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Abstract
Sparsity is the traditional mainstay of the majority of compressed sensing. However, recent evidence suggests

that in many applications where the sampling mechanism is fixed one does not recover all sparse vectors, but rather
a much smaller subclass possessing greater structure. We therefore pose the following question: What type of
structured signals does compressed sensing actually recover? To answer this question we provide an array of tests
known as flip tests that aid one in determining the right structured sparsity model for a given problem. Only once the
correct model has been determined can one provide mathematics that accurately describe the recovery properties of
compressed sensing. In the case of wavelets (or, more generally, X-lets) we suggest a structured sparsity model that
aligns with the corresponding flip tests, and demonstrate improved recovery guarantees.

The fact that such sampling mechanisms recover the sparsity structure common to many signals of interest, e.g.
images, leads us to question the conceived compressed sensing wisdom of complete random, or generally, incoherent
sampling (e.g. random sub-Gaussian, permuted Fourier, expanders etc.). In particular, we pose the following ques-
tion: In applications where the sampling mechanism can be chosen, does structured sampling outperform incoherent
sampling? We answer this question affirmatively for certain cases of interest.

In investigating these two themes, we find that there are many questions at the heart of compressed sensing that
require us to revisit its fundamentals. Aiming to spur new research in this direction, we conclude this note with a list
of open problems and topics for future research.

1 Introduction
Compressed sensing (CS) [8, 10, 11, 12] has led to an important shift in our perspective on the task of sampling and
reconstruction of signals. Given a signal x ∈ CN possessing a certain structure, often referred to as sparsity, and an
appropriate sensing mechanismA ∈ Cm×N , CS states that one recover x from noisy measurements y = Ax+e using
far fewer samples than was traditionally thought necessary. Practically, this can be achieved by a number of recovery
algorithms, including, for example the `1 minimization

min
z∈Cn

‖z‖1 s.t. ‖Ax− y‖2 ≤ δ, (1.1)

where ‖e‖2 ≤ δ. The key to this is the assumed structure of x. We say that x is s-sparse if it has at most s
nonzero entries, regardless of their locations. There are now a myriad of theoretical results describing sufficient (and
sometimes necessary) conditions for recovering an s-sparse vector from measurements y by solving (1.1) or other
appropriate algorithms.

There is however one mismatch: sparsity turns out to be an inaccurate model in many applications of CS including
Magnetic Resonance Imaging (MRI), Computerised Tomography (CT), Electron Microscopy (EM), Fluorescence
Microscopy (FM), Helium Atom Scattering (HAS), Radio Interferometry (RI), and Hadamard Spectroscopy (HS).
More precisely, one does not actually recover all sparse vectors, but only a small subset of sparse vectors possessing
substantial additional structure. Given the large body of work on the sparsity model this may come as a surprise. Yet,
it is possible to observe this phenomenon through the so-called flip test [2, 23]. We recall this test in Section 2.1.

If sparsity is not the correct model for CS in many applications, one key question that arises is:

(1) What kind of structured signals does one actually recover with CS?

To address this general problem we suggest subdividing into two more basic questions:

(1.a) Given a sampling mechanism, does one recover an arbitrary sparse signal?

(1.b) If not, what kind of sparsity structure does one recover?

Question (1.b) is hard to answer. A typical trial and error approach would be to conjecture a structured sparsity model
and then ask the following:

(1.c) Given a sampling mechanism and a structured sparsity model, does one recover an arbitrary signal in this
class?

1



Striving towards an answer for (1) we introduce the extended flip test below. In particular, this is a numerical test that
allows one to investigate questions (1.a) and (1.c) above.

In addition, in many applications of CS such as those listed above, the sampling mechanism is itself not just
random, but also highly structured [2, 16, 17, 19, 21, 23, 25, 29], and so it is perhaps not too surprising that one
recovers only signals with a particular structure. This raises a second fundamental question: if we were able to design
the sampling mechanism (this is impossible in many applications, e.g. MRI, but we ask this as a basic question), should
we follow standard practice and use incoherent sampling, e.g. sub-Gaussian random matrices, which can recover any
s-sparse signal, or should we choose a sampling mechanism and strategy that recovers only structured sparse signals,
such as natural images? In other words,

(2) Does structured sampling outperform incoherent sampling?

Section 3 endeavours to answer this question both numerically and mathematically, and the answer is: yes, provided
the signal is structured. We thus conclude that incoherent sampling is indeed substantially less than optimal for
recovering natural signals such as images.

