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Computers can be made to see a sea turtle as a gun or hear
a concerto as someone’s voice, which is raising concerns
about using artificial intelligence in the real world.




What could possibly go wrong?

Al replacing standard algorithms



Image reconstruction in medical imaging

» x € CN the true image (interpreted as a vector).
» A€ C™N measurement matrix (m < N).

» y = Ax the measurements.
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Image reconstruction methods

» Deep learning approach: For a given a set {x1,...,Xp}, train
a neural network f: C™ — CN such that

If(Ax;) — xi|| < [|A*x; — xi]]



Image reconstruction methods
» Deep learning approach: For a given a set {x1,...,Xp}, train
a neural network f: C™ — CN such that

1f(Ax) — xi|| < [|A*x;i — xi|

» Sparse regularization

minimize,ccn || Wz||,,  subject to  ||Az —y|le, <17

Wx
W = Wavelets

Image x




Sparse regularization reconstruction

DB4 wavelets
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Let Ac C™N with m < N and y = Ax + e, with |[e]|> < 7. Let
W € CN*N be unitary, and suppose that AW ! satisfies the
restricted isometry property in levels (RIPL). Then any minimizer X
of

minimize,ccn || Wz||1  subject to  [[Az —y|| <7

satisfies
os.m(Wx)1

N

1% = x[l2 <
where

ogsm(Wx)1 = inf{||Wx — z||1 : z is (s, M)-sparse}
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Neural network image reconstruction approaches

» Pure denoisers. Train a neural network ¢ to learn the noise.

fly) = A"y — ¢(A%y)
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» Pure denoisers. Train a neural network ¢ to learn the noise.

f(y) = A"y — ¢(A%y)

» Data consistent denoisers. Train n networks ¢;, i=1,...,n
and ensure that the final image is consistent with your data
1. Pick o € [0, 1].
2: Set b = .
3: fori=1,...ndo
4 Xi=AJi — ¢i(A*Fi)
5: y = A%
6 Viti =ay + (1 —a)y,  (Enforce data consistency)
7: Return: X,.
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Neural network image reconstruction approaches

» Learn the physics. Do not warm start your network with A*.

Rather learn f(y;)=x;, i=1,...,n directly
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» Learn the physics. Do not warm start your network with A*.

Rather learn f(y;)=x;, i=1,...,n directly

> Unravel n steps with sparse regularization solver. Learn
Ai, Ki, and V; fori=1,...,n.
1: x3 = Ay
2: fori=1,...ndo
3 K1 =5 — (K)TVi(KiX) + MA* (A% — y)
4: Return: X,i1.
(omitting some details here)
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» AUTOMAP
> Low resolution images, 60% subsampling, single coil MRI.
» B. Zhu, J. Z. Liu, S. F. Cauley, B. R. Rosen and M. S. Rosen,
"Image reconstruction by domain-transform manifold learning’,
Nature, vol. 555, no. 7697, p. 487, Mar. 2018.
> DAGAN
» Medium resolution, 20% subsampling, single coil MRI.
» G. Yang, S. Yu, H. Dong, G. Slabaugh, P. L. Dragotti, X. Ye,
F. Liu, S. Arridge, J. Keegan, Y. Guo et al., DAGAN: Deep
de-aliasing generative adversarial networks for fast compressed
sensing MRI reconstruction, |IEEE Transactions on Medical
Imaging, 2017.
» Deep MRI
» Medium resolution, 33% subsampling, single coil MRI.
» J. Schlemper, J. Caballero, J. V. Hajnal, A. Price and D.
Rueckert, A deep cascade of convolutional neural networks for
MR image reconstruction, in International conference on
information processing in medical imaging, Springer, 2017, pp.
647-658.
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» Ell 50 and Med 50 (FBPConvNet)

» CT or any Radon transform based inverse problem, with 50
uniformly spaced lines.

» K. H. Jin, M. T. McCann, E. Froustey and M. Unser, 'Deep
convolutional neural network for inverse problems in imaging’,
IEEE Transactions on Image Processing, vol. 26, no. 9, pp.
4509-4522, 2017.

> MRI-VN

» Medium to high resolution, parallel MRI with 15 coil elements
and 15% subsampling.

» K. Hammernik, T. Klatzer, E. Kobler, M. P. Recht, D. K.
Sodickson, T. Pock and F. Knoll, "Learning a variational
network for reconstruction of accelerated MRI data’, Magnetic
resonance in medicine, vol. 79, no. 6, pp. 3055-3071, 2018.
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How to measure image quality?

(1) Base image (2) Translated (3) Add € = 0.32 to pixels
: - =
S

Image | ()| ) | 3 | & | 6 | (6

ly — distance | 0 | 215.04 | 204.80 | 167.26 | 216.44 | 193.15

Figure from: M. Lohne, Parseval Reconstruction Networks, Master thesis, UiO,
2019



(1) Instabilities with respect to tiny perturbations. That is
y = A(x + r) with ||r|| very small.

(2) Instabilities with respect to small structural changes, for
example a tumour, may not be captured in the reconstructed
image

(3) Instabilities with respect to changes in the number of samples.

Having more information should increase performance.

