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Abstract
The purpose of this paper is twofold. The first is to point out that the Restricted Isometry Property does

not hold in many applications where compressed sensing is successfully used. This includes some of the flag-
ships of compressed sensing like Magnetic Resonance Imaging. We demonstrate that for natural compressed
sensing matrices involving a level based reconstruction basis, e.g. wavelets, the number of measurements
required to recover all s-sparse signals for reasonable s is excessive. In particular, uniform recovery of all
s-sparse signals is quite unrealistic. This realisation shows that the Restricted Isometry Property is insuffi-
cient for explaining the success of compressed sensing in various practical applications. The second purpose
of the paper is to introduce a new realistic framework based on a new RIP-like definition that fits the actual
applications where compressed sensing is used. We show that the shortcomings used to show that uniform
recovery is unreasonable no longer apply if we instead ask for structured recovery that is uniform only within
each of the levels. To analyse this phenomenon, a new tool, termed the ’Restricted Isometry Property in Lev-
els’ is described and analysed. We show that with certain conditions on the Restricted Isometry Property in
Levels, a form of uniform recovery within each level is possible. Finally, we conclude the paper by providing
examples that demonstrate the optimality of the results obtained.

1 Introduction
Compressed Sensing (CS), introduced by Candès, Romberg & Tao [9] and Donoho [13], has been one of
the major new developments in applied mathematics in the last decade [7, 12, 14–16, 18]. By introducing a
non-linear reconstruction method via convex optimisation, one can circumvent traditional barriers for recon-
structing vectors that are sparse or compressible, meaning that they have few non-zero coefficients or can be
approximated well by vectors with few non-zero coefficients.

A substantial part of the CS literature has been devoted to the Restricted Isometry Property (RIP) (see
Definition 1.2). Matrices which satisfy the RIP of order s (see Remark 1.5) can be used to perfectly recover
all s-sparse vectors (i.e. vectors with at most s non-zero coefficients) via `1 minimization. Remarkably, this is
possible even if the matrix in question is singular.

Given the substantial interest in the RIP over the last years it is natural to ask whether this intriguing
mathematical concept is actually observed in many of the applications where CS is applied. It is well known
that verifying that the RIP holds for a general matrix is an NP hard problem [21], however, there is a simple
test that can be used to show that certain matrices do not satisfy the RIP. This is called the flip test. As this
test reveals, there is an overwhelming amount of practical applications where one will not observe the RIP of
order s for any reasonable sizes of the sparsity s. In particular, this list of applications contains some of the
CS flagships such as Magnetic Resonance Imaging (MRI), other areas of medical imaging such as Comput-
erised Tomography (CT) and all the tomography cousins such as thermoacoustic, photoacoustic or electrical
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impedance tomography, electron microscopy, seismic tomography, as well as other fields such as fluorescence
microscopy, Hadamard spectroscopy and radio interferometry. Typically, we shall see that practical applica-
tions that exploit sparsity in a level based reconstruction basis will not exhibit the RIP of order s for reasonable
s.

We will thoroughly document the lack of RIP of order s in this paper, and explain why it does not hold
for reasonable s. It is then natural to ask whether there might be an alternative to the RIP that may be more
suitable for the actual real world CS applications. With this in mind, we shall introduce the RIP in levels which
generalises the classical RIP and is much better suited for the actual applications where CS is used.

1.1 Compressed sensing
We shall begin by discussing the general ideas of compressed sensing. Typically we are given a scanning
device, represented by an invertible matrix M ∈ Cn×n, and we seek to recover information x ∈ Cn from
observed measurements y := Mx. In general, we require knowledge of every element of y to be able to
accurately recover x without additional structure. Indeed, let Ω =

{
ω1, ω2, . . . , ω|Ω|

}
with 1 ≤ ω1 < ω2 <

ω3 < · · · < ω|Ω| ≤ n and define the projection map PΩ : Cn → C|Ω| so that PΩ(x1, x2, . . . , xn) :=
(xω1

, xω2
, . . . , xω|Ω|). If |Ω| is strictly less than n then for a given y there are at least two distinct vectors

x1 ∈ Cn and x2 ∈ Cn with PΩy = PΩMx1 = PΩMx2, so that knowledge of PΩy will not allow us to
distinguish between multiple possibilities of x. Ideally though we would like to be able to take |Ω| � n to
reduce either the computational or financial costs associated with using the scanning device M .