2 Towards an accurate model: The generalized flip test
The original flip test [2, 23] was designed to answer questions (1.a) and (1.c) above. It showed that the standard
Restricted Isometry Property (RIP) and sparsity model do not explain the recovery seen in the applications dealing
with structured sampling operators and structured signals (virtually all applications listed above). This was done by
flipping the sparsity basis coefficients, which completely preserves the signal sparsity, and then recovering this new
signal using the same sampling operator and algorithm. We now generalize the flip test to allow for any sparsity
model, any signal class, any sampling operator, and any recovery algorithm. The original flip test is a special case
of this extended flip test. To show its applicability, we apply it to three existing sparsity models when considering
Fourier and Hadamard measurements and X-lets as the sparsity representation: the classic sparsity model [8, 10], the
weighted sparsity model [22], and the sparsity in levels model [2, 23]. As we shall see, in these cases, the third model
is the most realistic.

The generalized flip test is as follows:
(i) Signal model. Decide on the type of signals of interest in, e.g. 1D piecewise smooth functions, 2D images, smooth
functions, etc. Create a discrete vector x coming from the discretization of this desired signal model.
(ii) Sparse transform. Choose a sparsifying transformW such thatWx is sufficiently sparse. See more details below
in step (vi).
(iii) Measurements and sampling strategy. Choose a measurement operator A ∈ Cm×N e.g. Fourier, Hadamard,
Gaussian, etc. For orthogonal operators, such as Fourier, Hadamard, DCT and others, also specify the subsampling
strategy for selecting the m rows, e.g. uniform random, power law [17], half-half [10, 27], multilevel [2, 23] etc.
(iv) Recovery algorithm. Choose a recovery algorithm ∆ : Cm → CN . For example `1 minimization, i.e. solving
minz∈CN ||z||1 s.t. AW−1z = Ax.
(v) Sparsity structure model. Choose the model of the sparsity structure to be tested. For example, the classic
sparsity model [8, 10, 11, 12], weighted sparsity [22], sparsity in levels [2, 23], or another structured model.
(vi) The test. Perform the following experiment:

• Generate a signal x0 from the model in (i) and obtain Wx0 using the sparsifying transform from (ii), then
threshold Wx0 so that it is perfectly sparse (see next step for how to determine the threshold level). If the
sparsity model from (v) does not depend on the magnitudes of the entries in Wx0 (e.g. models such as sparsity,
weighted sparsity and sparsity in levels) then set all the non-zero entries in Wx0 to a positive constant α, i.e.
obtain an x so that (Wx)i = α for all i ∈ supp(Wx0). This is to make all non-zeros equally important in order
to avoid small coefficients giving false positives in the next step.
• Perform a reconstruction with measurements Ax using the sampling operator from (iii) and the recovery algo-

rithm from (iv). If x is not recovered exactly (within a low tolerance) then decrease the thresholding level for
Wx0 in the above step to obtain a sparser x and repeat until x is recovered exactly.
• Create several new signals x1, x2, ... such thatWxj are in the same structured sparsity class from (iv) asWx is.

Specifically, ensure that all vectors Wx and Wxj give the same value under the sparsity measure defined in the
model from (iv), with non-zero entries set to some positive α if the sparsity model does not involve magnitudes.
For example, for the classic sparsity model, allWxj must have the same number of non-zero entries asWx and
magnitudes equal to some positive α; for the weighted sparsity model, all Wxj must have the same weighted
`0 norm and non-zero entries set to some positive α; etc.
• Obtain a recovery for each xj using the same operator A and algorithm ∆. Ensure the recovery is consistent by

averaging over several trials if A entails any kind of randomization.
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Figure 1: Piecewise smooth 1D signal x0 and recovery into Haar wavelets from m = 1000 Hadamard samples
taken using a half-half scheme (first m/2 samples taken fully from the lower ordered rows, and the other m/2
uniformly at random from the remaining rows), which is known to be a good all round strategy [10, 27]. Here Wx
was thresholded to s = 150 Haar coefficients.

(vii) The conclusions. First, if any of the recovery tests failed then the structured sparsity model chosen in (v)
is not appropriate for the signal model, sparse transform, measurements and recovery algorithm chosen in (i)–(iv)
respectively, and the conjectured model can be ruled out. Second, if the recovery of sufficiently many and different
xj is successful, this suggests that the structured sparsity model could be correct - though this is never a complete
validation of the model.

We shall now test three existing sparsity models for structured 1D and 2D signals using structured operators.
Figure 1 and Figure 2 show the signals x0, Wx0, Wx (thresholded) and their reconstructions via `1 minimization,
which is the recovery algorithm we shall use.