V. Antun, F. Renna, C. Poon, B.Adcock, A. Hansen. On instabilities of
deep learning in image reconstruction - Does Al come at a cost? (arXiv
2019)
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Finding tiny perturbations

Try to maximize
1 2 Ay
(r) = SIIF(ACx + 1)) = F(AX)II, = S lIrllz, A>0

using a gradient ascent proceedure.
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SoA from Ax SoA from A(x + r3)
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SoA from Ax
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|F(Alx + 1))l

SoA from A(x + r1)
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Tiny perturbation - AUTOMAP

SoA from A(x + r2)

. —
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Tiny perturbation - AUTOMAP

SoA from A(x + r3)
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Tiny perturbation - AUTOMAP

SoA from A(x + rg)
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Finding tiny perturbations

What if we tried to maximize
1 2 A2
(r) = SIIF(AC+ 1)) = xllz, = S lirllz,, A >0

instead
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SoA from Ax
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Tiny perturbation - AUTOMAP

SoA from A(x + r1)
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Tiny perturbation - AUTOMAP

SoA from A(x + r2)

|x + ._ |f(A(x + r))\

£
—
L]
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Tiny perturbation - AUTOMAP

SoA from A(x + r3)
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Tiny perturbation - AUTOMAP

SoA from A(x + rg)

F(AG + )|
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Original x

X+n

35/67



f(Ax) (zoomed) f(A(x + r1)) (zoomed)




SoA from Ax (zoomed) SoA from A(x + r1) (zoomed)
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Original x X+n
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Tiny perturbation — Med 50

f(Ax) (zoomed)

f(A(x+ n)) (zoomed)
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Tiny perturbation — Med 50

SoA from Ax (zoomed) SoA from A(x + r1) (zoomed)
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Small structural change — Ell 50
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Small structural change — Ell 50

f(Ax) SoA from Ax
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Small structural change — DAGAN

SoA from Ax
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SoA from Ax
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Adding more samples
Ell 50/Med 50
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Tiny perturbations lead to a myriad of different artefacts.
Variety in failure of recovering structural changes.
Networks must be retrained on any subsampling pattern?
Universality — Instabilities regardless of architecture?

Rare events? — Empirical tests are needed.
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THIS 15 YOUR MACHINE (EARNING SYSTETM?

. . YUP! YoU POUR THE DATA INTO THIS BIG
» Computational power is PILE OF LINEAR ALGEBRA, THEN (OLLECT
increasing. We can train, THE ANSLERS ON THE OTHER SIDE.

test and at a substantial WHAT IF THE ANSLERS ARE ”m?)

: : JUST STR THE PILE UNTIL
higher rate than just a few By BAGT Lok RIGHT

years ago.
» The datasets are growing.

» Increased knowledge about
good learning techniques
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WINNER’S CURSE?

ON PACE, PROGRESS, AND EMPIRICAL RIGOR

D. Sculley, Jasper Snoek, Ali Rahimi, Alex Wiltschko
{dsculley, jsnoek, arahimi, alexbw}@google.com
Google AI

ABSTRACT

The field of ML is distinguished both by rapid innovation and rapid dissemination
of results. While the pace of progress has been extraordinary by any measure, in
this paper we explore potential issues that we believe to be arising as a result. In
particular, we observe that the rate of empirical advancement may not have been

Troubling Trends in Machine Learning Scholarship
Zachary C. Lipton* & Jacob Steinhardt*

Carnegie Mellon University, Stanford University
zlipton@cmu.edu, jsteinhardt@cs.stanford.edu

July 27, 2018

1 Introduction

Collectively, machine learning (ML) researchers are engaged in the creation and dissemination of
knowledge about data-driven algorithms. In a given paper, researchers might aspire to any subset
of the following goals, among others: to theoretically characterize what is learnable, to obtain



Theorem 1

Let A: CN — C™ be a linear sampling map and let f : C™ — CN.
Suppose that there are x,1,&y,,¢x € CN with

1601, I&x]l < & € (0,1/2) such that

F(AX) = x + &, F(A(x+m)) = x+n+&, (1)

where ||n|| =1 and ||An|| = § > 0. Then we have the following.

(i) (Instabilities) Then the local Lipschitz constant of f at Ax,
defined for € > § > 0, satisfies

f(A Az) — f(A
15 = sup | (Ax + Az) — f(Ax)||
0<||Az||<e | Az||
1-26
>

€



Theorem 2

Let A: CN — C™ be a linear sampling map and let f : C™ — CN.
Suppose that there are x,1,&,,&x € CN with

160l [16x]l < 0 € (0,1/2) such that

F(AX) = x + & F(A(x+n)) = x+n+&, (2)

where ||n|| =1 and ||An|| = 6 > 0. Then we have the following.

(i) (False positives) Moreover, there exists a perturbation r € C™
with ||r|| = § such that

IF(r + Ax) = (x + )| < 6.

(iii) (False negatives) and there exists a perturbation r € C™ with
Ir]| = & such that

I£(r + A(x + 1)) — x|| < 6.



Neural network reconstruction
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Neural network reconstruction
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Neural network reconstruction
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Neural network reconstruction
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Neural network reconstruction
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Neural network reconstruction
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Neural network reconstruction
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Neural network reconstruction
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Neural network reconstruction
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Neural network reconstruction

4.00

3.75 1

3.50 1

3.25 A1

3.00 1

2.75 A1

2.50 1

2.25 A1

—_— X

— fly).y = Ax

— real(A™*y)
0.0 02 0.4 0.6 0.8 1.0

62 /67



Neural network reconstruction
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Recall that if AW ™! satisfies the restricted isometry property in
levels (RIPL).

% € argmin,con ||Wz||1  subject to  [[Az—y| <7

satisfies
os.m(Wx)1

NG

[ =x[|2 S +1

where

gsm(Wx)1 = inf{||Wx — z||1 : z is (s, M)-sparse}
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Wavelet reconstruction
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Wavelet reconstruction
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> Kernel awareness is important

P It seems hard to protect against to high preformance.

» Universality — Instabilities regardless of architecture
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