(0)} + \sum_{i=0}^{k-1} c_i A^i \boldsymbol{r}^{(0)} .$$
(4.13)

Approximation of this kind also arises from various iterative methods of the form

$$\widehat{\boldsymbol{x}}^{(k+1)} = \widehat{\boldsymbol{x}}^{(k)} - \tau_k (A \widehat{\boldsymbol{x}}^{(k)} - \boldsymbol{b}),$$

in particular for the steepest descent method.

Subtracting both parts of (4.13) from the exact solution \boldsymbol{x}^* we obtain $\hat{\boldsymbol{e}}^{(k)} = \boldsymbol{e}^{(0)} - \sum_{i=0}^{k-1} c_i A^i \boldsymbol{r}^{(0)}$, and since $\boldsymbol{r}^{(0)} = A \boldsymbol{e}^{(0)}$, we can express the error $\hat{\boldsymbol{e}}^{(k)} = \boldsymbol{x}^* - \hat{\boldsymbol{x}}^{(k)}$ as

$$\widehat{\boldsymbol{e}}^{(k)} = (I - \sum_{i=1}^{k} c_i A^i) \, \boldsymbol{e}^{(0)} = P_k(A) \, \boldsymbol{e}^{(0)}, \tag{4.14}$$

where P_k is a polynomial of degree $\leq k$, which satisfies $P_k(0) = 1$.

Now recall (from the display in Theorem 4.26 on p.38, Lecture 19) that, at the *k*-th stage, the CGM produces the vector $\mathbf{x}^{(k)}$ that minimizes the functional

$$F(\widehat{\boldsymbol{x}}^{(k)}) = \|\widehat{\boldsymbol{e}}^{(k)}\|_A^2 = (A\widehat{\boldsymbol{e}}^{(k)}, \widehat{\boldsymbol{e}}^{(k)})$$

over all vectors $\hat{\boldsymbol{x}}^{(k)}$ of the form $\hat{\boldsymbol{x}}^{(k)} = \boldsymbol{x}^{(0)} + \sum_{i=0}^{k-1} a_i \boldsymbol{d}^{(i)}$, hence over all $\hat{\boldsymbol{e}}^{(k)}$ of the form (4.14). Expressing $\boldsymbol{e}^{(0)}$ as $\boldsymbol{e}^{(0)} = \sum \gamma_i \boldsymbol{w}_i$, where (\boldsymbol{w}_i) are orthonormal eigenvectors of A, we find from (4.14) that $\hat{\boldsymbol{e}}^{(k)} = \sum_i \gamma_i P_k(\lambda_i) \boldsymbol{w}_i$, and $A \hat{\boldsymbol{e}}^{(k)} = \sum_i \gamma_i P_k(\lambda_i) \lambda_i \boldsymbol{w}_i$, and respectively

$$\|\widehat{e}^{(k)}\|_{A}^{2} = \sum_{i} [P_{k}(\lambda_{i})]^{2} \lambda_{i} \gamma_{i}^{2} \leq \max_{\lambda \in \sigma(A)} [P_{k}(\lambda)]^{2} \|e^{(0)}\|_{A}^{2}.$$

Hence, because of the minimization property of CGM,

$$\|e^{(k)}\|_{A} = \min_{P_{k}} \|\widehat{e}^{(k)}\|_{A} \le \min_{P_{k}} \max_{\lambda \in \sigma(A)} |P_{k}(\lambda)| \|e^{(0)}\|_{A}.$$

Now, assume that, for the spectrum $\sigma(A)$, we know the largest and the smallest eigenvalues, or some lower and upper bounds, say, $0 < m \le \lambda \le M$. Then the following minimization problem, on the class of polynomials of degree k, arises:

$$P_k(0) = 1, \quad \max_{x \in [m,M]} |P_k(x)| \to \min.$$

This problem has a classical solution $P_k^* = T_k^*$, where T_k^* is the Chebyshev polynomial on the interval [m, M], which is obtained by dilation and translation of the standard Chebyshev polynomial T_k given on the interval [-1, 1]:

$$T_k(x) = \cos k\theta, \qquad x = \cos \theta, \qquad \theta \in [0, \pi].$$

One can show that $|T_k^*(x)| \le 2\rho^k$ on the interval [m, M], hence the rate of convergence of CGM admits the following estimate:

$$\|\boldsymbol{e}^{(k)}\|_{A} \leq 2\rho^{k} \|\boldsymbol{e}^{(0)}\|_{A}, \qquad \rho = \frac{\sqrt{M} - \sqrt{m}}{\sqrt{M} + \sqrt{m}} < 1, \qquad \sigma(A) \in [m, M].$$