2.1 The classic sparsity model and X-lets
The classic sparsity model is the first CS model [8, 10, 11, 12] and states that the location of the non-zero entries of
Wx is not important, only the sparsity measure s = | supp(Wx)| is important. In this model, operators that satisfy
the RIP with appropriate constant can recover all s-sparse vectors when using `1 minimization.

Definition 2.1 (Classic RIP). A matrixU ∈ Cm×N is said to satisfy the RIP of order s with constant δs if the following
holds for all s-sparse vectors y ∈ CN

(1− δs)‖y‖22 ≤ ‖Uy‖22 ≤ (1 + δs)‖y‖22.

The flip test for this model is the original flip test introduced in [2]. Specifically, we take A to be the Fourier
operator, W to be any discrete wavelet transform, x to be a natural image, and the new signal xj is generated so that
Wxj is the flipped version of Wx, i.e. (Wxj)k = (Wx)N−k+1, thus being in the same sparsity model as the sparsity
measure is preserved since | supp(Wx)| = | supp(Wxj)| = s.

Figures 3 and 4 show a generalized flip test for this model. The marked differences between the two recoveries
demonstrates that the the classic sparsity model and RIP are not appropriate for this class of operators and signals.
Simply put, one does not recover all s-sparse vectors, the location of the non-zero entries in Wx is actually important
when dealing with structured operators and structured signals. The same conclusion was reached when we repeated
this experiment for a large number of various natural images and combinations of Fourier, Hadamard and DCT
measurements, see [2, 23].

2.2 The weighted sparsity model and X-lets
The weighted sparsity model [22] extends the classic sparsity model by making some non-zero entries inWx be more
important than others by using weights. It is in this sense a more structured model than the classic sparsity model, and
it similarly defines a weighted RIP. Just as with the classic RIP, matrices that satisfy the weighted RIP can recover all
weighted s-sparse signals when using weighted l1 minimization with matching weights [22].

Definition 2.2 (Weighted sparsity). Given a vector y ∈ CN and a vector of weights ω := (ω1, ω2, . . . , ωN ) ∈ RN
with ωj ≥ 1 for each j, we define the weighted `0 norm as ‖y‖ω,0 :=

∑
j∈supp(w) ω

2
j , and y is said to be (ω, s)-sparse

for some s > 0 if ‖y‖ω,0 ≤ s. We also define Σω,s to be the set of all y ∈ CN such that ‖y‖ω,0 ≤ s.
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Figure 2: Natural 2D signal at 256 × 256 resolution and recovery into Haar wavelets from m = 18000 Fourier
samples taken using a power law ∼ (k1 + k2)

−3/2 as in [17]. Here Wx was thresholded to s = 6000 Haar
coefficients.
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Figure 3: Flip test for the classic sparsity model with piecewise smooth 1D signals. Wxj (top) and its `1 recovery
(bottom). All test elements, except xj , are identical to those used in Figure 1.

Definition 2.3 (Weighted RIP). A matrix U ∈ Cm×N is said to satisfy the weighted RIP of order (ω, s) with constant
δω,s if the following holds for all (ω, s)-sparse vectors y ∈ CN :

(1− δω,s)‖y‖22 ≤ ‖Uy‖22 ≤ (1 + δω,s)‖y‖22

We shall now test whether the weighted sparsity model and the weighted RIP are appropriate for the structured
signals and structured operators typically seen in practice. Let W be the discrete Haar wavelet transform. To be
in the same model, the flipped signals Wxj must preserve the weighted `0 norm of the original signal Wx for the
given weights ω i.e. ||Wx||ω,0 = ||Wxj ||ω,0. The weights ωi were chosen to be equal within each wavelet scale, but
different across scales, which follows the wisdom of weighted `1 recovery [22]. Here we chose ωi = 2dlog2 ie, i =
1, 2, . . ., however we get similar results if ωi = 2α log2 i with 0 < α < 1.

Figure 5 and Figure 6 show generalized flip tests for this model. It is clear that a similar conclusion as with the
classic sparsity model can be drawn: the weighted sparsity model and the weighted RIP do not hold for structured
operators and structured signals of this kind. The weighted sparse class is still too big, i.e. it contains too many vectors
that are unrealistic to recover. The test results can also be explained mathematically, see Theorem (2.7) which shows
how the weighted sparsity class is indeed too big. We note that we also performed the recovery using weighted `1

minimization and the result is the same.

