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Numerical Analysis – Lecture 22

5 Eigenvalues and eigenvectors

Remark 5.1 (Introduction to matrix eigenvalue calculations) Let A be a real n × n matrix. The
eigenvalue equation isAw = λw, where λ is a scalar, which may be complex ifA is not symmetric.
There exists a nonzero vector w ∈ Rn satisfying this equation if and only if det(A− λI) = 0. The
function p(λ) = det(A − λI), λ ∈ C, is a polynomial of degree n, but calculating the eigenvalues
by finding the roots of p is a disaster area because of loss of accuracy due to rounding errors.

If the polynomial has some multiple roots and if A is not symmetric, then the number of lin-
early independent eigenvectors may be fewer than n, but there are always n mutually orthogonal
real eigenvectors in the symmetric case. We assume in all cases, however, that the eigenvalue
equations Awi = λiwi, i = 1..n, are satisfied by eigenvectors wi that are linearly independent,
which can be achieved by making an arbitrarily small change to A if necessary.

Method 5.2 (The power method) The iterative algorithms that will be studied for the calculation
of eigenvalues and eigenvectors are all closely related to the power method, which has the fol-
lowing basic form for generating a single eigenvalue and eigenvector of A.

We pick a nonzero vector x(0) in Rn. Then, for k = 0, 1, 2, . . ., we let x(k+1) be a nonzero
multiple of Ax(k), typically to satisfy ‖x(k+1)‖ = 1 so that

x(k+1) = Ax(k)/‖Ax(k)‖, k = 0, 1, 2, . . .

This method is oriented on finding an eigenvector corresponding to the largest eigenvalue as the
the following theorem shows.

Theorem 5.3 Let Awi = λiwi, where the eigenvalues of A satisfy |λ1| ≤ · · · ≤ |λn−1| < |λn| and the
eigenvectors are of the unit length ‖wi‖=1. Assume x(0) =

∑n
i=1 ciwi with cn 6=0. Then x(k) → ±wn

as k →∞.

Proof. Given x(0) as in the assumption, x(k) is a multiple of
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Since ‖x(k)‖=‖wn‖=1, we conclude that x(k) = ±wn+O(ρk), where the sign is that of cnλkn and
the ratio ρ = |λn−1|

|λn| < 1 characterizes the rate of convergence. �

Here are the details of an implementation of the procedure.

0. Pick x(0) ∈ Rn satisfying ‖x(0)‖ = 1. Let ε be a small positive tolerance. Set k = 0.
1. Calculate x̃(k+1) = Ax(k) and set λ = x(k)TAx(k)

x(k)Tx(k) .
(This λ is called the Raleigh quotient and it minimizes f(µ) = ‖x̃(k+1) − µx(k)‖ over µ.

2. If f(λ) ≤ ε, accept λ as an eigenvalue and x(k) as the corresponding eigenvector.
3. Otherwise, let x(k+1) = x̃(k+1)/‖x̃(k+1)‖, increase k by one and go back to 1.

The termination occurs because, by the previous theorem, we have

‖x̃(k+1) − λx(k)‖ = min
µ
‖x̃(k+1) − µx(k)‖ ≤ ‖x̃(k+1) − λnx(k)‖

= ‖Ax(k) − λnx(k)‖ = ‖Awn − λnwn‖+O(ρk) = O(ρk)→ 0.
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Discussion 5.4 (Deficiencies of the power method) The power method may perform adequately
if cn 6=0 and |λn−1| < |λn|, where we are using the notation of Theorem 5.3, but often it is unac-
ceptably slow. The difficulty of cn = 0 is that, theoretically, in this case the method should find
an eigenvector wm with the largest m such that cm 6= 0, but practically computer rounding er-
rors can introduce a small nonzero component of wn into the sequence x(k), and then wn may be
found eventually, but one has to wait for the small component to grow. Moreover, |λn−1| = |λn|
is not uncommon when A is real and nonsymmetric, because the spectral radius of A may be
due to a complex conjugate pair of eigenvalues. Next, we will study the inverse iterations (with
shifts), because they can be highly useful, particularly in the more efficient methods for eigenvalue
calculations that will be considered later.

Method 5.5 (Inverse iteration) This method is highly useful in practice. It is similar to the power
method 5.2, except that, instead of x(k+1) being a multiple of Ax(k), we make the choice

(A− sI)x(k+1) = x(k), k = 0, 1, . . . , (5.1)

where s is a scalar that may depend on k and ‖x(k)‖ = 1. Therefore the calculation of x(k+1)

from x(k) requires the solution of an n × n system of linear equations whose matrix is (A−sI).
Further, if s is a constant and if A− sI is nonsingular, we deduce from (5.1) that x(k) is a multiple
of (A− sI)−kx(0).

We again let x(0) =
∑n
i=1 ciwi, as in the proof of Theorem 5.3, assuming that wi, i = 1..n,

are linearly independent eigenvectors of A that satisfy Awi = λiwi. Therefore we note that the
eigenvalue equation implies (A − sI)wi = (λi − s)wi, which in turn implies (A − sI)−1wi =
(λi − s)−1wi. It follows that x(k) is a multiple of

(A− sI)−kx(0) =

n∑
i=1

ci(A− sI)−kwi =

n∑
i=1

ci(λi − s)−kwi.

Thus, if the m-th number in the set {|λi − s|} is the smallest and if cm is nonzero, then x(k) tends
to be a multiple of wm as k → ∞. We see that the speed of convergence can be excellent if s is
very close to λm. Further, it can be made even faster by adjusting s during the calculation. Typical
details are given in the following implementation.

Algorithm 5.6 (Typical implementation of inverse iteration)
0. Set s to an estimate of an eigenvalue of A. Prescribe x(0) 6= 0, let 0 < ε� 1 and set k = 0.
1. Calculate (with pivoting if necessary) the LU factorization of A− sI .
2. Stop if U is singular because then s is an eigenvalue of A, while its eigenvector is any vector

in the null space of U : it can be found easily, U being upper triangular.
3. Calculate x(k+1) by solving (A − sI)x(k+1) = LUx(k+1) = x(k) using the LU factorization

from 1.
4. Set η to the number that minimizes f(µ) = ‖x(k) − µx(k+1)‖.
5. Stop if f(η) ≤ ε‖x(k+1)‖. Since f(η) = ‖Ax(k+1) − (s + η)x(k+1)‖, we let s + η be the

calculated eigenvalue of A and x(k+1)/‖x(k+1)‖ be its eigenvector.
6. Otherwise, replace x(k+1) by x(k+1)/‖x(k+1)‖, increase k by one, and either return to 3

without changing s or to 1 after replacing s by s+ η.

Remark 5.7 (Further on inverse iteration) Algorithm 5.6 is very efficient if A is an upper Hessen-
berg matrix: every element of A under the first subdiagonal is zero (i.e. aij =0 if j < i−1). In this
case the LU factorization in 1 requires just O(n2) or O(n) operations when A is nonsymmetric or
symmetric, respectively. Thus the replacement of s by s + η in 6 need not be expensive, so fast
convergence can often be achieved easily. There are standard ways of giving A this convenient
form which will be considered later.
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