So far, we have not assumed any additional structure on x. However, let us consider the case where the
vector x consists mostly of zeros. More precisely, we make the following definition:

Definition 1.1 (Sparsity). A vector x is said to be s-sparse for some natural number s if |supp(x)| ≤ s, where
supp(x) denotes the support of the vector x (the indices corresponding to the non-zero values).

The key to CS is the fact that, under certain conditions, finding solutions to the `1 problem

min ‖x̂‖1 such that PΩMx = PΩMx̂ (1.1)

gives a good approximation to x. More specifically, in [10] Candès and Tao described the concept of Restricted
Isometry Property. Typically, M is an isometry. With this in mind, it may seem plausible that U := PΩM is
also close to an isometry when acting on sparse vectors. Specifically, we make the following definition:

Definition 1.2 (Restricted Isometry Property). A matrix U ∈ Cm×n is said to satisfy the Restricted Isometry
Property (RIP) with RIP Constant δs if, for all s sparse vectors x ∈ Cn

(1− δs)‖x‖22 ≤ ‖Ux‖22 ≤ (1 + δs)‖x‖22. (1.2)

A typical theorem in compressed sensing is similar to the following, proven in [3] and [18].

Theorem 1.3. Let |Ω| = m, so that PΩy ∈ Cm and let U ∈ Cm×n. Furthermore, suppose that U has RIP
constant for 2s-sparse vectors given by δ2s, where δ2s < 4√

41
. Then for any x ∈ Cn such that ‖Ux− y‖2 ≤ ε

and any x̃ which solve the following `1 minimization problem:

min ‖x̂‖1 subject to ‖Ux̂− PΩy‖2 ≤ ε (1.3)

we have
‖x− x̃‖1 ≤ Cσs(x)1 +Dε

√
s (1.4)

and
‖x− x̃‖2 ≤

C√
s
σs(x)1 +Dε (1.5)

where
σs(x)1 := min ‖x− x̂2‖1 such that x̂2 is s sparse

and C,D depend only on δ2s.

Theorem 1.3 roughly says that if the matrix U has a sufficiently small RIP constant for 2s-sparse vectors
then
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Figure 1: A graphical demonstration of the flip test for matrices which exhibit the RIP. Darker colours denote
larger values.

1. If x is s-sparse then we can recover it from knowledge of Ux by solving the (convex) `1 minimization
problem.

2. If we only know a noisy version of Ux then we can still recover an approximation to x which will be
accurate up to the size of the noise.

3. If x is very close (in `1 norm) to an s-sparse vector then we can recover an approximation to x which
will be accurate up to the distance between x and its closest s-sparse vector.

The ability to recover all s-sparse vectors x using the values of Ux is commonly known as uniform recovery .
We shall see in the remaining sections that expecting uniform recovery is unrealistic in a variety of situations.

Remark 1.4. Variants on Theorem 1.3 include changing the hypothesis to δ2s < C for a different constant
C (e.g. [8] requires δ2s <

√
2 − 1 or [17] uses different methods to show that, for large s, δ2s < 0.475 is

sufficient) or changing δ2s to δ3s (e.g. [5] requires δ3s < 4 − 2
√

3) or δs (e.g. [6] requires δs < 1
3 ). We will

see that any of these modifications will suffer from the same shortcomings in the next section.

Remark 1.5. If the RIP constant for U ∈ Cm×n of order as for some a ∈ N is sufficiently small so that the
conclusion of a Theorem similar to Theorem 1.3 holds then we say that U satisfies or exhibits the RIP of order
s.

2 The absence of the RIP and the flip test

2.1 The flip test
Although Theorem 1.3 and similar theorems based on the RIP seem convenient, computing the RIP constant
of an arbitrary matrix is an NP hard problem [21]. Certain special cases have been shown to have a small
enough RIP constant with high probability (e.g. [11] for Gaussian and Bernoulli matrices) for the conclusion
of Theorem 1.3 to hold but in other cases the size of the RIP constant is not known. In [2] the following test
(the so called ’flip test’) was proposed. The test can be used to verify the RIP of order s for reasonable s and
uniform recovery of s-sparse vectors and works as follows:

1. Suppose that a matrix U ∈ Cm×n has a sufficiently small RIP constant so that the error estimate (1.4)
holds. Take a vector x1 and compute y1 := Ux1. Set x̃1 to be the solution to (1.3) where we seek to
reconstruct x1 from y1.