Remark 2.4 (Weighted sparsity for other models) The fact that weighted sparsity may not be the right model for
wavelets or other X-lets does not mean that it is not accurate for other models. In [22] it was shown that weighted
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Figure 4: Flip test for the classic sparsity model with natural 2D signals. Wxj (top) and its `1 recovery (bottom).
All test elements, except xj , are identical to those used in Figure 2.
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Figure 5: Flip test for the weighted sparsity model with piecewise smooth 1D signals. Wxj (top) and its `1

recovery (bottom). All test components, except xj , are identical to those used in Figure 1.

sparsity is an accurate model for pointwise sampling of smooth functions using polynomials as the sparse representa-
tion. This emphasises one of the main messages of the extended flip test: different sampling and recovery bases yield
different structured sparsity.

2.3 The sparsity in levels model and X-lets
Another structured sparsity model is sparsity in levels [2, 23]. It is motivated by the fact that any X-lets have a
particular level structure according to their scales. As seen below, this model defines a vector {sk} of local sparsities
and level boundaries {Mk} in order to capture sparsity in a more refined manner. As such, it is expected to contain a
smaller class of signals. This model also has its own RIP variant.

Definition 2.5 (Sparsity in levels). Let y ∈ CN . For r ∈ N let M = (M1, . . . ,Mr) ∈ Nr and s = (s1, . . . , sr) ∈ Nr,
with sk ≤ Mk −Mk−1, k = 1, . . . , r, where M0 = 0. We say that y is (s,M)-sparse if, for each k = 1, . . . , r we
have |∆k| ≤ sk, where

∆k := supp(y) ∩ {Mk−1 + 1, . . . ,Mk}.

We write Σs,M for the set of (s,M)-sparse vectors and define the best (s,M)-term approximation as

σs,M(y)1 = min
z∈Σs,M

‖y − z‖1.

Definition 2.6 (RIP in Levels). Given an r-level sparsity pattern (s,M), where Mr = N , we say that the matrix
U ∈ Cm×N satisfies the RIP in levels (RIPL) with RIPL constant δs,M ≥ 0 if for all y ∈ Σs,M we have

(1− δs,M)‖y‖22 ≤ ‖Uy‖22 ≤ (1 + δs,M)‖y‖22.

Similarly to the other RIP concepts the RIP in levels implies recovery of all (s,M) sparse vectors [4, 6]. We
shall test this model in the same manner, with an interest towards structured operators and structured signals. Let
the sparsity transform W be a wavelet transform and let the level boundaries M correspond to the wavelet scale
boundaries. For this model, the flipped signals Wxj must have the same (s,M) sparsity as Wx, i.e. the local
sparsities and the level boundaries must be preserved. In other words, we can move coefficients within wavelet levels,
but not across levels.

Figure 7 and Figure 8 show results of the flip test. We ran the same test for various other structured signals and
structured operators and the results were consistent. As suggested by the results, sparsity in levels seems to be a
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Figure 6: Flip test for the weighted sparsity model with natural 2D signals. Wxj (top) and its `1 recovery (bottom).
All test elements, except xj , are identical to those used in Figure 2.
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Figure 7: Flip test for the sparsity in levels model with piecewise smooth 1D signals. Wxj (top) and its `1 recovery
(bottom). All test components, except xj , are identical to those used in Figure 1.

class that is actually recovered. As previously stated though, the flip test cannot guarantee that this is true for the
entire class, since the flip test cannot entirely prove a model correct (unless it tests all signals in the class, which is
infeasible). However, the variety of structured signals and structured operators we tested with success does provide
reassurance that this model is more realistic than the classic sparsity and weighted sparsity models. Theoretically, the
following theorem shows why the weighted sparse model yields a class of signals that is too big in comparison with
sparsity in levels:

Theorem 2.7. Let (s,M) have r levels and fix a nonempty L ⊂ {1, 2, . . . , r}. Suppose that the collection of (s,M)-
sparse vectors, denoted by Σs,M, is a subset of Σω,X for some ω,X . Then there is an l0 ∈ L such that Σs̃,M ⊂ Σω,X ,
where s̃ = (s̃1, s̃2, . . . , s̃r) and

s̃i =


si if i ∈ Lc

K if i = l0

0 otherwise,
K = min{|L|sl0 ,Ml0 −Ml0−1}

A direct consequence of this theorem is the following corollary that describes why the weighted sparsity class
may be too big for wavelets. See Remark 2.9 for a thorough discussion. Note that this result is independent of the
weights chosen, thus, changing the weights will not solve the problem.
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Figure 8: Flip test for the sparsity in levels model with natural 2D signals. Wxj (top) and its `1 recovery (bottom).
All test elements, except xj , are identical to those used in Figure 2.
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Figure 9: A demonstration of the near block diagonality of typical CS matrices. From left to right, the images
represent the absolute values of Fourier to DB2, Fourier to DB10 and Hadmard to Haar matrices. Black corresponds
to the value 1 and white to the value 0.

