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What could possibly go wrong?

AI replacing standard algorithms



Mathematical setup

Image reconstruction in medical imaging

I x ∈ CN the true image (interpreted as a vector).

I A ∈ Cm×N measurement matrix (m < N).

I y = Ax the measurements.
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True image x Sampling pattern Ω |x̃ | = |A∗y |

Sinogram y = Ax Back proj. x̂1 = A∗y FBP: x̂2 = By
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Image reconstruction methods

I Deep learning approach: For a given a set {x1, . . . , xn}, train
a neural network f : Cm → CN such that

‖f (Axi )− xi‖ � ‖A∗xi − xi‖

I Sparse regularization

minimizez∈CN ‖Wz‖`1 subject to ‖Az − y‖`2 ≤ η

Image x Wx Wx
W = Wavelets W = ∇
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Sparse regularization reconstruction

DB4 wavelets TV
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Typical sparse regularization result

Let A ∈ Cm×N with m < N and y = Ax + e, with ‖e‖2 ≤ η. Let
W ∈ CN×N be unitary, and suppose that AW−1 satisfies the
restricted isometry property in levels (RIPL). Then any minimizer x̂
of

minimizez∈CN ‖Wz‖1 subject to ‖Az − y‖ ≤ η

satisfies

||x̂ − x ||2 .
σs,M(Wx)1√

s
+ η

where

σs,M(Wx)1 = inf{||Wx − z ||1 : z is (s,M)-sparse}
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Neural network image reconstruction approaches

I Pure denoisers. Train a neural network φ to learn the noise.

f (y) = A∗y − φ(A∗y)

I Data consistent denoisers. Train n networks φi , i = 1, . . . , n
and ensure that the final image is consistent with your data

1: Pick α ∈ [0, 1].
2: Set ỹ1 = y .
3: for i = 1, . . . n do
4: x̃i = A∗ỹi − φi (A∗ỹi )
5: ŷ = Ax̃i
6: ỹi+1 = αŷ + (1− α)y , (Enforce data consistency)

7: Return: x̃n.
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Neural network image reconstruction approaches

I Learn the physics. Do not warm start your network with A∗.

Rather learn f (yi ) = xi , i = 1, . . . , n directly

I Unravel n steps with sparse regularization solver. Learn
λi , Ki , and Ψi for i = 1, . . . , n.

1: x1 = A∗y
2: for i = 1, . . . n do
3: x̃i+1 = x̃i − (Ki )

TΨi (Ki x̃i ) + λiA
∗(Ax̃i − y)

4: Return: x̃n+1.

(omitting some details here)
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Networks considered

I AUTOMAP
I Low resolution images, 60% subsampling, single coil MRI.
I B. Zhu, J. Z. Liu, S. F. Cauley, B. R. Rosen and M. S. Rosen,

’Image reconstruction by domain-transform manifold learning ’,
Nature, vol. 555, no. 7697, p. 487, Mar. 2018.

I DAGAN
I Medium resolution, 20% subsampling, single coil MRI.
I G. Yang, S. Yu, H. Dong, G. Slabaugh, P. L. Dragotti, X. Ye,

F. Liu, S. Arridge, J. Keegan, Y. Guo et al., DAGAN: Deep
de-aliasing generative adversarial networks for fast compressed
sensing MRI reconstruction, IEEE Transactions on Medical
Imaging, 2017.

I Deep MRI
I Medium resolution, 33% subsampling, single coil MRI.
I J. Schlemper, J. Caballero, J. V. Hajnal, A. Price and D.

Rueckert, A deep cascade of convolutional neural networks for
MR image reconstruction, in International conference on
information processing in medical imaging, Springer, 2017, pp.
647–658.
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Networks considered

I Ell 50 and Med 50 (FBPConvNet)
I CT or any Radon transform based inverse problem, with 50

uniformly spaced lines.
I K. H. Jin, M. T. McCann, E. Froustey and M. Unser, ’Deep

convolutional neural network for inverse problems in imaging ’,
IEEE Transactions on Image Processing, vol. 26, no. 9, pp.
4509–4522, 2017.

I MRI-VN
I Medium to high resolution, parallel MRI with 15 coil elements

and 15% subsampling.
I K. Hammernik, T. Klatzer, E. Kobler, M. P. Recht, D. K.

Sodickson, T. Pock and F. Knoll, ’Learning a variational
network for reconstruction of accelerated MRI data’, Magnetic
resonance in medicine, vol. 79, no. 6, pp. 3055–3071, 2018.
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How to measure image quality?

(1) Base image (2) Translated (3) Add ε = 0.32 to pixels

(4) Nosiy (5) Another bird (6) Different image

Image (1) (2) (3) (4) (5) (6)

`2 − distance 0 215.04 204.80 167.26 216.44 193.15
Figure from: M. Lohne, Parseval Reconstruction Networks, Master thesis, UiO,

2019



Three types of instabilities

(1) Instabilities with respect to tiny perturbations. That is
ỹ = A(x + r) with ‖r‖ very small.

(2) Instabilities with respect to small structural changes, for
example a tumour, may not be captured in the reconstructed
image

(3) Instabilities with respect to changes in the number of samples.
Having more information should increase performance.

