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Numerical Analysis – Lecture 24
Technique 5.15 (The QR iteration for symmetric matrices) We bring A to the upper Hessenberg
form, so that QR algorithm commences from a symmetric tridiagonal matrix A0, and then Tech-
nique 5.14 is applied for every k as before. Since both the upper Hessenberg structure and sym-
metry is retained, each Ak+1 is also symmetric tridiagonal too. It follows that, whenever a Givens
rotation Ω[i,j] combines either two adjacent rows or two adjacent columns of a matrix, the total
number of nonzero elements in the new combination of rows or columns is at most five. Thus
there is a bound on the work of each rotation that is independent of n. Hence each QR iteration
requires just O(n) operations.

Notation 5.16 To analyse the matrices Ak that occur in the QR algorithm 5.13, we introduce

Q̄k = Q0Q1 · · ·Qk, R̄k = RkRk−1 · · ·R0, k = 0, 1, . . . . (5.3)

Note that Q̄k is orthogonal and R̄k upper triangular.

Lemma 5.17 (Fundamental properties of Q̄k and R̄k) Ak+1 is related to the original matrix A by the
similarity transformation Ak+1 = Q̄T

kAQ̄k. Further, Q̄kR̄k is the QR factorization of Ak+1.

Proof. We prove the first assertion by induction. By (5.2), we have A1 = QT
0 A0Q0 = Q̄T

0 AQ̄0.
Assuming Ak = Q̄T

k−1AQ̄k−1, equations (5.2)-(5.3) provide the first indentity

Ak+1 = QT
kAkQk = QT

k (Q̄T
k−1AQ̄k−1)Qk = Q̄T

kAQ̄k .

The second assertion is true for k = 0, since Q̄0R̄0 = Q0R0 = A0 = A. Again, we use induction,
assuming Q̄k−1R̄k−1 = Ak. Thus, using the definition (5.3) and the first statement of the lemma,
we deduce that

Q̄kR̄k = (Q̄k−1Qk)(RkR̄k−1) = Q̄k−1AkR̄k−1 = Q̄k−1(Q̄T
k−1AQ̄k−1)R̄k−1

= AQ̄k−1R̄k−1 = A ·Ak = Ak+1

and the lemma is true. �

Remark 5.18 (Relation between QR and the power method) Assume that the eigenvalues of A
have different magnitudes,

|λ1| < |λ2| < · · · < |λn|, and let e1 =
∑n

i=1 ciwi =
∑m

i=1 ciwi (5.4)

be the expansion of the first coordinate vector in terms of the normalized eigenvectors ofA, where
m is the greatest integer such that cm 6= 0.

Consider the first columns of both sides of the matrix equation Ak+1 = Q̄kR̄k.
By the power method arguments, the vector Ak+1e1 is a multiple of

∑m
i=1 ci(λi/λm)k+1wi, so

the first column of Ak+1 tends to be a multiple of wm for k � 1. On the other hand, if qk is the
first column of Q̄k, then, since R̄k is upper triangular, the first column of Q̄kR̄k is a multiple of qk.

Therefore qk tends to be a multiple of wm. Further, because both qk and wm have unit length,
we deduce that qk = ±wm + hk, where hk tends to zero as k →∞. Therefore,

Aqk = λmqk + o(1) , k →∞ . (5.5)

Theorem 5.19 (The first column of Ak) Let conditions (5.4) be satisfied. Then, as k → ∞, the first
column of Ak tends to λme1, making Ak suitable for deflation.
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Proof. By Lemma 5.17, the first column of Ak+1 is Q̄T
kAQ̄ke1, and, using (5.5), we deduce that

Ak+1e1 = Q̄T
kAQ̄ke1 = Q̄T

kAqk

(5.5))
= Q̄T

k [λmqk + o(1)]
(∗)
= λme1 + o(1) ,

where in (∗) we used that Q̄T
k qk = e1 by orthogonality of Q̄, and that Q̄kx = O(x) because

orthogonal mapping is isometry. �

Remark 5.20 (Relation between QR and inverse iteration) In practice, the statement of Theorem
5.19 is hardly ever important, because usually, as k →∞, the off-diagonal elements in the bottom
row of Ak+1 tend to zero much faster than the off-diagonal elements in the first column. The rea-
son is that, besides the connection with the power method in Remark 5.18, the QR algorithm also
enjoys a close relation with inverse iteration (Method 5.5).

Let again

|λ1| < |λ2| < · · · < |λn|, and let eTn =
∑n

i=1 civ
T
i =

∑n
i=s civ

T
i (5.6)

be the expansion of the last coordinate row vector eTn in the basis of normalized left eigenvectors of
A, i.e. vT

i A = λiv
T
i , where s is the least integer such that cs 6= 0.

Assuming thatA is nonsingular, we can write the equationAk+1 =Q̄kR̄k in the formA−(k+1) =
R̄−1

k Q̄T
k . Consider the bottom rows of both sides of this equation: eTnA−(k+1) = (eTn R̄

−1
k )Q̄T

k .
By the inverse iteration arguments, the vector eTnA−(k+1) is a multiple of

∑n
i=s ci(λs/λi)

k+1vT
i ,

so the bottom row of A−(k+1) tends to be multiple of vT
s . On the other hand, let pT

k be the bottom
row of Q̄T

k . Since R̄k is upper triangular, its inverse R̄−1
k is upper triangular too, hence the bottom

row of R̄−1
k Q̄T

k , is a multiple of pT
k .

Therefore, pT
k tends to a multiple of vT

s , and, because of their unit lengths, we have pT
k =

±vT
s + hT

k , where hk → 0, i.e.,

pT
kA = λsp

T
k + o(1) , k →∞ . (5.7)

Theorem 5.21 (The bottom row of Ak) Let conditions (5.6) be satisfied. Then, as k → ∞, the bottom
row of Ak tends to λseTn , making Ak suitable for deflation.

Proof. By Lemma 5.17, the bottom row of Ak+1 is eTn Q̄T
kAQ̄k, and similarly to the previous proof

we obtain

eTnAk+1 = eTn Q̄
T
kAQ̄k = pT

kAQ̄k
(5.7)
= [λsp

T
k + o(1)] Q̄k = λse

T
n + o(1) . (5.8)

the last equality by orthogonality of Q̄k. �

Technique 5.22 (Single shifts) As we saw in Method 5.5, there is a huge difference between
power iteration and inverse iteration: the latter can be accelerated arbitrarily through the use
of shifts. The better we can estimate sk ≈ λs, the more we can accomplish by a step of inverse
iteration with the shifted matrix Ak − skI . Theorem 5.21 shows that the bottom right element
(Ak)nn becomes a good estimate of λs. So, in the single shift technique, the matrix Ak is replaced
by Ak−skI , where sk = (Ak)nn, before the QR factorization:

Ak − skI = QkRk,

Ak+1 = RkQk + skI.

A good approximation sk = (Ak)nn to the eigenvalue λs generates even better approximation of
sk+1 = (Ak+1)nn to λs, and convergence is accelerating at a higher and higher rate (it will be the
so-called cubic convergence |λs − sk+1| ≤ γ |λs − sk|3). Note that, similarly to the original QR
iteration, we have

Ak+1 = QT
k (QkRk + skI)Qk = QT

kAkQk ,

hence Ak+1 = Q̄T
kAQ̄k, but note also that Q̄kR̄k 6= Ak+1, but we have instead

Q̄kR̄k =
∏k

m=0(A− smI)
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