Corollary 2.8. Let (s,M) have r levels and fix l ∈ {0, . . . , r− 1}. Suppose that Σs,M ⊂ Σω,X for some ω,X . Then
there is an l0 with l < l0 ≤ r such that Σs̃,M ⊂ Σω,X , where

s̃ = (s1, s2, . . . , sl︸ ︷︷ ︸
l

, 0, 0, . . . , 0︸ ︷︷ ︸
l0−1−l

,K, 0, . . . , 0), K = min{(r − l)sl0 ,Ml0 −Ml0−1}.

Remark 2.9 (The sparse and weighted sparse classes are too big for wavelets) Note that the Fourier to wavelet
matrix U = UdftV

−1
dwt ∈ CN×N , where Udft denotes the discrete Fourier transform and Vdwt denotes the discrete

wavelet, transform is almost block diagonal, see Figure 9 as well as [4]. This phenomenon also happens with the
Hadamard to wavelet matrix. Hence, to simplify our explanation we will assume that U is block diagonal with levels
dictated by the wavelet scales.

Assuming this block diagonality, any successful sampling scheme that can recover the wavelet coefficients must
have in the kth level a set of samples Ωk that is proportional in size to the number of important coefficients sk in
the kth wavelet level. What Corollary 2.8 states is that there will always exist an l0 such that the set of weighted
sparse vectors includes a vector that has (r − l)sl0 coefficients in the l0th level. Hence, if Ωl0 was a set of sampling
points that were sufficient to recover a set of sl0 coefficients in the l0th level and no more, then if one instead assumes
a weighted sparse model one would end up needing on the order of (r − l)|Ω|l0 samples to recover the (r − l)sl0
possible coefficients in the l0th level in this model. In particular, |Ωl0 | is not large enough and this is why the flip
test fails for the weighted sparse model. This ‘cramming of coefficients’ phenomenon described by Corollary 2.8 is
illustrated in Figure 5. Note that such cramming can be completely controlled by the parameter l and can essentially
occur in any levels of the wavelet coefficients. Moreover, due to the factor r − l, the amount of cramming allowed
for weighted sparse vectors becomes worse with the number of levels. In other words, Corollary 2.8 reveals precisely
why the weighted sparsity class is too large, and therefore fails as a model to describe this a setup.

Remark 2.10 (Sparsity in levels may not be the right model for polynomials) Just as weighted sparsity does not
capture the essence of the level structure with wavelets given natural signals, sparsity in levels may not be the correct
structured sparsity model for, say, polynomials. This underlines one of the important messages of the extended flip
test, namely, different setups will yield different structured sparsity models. The key is to find the appropriate models.

3 Does structured sampling outperform incoherent sampling?
Being interested in structured signals, and having discussed sparsity models, we turn our attention to problems where
one has the freedom to design the sampling mechanism, such as the single pixel camera [28], lenseless camera [15]
or fluorescence microscopy [27, 23], which can implement either incoherent matrices (e.g. random sub-Gaussian,
expanders etc.) or structured matrices (e.g. Hadamard or DCT).

Can we outperform incoherent sampling? At first that appears to be difficult as one typically needs m & s log(N)
samples to recover all s-sparse vectors from incoherent measurements. This bound is optimal for recovering sparse
vectors so it seems hard to believe that one can do better. However, the context changes when we restrict the class
of s-sparse signals to signals that have substantially more structure, such as natural images. As shown empirically
and discussed in [23], when dealing with such signals, using a variable density sampling procedure termed multilevel
(defined below) and either Fourier or Hadamard measurements one can substantially outperform sampling with inco-
herent matrices whenever the sparsifying transform consists of wavelets, X-lets or total variation. In fact, [23] showed
that one can substantially outperform incoherent sampling even when state of the art structured recovery algorithms
are used (e.g. Model-based [5], TurboAMP [24], Bayesian CS [14] etc.), simply by using structured sampling and
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Figure 10: Comparison between incoherent sampling and structured sampling, recovered into Haar at 256×256.

standard `1 recovery. See [23] for examples and in-depth discussion and comparison of structured versus incoherent
sampling.