V. Antun, F. Renna, C. Poon, B.Adcock, A. Hansen. On instabilities of
deep learning in image reconstruction - Does AI come at a cost? (arXiv
2019)
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Finding tiny perturbations

Try to maximize

Qx(r) =
1

2
‖f (A(x + r))− f (Ax)‖2`2 −

λ

2
‖r‖2`2 , λ > 0

using a gradient ascent proceedure.
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Tiny perturbation – Deep MRI net

|x | |f (Ax)|
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Tiny perturbation – Deep MRI net

|x + r1| |f (A(x + r1))|

20 / 67



Tiny perturbation – Deep MRI net

|x + r2| |f (A(x + r2))|
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Tiny perturbation – Deep MRI net

|x + r3| |f (A(x + r3))|
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Tiny perturbation – Deep MRI net

SoA from Ax SoA from A(x + r3)
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Tiny perturbation – AUTOMAP

|x | |f (Ax)| SoA from Ax
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Tiny perturbation – AUTOMAP

|x + r1| |f (A(x + r1))| SoA from A(x + r1)
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Tiny perturbation – AUTOMAP

|x + r2| |f (A(x + r2))| SoA from A(x + r2)
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Tiny perturbation – AUTOMAP

|x + r3| |f (A(x + r3))| SoA from A(x + r3)
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Tiny perturbation – AUTOMAP

|x + r4| |f (A(x + r4))| SoA from A(x + r4)
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Finding tiny perturbations

What if we tried to maximize

Qx(r) =
1

2
‖f (A(x + r))− x‖2`2 −

λ

2
‖r‖2`2 , λ > 0

instead
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Tiny perturbation – AUTOMAP

|x | |f (Ax)| SoA from Ax
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Tiny perturbation – AUTOMAP

|x + r1| |f (A(x + r1))| SoA from A(x + r1)
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Tiny perturbation – AUTOMAP

|x + r2| |f (A(x + r2))| SoA from A(x + r2)
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Tiny perturbation – AUTOMAP

|x + r3| |f (A(x + r3))| SoA from A(x + r3)
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Tiny perturbation – AUTOMAP

|x + r4| |f (A(x + r4))| SoA from A(x + r4)
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Tiny perturbation – MRI-VN

Original x x + r1
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Tiny perturbation – MRI-VN

f (Ax) (zoomed) f (A(x + r1)) (zoomed)
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Tiny perturbation – MRI-VN

SoA from Ax (zoomed) SoA from A(x + r1) (zoomed)
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Tiny perturbation – Med 50

Original x x + r1
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Tiny perturbation – Med 50

f (Ax) (zoomed) f (A(x + r1)) (zoomed)
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Tiny perturbation – Med 50

SoA from Ax (zoomed) SoA from A(x + r1) (zoomed)
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Small structural change – Ell 50
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Small structural change – Ell 50

f (Ax) SoA from Ax
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Small structural change – DAGAN
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Small structural change – DAGAN

f (Ax) SoA from Ax
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Small structural change – Deep MRI
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Small structural change – Deep MRI

f (Ax) SoA from Ax
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Adding more samples

Ell 50/Med 50 DAGAN

MRI-VN Deep MRI
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Summary of so far...

I Tiny perturbations lead to a myriad of different artefacts.

I Variety in failure of recovering structural changes.

I Networks must be retrained on any subsampling pattern?

I Universality – Instabilities regardless of architecture?

I Rare events? – Empirical tests are needed.
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Can we fix it?

I Computational power is
increasing. We can train,
test and at a substantial
higher rate than just a few
years ago.

I The datasets are growing.

I Increased knowledge about
good learning techniques
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Theorem 1
Let A : CN → Cm be a linear sampling map and let f : Cm → CN .
Suppose that there are x , η, ξη, ξx ∈ CN with
‖ξη‖, ‖ξx‖ ≤ δ ∈ (0, 1/2) such that

f (Ax) = x + ξx , f (A(x + η)) = x + η + ξη, (1)

where ‖η‖ = 1 and ‖Aη‖ = δ > 0. Then we have the following.

(i) (Instabilities) Then the local Lipschitz constant of f at Ax,
defined for ε ≥ δ > 0, satisfies

LεAx = sup
0<‖Az‖≤ε

‖f (Ax + Az)− f (Ax)‖
‖Az‖

≥ 1− 2δ

ε



Theorem 2
Let A : CN → Cm be a linear sampling map and let f : Cm → CN .
Suppose that there are x , η, ξη, ξx ∈ CN with
‖ξη‖, ‖ξx‖ ≤ δ ∈ (0, 1/2) such that

f (Ax) = x + ξx , f (A(x + η)) = x + η + ξη, (2)

where ‖η‖ = 1 and ‖Aη‖ = δ > 0. Then we have the following.

(ii) (False positives) Moreover, there exists a perturbation r ∈ Cm

with ‖r‖ = δ such that

‖f (r + Ax)− (x + η)‖ ≤ δ.

(iii) (False negatives) and there exists a perturbation r ∈ Cm with
‖r‖ = δ such that

‖f (r + A(x + η))− x‖ ≤ δ.



Neural network reconstruction
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Neural network reconstruction
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Neural network reconstruction
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Neural network reconstruction
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Neural network reconstruction

57 / 67



Neural network reconstruction

η

|Fη|, F - Fourier matrix
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Neural network reconstruction

59 / 67



Neural network reconstruction
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Neural network reconstruction
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Neural network reconstruction
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Neural network reconstruction
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Typical sparse regularization result

Recall that if AW−1 satisfies the restricted isometry property in
levels (RIPL).

x̂ ∈ argminz∈CN ‖Wz‖1 subject to ‖Az − y‖ ≤ η

satisfies

||x̂ − x ||2 .
σs,M(Wx)1√

s
+ η

where

σs,M(Wx)1 = inf{||Wx − z ||1 : z is (s,M)-sparse}
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Wavelet reconstruction

65 / 67



Wavelet reconstruction
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Summary

I Kernel awareness is important

I It seems hard to protect against to high preformance.

I Universality – Instabilities regardless of architecture
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