While [23] provides an in-depth investigation of this phenomenon, here we provide the first theoretical results
which seek to it mathematically. We commence by defining the sampling scheme.

Definition 3.1 (Multilevel random sampling). Let r ∈ N, N = (N1, . . . , Nr) ∈ Nr with 1 ≤ N1 < . . . < Nr, m =
(m1, . . . ,mr) ∈ Nr, with mk ≤ Nk −Nk−1, k = 1, . . . , r, and suppose that Ωk ⊆ {Nk−1 + 1, . . . , Nk}, |Ωk| =
mk, k = 1, . . . , r, are chosen uniformly at random, where N0 = 0. We refer to the set Ω = ΩN,m = Ω1 ∪ . . .∪Ωr
as an (N,m)-multilevel sampling scheme.

First we define the discrete Fourier transform Udft. Let x = {x(t)}N−1
t=0 ∈ CN be a signal and the Fourier

transform of x be Fx(ω) = N−1/2
∑N
t=1 x(t)e2πiωt/N , with ω ∈ R, then write F ∈ CN×N for the corresponding

matrix, so that Fx = {Fx(ω)}N/2ω=−N/2+1. We then let Udft be the row permuted version of F where frequencies are
reordered according to the bijection θ : Z→ N defined by θ(0) = 1, θ(1) = 2, θ(−1) = 3 etc.

Theorem 3.2 (Fourier to Haar). Let ε ∈ (0, e−1] and U = UdftV
−1
dwt ∈ CN×N , where Vdwt denotes the discrete Haar

transform. Let x ∈ CN . Suppose that Ω = ΩN,m is a multilevel sampling scheme and (s,M) is a multilevel sparsity
structure as described above where M = N correspond to levels defined by the wavelet scales (where potentially
several scales could be combined into one level). Moreover, suppose that s1 = M1 and s1 ≤ s2. If

m1 = M1, mj &

sj +

r∑
l=2,l 6=j

2−
|j−l|

2 sl

 log(ε−1) log(N), j = 2, . . . , r, (3.1)

then any minimiser z of (1.1) with A = PΩU satisfies

‖z − x‖ ≤ C
(
δ
√
D(1 + E

√
s) + σs,M(x)

)
, (3.2)

with probability exceeding 1 − sε, where s = s1 + . . . + sr, C is a universal constant, D = 1 +

√
log2(6ε−1)

log2(4EN
√
s)

and
E = maxj=1,...,r{(Nj −Nj−1)/mj}. In particular, the total number of measurements m = M1 + m2 + . . . + mr

satisfies
m ≥M1 + C (s2 + . . .+ sr) log(ε−1) log(N). (3.3)

Remark 3.3 (Losing the log factor) The key point of this theorem is that we lose the log factors in the M1 term.
In particular, the number of measurements needed to recover the first M1 coefficients is exactly equal to M1, and is
independent of the resolutionN . Conversely, if one were to use an incoherent sampling strategy then the total number
of measurements would be

m ≥ C(M1 + s2 + . . .+ sr) log(ε−1) log(N).

Note that the coarse scale wavelet coefficients typically carry much of the signal’s energy. Hence accurate recovery
of these coefficients using as few measurements as possible is important for a good reconstruction. The improved re-
covery properties of structured sampling, based on recovering such coefficients more efficiently than in the incoherent
setting, is demonstrated theoretically by Theorem 3.2. An experiment verifying this fact is shown in Figure 10.
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4 Open problems and proofs
The purpose of this note was to stimulate interest in revisiting the fundamentals of CS by demonstrating firstly that
structured sparsity is what one actually recovers in many applications of CS, and secondly that structured sampling
can bring significant performance gains in practice over incoherent sampling, even in scenarios where the sampling
operator can be designed. We conclude with a list of open problems and challenges.

(i) Structured sampling and structured sparsity. Characterise the right structured sparsity models for different
types of problems and different types of sparsity bases or frames (polynomials, wavelets [9], shearlets [18],
curvelets [7], total variation [17, 20] etc.)

(ii) Provide a mathematical theory for the sampling strategies that recover structured sparse signals from (i). Note
that different sampling strategies and different sparsity bases/frames may correspond to different structured
sparsity models.

(iii) Provide sharp recovery guarantees for nonuniform recovery of a signal in the structured sparsity class.

(iv) Generalize standard compressed sensing tools such as the null space property and the restricted isometry prop-
erty to the structured setting, and prove that the appropriate measurement matrices A satisfy both.

(v) Provide a mathematical theory to explain why structured sampling outperforms incoherent sampling even when
structured recovery algorithms are used, as shown empirically in [23].

(vi) Improve structured sparsity models to take into account coefficient magnitudes.

(vii) Deterministic sampling. Some key CS applications do not allow for much randomness when sampling, yet
deterministic sampling in those cases has been shown to work well in practice. Here one expects to recover
only a small structured subset of the set of sparse vectors. However, most problems in these instances are
highly structured as well, which gives an intuitive reason as to why this should work. Can we prove prove this
mathematically?

(viii) Characterise the right structured sparsity models for different types of problems where the sampling procedure
is deterministic.

(ix) Outperforming `1 minimization. The extended flip test shows that in many cases the signal class of interest
is smaller than the structured sparsity class that is actually being recovered by `1 minimization. This therefore
raises the question: can we design structured recovery algorithms that improve on the results obtained by
structured sampling and standard `1 minimization? Do such algorithms exist when the sampling procedure
is optimal for a particular problem? Essentially, we would like an algorithm capable of recovering smaller
structured sparsity classes than what `1 recovers. For example, for natural images, `1 recovers a larger class,
which includes many non-natural images, even with structured sampling. In other words, `1 seems suboptimal.

Note that some of these problems are inspired by some of the discussions in [26]. Also, the questions above are valid
regardless if the model is finite or infinite-dimensional [1, 13].

4.1 Proofs of Theorems 2.7 and 3.2
Proof of Theorem 2.7. Let i ∈ {1, . . . , l} and n ≤Mi −Mi−1. Define Ωi(n) to be the set of indices of the n largest
elements of the weights {ωMi−1+1, ωMi−1+2, . . . , ωMi}. Furthermore, define

Hi(n) :=
∑

j∈Ωi(n)

w2
j , X ′ := X −

∑
i∈Lc

Hi(si)

and

Ri(n) :=
X ′

Hi(n)
,

where we recall that X stems from Σω,X in particular ‖x‖ω,0 ≤ X for all x ∈ Σω,X . From these definitions, it is
easy to see that Hi(m) nm ≥ Hi(n) for n ≥ m. Indeed,

Hi(n) ≤ Hi(m) + (n−m) min
j∈Ωi(m)

w2
j

≤ Hi(m) +
(n−m)Hi(m)

m
=

n

m
Hi(m)

(4.1)

By the conditions of the theorem, we have ∑
i∈L

Hi(si) ≤ X ′ (4.2)
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since Σs,M ⊂ Σw,X and so
∑l
i=1Hi(si) ≤ X , yielding (4.2). Define, for m ≤ Mj −Mj−1, the vector s̃j(m) :=

(s̃j1, s̃
j
2, . . . , s̃

j
l ), where

s̃ji =


si if i ∈ Lc

m if i = j

0 otherwise

it is clear that Σs̃j(m),M ⊂ Σω,X whenever Rj(m) ≥ 1, because if x is (̃sj(m),M)-sparse, then ‖x‖ω,0 ≤ Hj(m) +
(X −X ′) ≤ X by the definition of Rj(m). Finally, by using (4.1) and (4.2) (in the first inequality below) then

max
j∈L

Rj(lsj) ≥ max
j∈L

∑
i∈L

Hi(si)

|L|Hj(sj)
≥

min
i∈L
|L|Hi(si)

min
j∈L
|L|Hj(sj)

= 1.

Since the maximum on the left hand side is taken over a finite set, it is attained at some l0, and the theorem follows.

Proof of Theorem 3.2. The proof is based on an abstract theorem from [2] as well as some estimates from [3]. Before
we can apply these we need to recall some basics from [2].

Definition 4.1 (Relative sparsity). Let U be an isometry of either CN or l2(N). For N = (N1, . . . , Nr) ∈ Nr,
M = (M1, . . . ,Mr) ∈ Nr with 1 ≤ N1 < . . . < Nr and 1 ≤ M1 < . . . < Mr, s = (s1, . . . , sr) ∈ Nr and
1 ≤ k ≤ r, the kth relative sparsity is given by Sk = Sk(N,M, s) = maxη∈Θ ‖P

Nk−1

Nk
Uη‖2, where N0 = M0 = 0

and Θ is the set
Θ = {η : ‖η‖l∞ ≤ 1, |supp(P

Ml−1

Ml
η)| = sl, l = 1, . . . , r}.

Relative sparsity is crucial for controlling so-called interference between different levels. A key in the proof is to
be able to estimate the Sk(N,M, s).

Definition 4.2 (Local coherence). Let U be an isometry of either CN or l2(N). If N = (N1, . . . , Nr) ∈ Nr and
M = (M1, . . . ,Mr) ∈ Nr with 1 ≤ N1 < . . .Nr and 1 ≤ M1 < . . . < Mr the (k, l)th local coherence of U with
respect to N and M is given by

µN,M(k, l) =

√
µ(P

Nk−1

Nk
UP

Ml−1

Ml
) · µ(P

Nk−1

Nk
U), k, l = 1, . . . , r,

where N0 = M0 = 0 and P ab denotes the projection matrix corresponding to indices {a+ 1, . . . , b}.

To estimate the relative sparsity and local coherence in the Fourier to Haar case we will rely on some previous
calculations done in [3], and thus we need to make a small adjustment to be able to use the results directly. Note that,
due to the definition of Udft and the multilevel sampling corresponding to the levels our sampling is equivalent to
sampling the classical discrete Fourier transform F in the following way. Recall that the rows of F are indexed over
{−n/2 + 1, . . . , n/2}. We divide this set into r frequency bands. Let W0 = {0, 1}, and

Wj = {−2j + 1, . . . ,−2j−1} ∪ {2j−1 + 1, . . . , 2j}, j = 1, . . . , r − 1, (4.3)

and note that W0, . . . ,Wr−1 form a disjoint partition of {−n/2 + 1, . . . , n/2}. Observe that

|W0| = 2, |Wj | = 2j , j = 1, . . . , r − 1.

For j = 0, . . . , r − 1, we now choose the index set Ωj ⊆ Wj uniformly at random of size |Ωj | = mj , and finally we
have

Ω = Ω0 ∪ · · · ∪ Ωr−1, |Ω| = m = m0 + . . .+mr−1. (4.4)

Since this form of sampling the matrix F is equivalent to the way of sampling Udft described in the theorem we can
continue with estimates of the relative sparsity and local coherence with respect to FV −1

dwt that were proved in [3].
More precisely we have

Sj .
r−1∑
l=0

2−|j−l|/2sl+1, j = 1, . . . , r, (4.5)

and
µN,M(j, l) . 2−(j−1)2−|j−l|/2, j, l = 1, . . . , r. (4.6)

We can now insert these estimates into one of the main theorems from [2] to prove our theorems. We use the following
result from [2]. In particular, let U ∈ CN×N is an isometry, x ∈ CN , Ω = ΩN,m is a multilevel sampling scheme,
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(s,M) a multilevel sparsity structure, where M = (M1, . . . ,Mr) ∈ Nr, Mr = N , and s = (s1, . . . , sr) ∈ Nr, such
that the following holds: for ε ∈ (0, e−1] and 1 ≤ k ≤ r,

mk = min{Nk −Nk−1, m̃k}

m̃k & (Nk −Nk−1) · log(ε−1) ·

(
r∑
l=1

µN,M(k, l) · sl

)
· log (N) ,

(4.7)

and mk & m̂k · log(ε−1) · log (N) , where m̂k is such that

1 &
r∑

k=1

(
Nk −Nk−1

m̂k
− 1

)
· µN,M(k, l) · Sk, ∀ l = 1, . . . , r, (4.8)

and N0 = 0. Then any minimiser z of (1.1) with A = PΩU satisfies

‖z − x‖ ≤ C
(
δ
√
D(1 + E

√
s) + σs,M(x)

)
.

Hence, to prove our theorems we simply need to insert our previous estimates into (4.7) and (4.8). More precisely, to
prove Theorem 3.2 we get that (4.7) and (4.6) yield the following conditions on mj :

mj = min{Nj −Nj−1, m̃j}

m̃j &

sj +

r∑
l=1
l 6=j

2−
|j−l|

2 sl

 log(ε−1) log(N), j = 1, . . . , r.
(4.9)

Also, by using (4.8), (4.5) and (4.6) give the conditions

mj & m̂j log(ε−1) log (N) , 1 &
r∑
j=2

(
Nj −Nj−1

m̂j
− 1

)
2−(j−1)2−|j−l|/2

r−1∑
k=1

2−|j−k|/2sk+1, (4.10)

for j = 2, . . . , r. Using the assumption of the theorem and the facts that

Nj −Nj−1 = 2−(j−1), ((Nj −Nj−1)/m̂j − 1) ≤ (Nj −Nj−1)/m̂j ,

and that
r∑
j=2

2−|j−l|/2 . 1, l = 1, . . . , r,

then (4.10) is satisfied if mj satisfies (4.9). As (3.1) obviously implies (4.9) the theorem is proved.
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