2. For an operator Q that permutes entries of vectors in Cn, set x2 := Qx1, and compute y2 := Ux2.
Again, set x̃2 to be the solution to (1.3) where we seek to reconstruct x2 from y2.

3



Matrix method Observes RIP
DFT ·DWT−1 HAD ·DWT−1

Problem

MRI 3 7 7
Tomography 3 7 7
Spectroscopy 3 7 7
Electron microscopy 3 7 7
Radio interferometry 3 7 7
Fluorescence microscopy 7 3 7
Lensless camera 7 3 7
Single pixel camera 7 3 7
Hadamard spectroscopy 7 3 7

Table 1: A table displaying various applications of compressive sensing. For each application, a suitable
matrix is suggested along with information on whether or not that matrix has a sufficiently small RIP constant
for Theorems similar to Theorem 1.3 to hold.

3. From (1.4), we have
‖x1 − x̃1‖1, ‖x2 − x̃2‖1 ≤ Cσs(x2)1 = Cσs(x

1)1

because σs is independent of ordering of the coefficients. Also, since permutations are isometries,

‖x1 −Q−1x̃2‖1 ≤ Cσs(x2)1 = Cσs(x
1)1.

4. If x1 is well approximated by x̃1 and the RIP is the reason for the good error term, we expect ‖x1 −
x̃1‖1 ≈ Cσs(x1)1. Thus, x1 should also be well approximated by Q−1x̃2.

5. Hence, if
‖x1 − x̃1‖1 differs greatly from ‖x1 −Q−1x̃2‖1,

we cannot have the RIP, since there is no uniform recovery.

The particular choice of Q that was given in [2] was the permutation Qreverse that reverses order - namely, if
x ∈ Cn then

Qreverse(x1, x2, . . . , xn−1, xn) = (xn, xn−1, . . . , x2, x1).

A graphical demonstration of the flip test if the RIP holds for typical x1 withQreverse is given in Figure 1. Here,
larger values are represented by darker colours, so that the first few values of x1 are the largest. This is what
we would expect if x1 is the wavelet coefficients of a typical image.

This test is simple, and performing it with the permutation Qreverse on a variety of examples, even with
the absence of noise (see Figure 2), gives us a collection of problems for which the RIP does not account for
the excellent reconstruction observed by experimental methods. In any of these cases, the RIP cannot explain
why we are seeing such good results. For several other examples with flip tests that verify the lack of RIP in
many of the fields that are considered flagships of compressed sensing in application, see [1] and [20]. The
conclusion of the flip test for practical compressed sensing is summarized in Table 1.

It is worth noting that even with 97% sampling as in the second row of Figure 2, the RIP constant δs (for
reasonable s) is still too large for the conclusion of a Theorem like 1.3. Although this may seem surprising at
first, it is actually very natural when one understands how poor the recovery of the finer wavelet levels is for
subsampling of matrices like DFT ·DWT−1

4 .

2.2 Why don’t we see the RIP?
To illustrate the reason for the lack of RIP in the previous examples, let us consider a matrix M ∈ Cn×n such
that

M =


M1 0 . . . 0 0
0 M2 . . . 0 0
...

...
. . .

...
...

0 0 . . . MJ−1 0
0 0 . . . 0 MJ

 ,
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CS reconstruction CS reconstruction w/ flip Subsampling pattern used

2048×2048

12%

DFT·DWT−1
3

MRI,
Spectroscopy,
Radio-
interferometry

2048×2048

97%

DFT·DWT−1
4

MRI,
Spectroscopy,
Radio-
interferometry

2048×2048

12%

HAD·DWT−1
2

Comp. imag.,
Hadamard
spectroscopy,
Fluorescence
microscopy

2048×2048

27.5%

DFT·DWT−1
2

Electron
microscopy,
Computerized
tomography

Figure 2: Standard reconstruction based on x̃1 (left column) and the result from the flip test based onQreversex̃
2

(middle column). The right column shows the subsampling pattern used (e.g. for the Fourier matrix the
frequencies at which measurements were taken with the zero frequency at the centre of the image). The
percentage shown is the fraction of Fourier or Hadamard coefficients that were sampled. DWT−1

N denotes the
Inverse Wavelet Transform corresponding to Daubechies wavelets with N vanishing moments.
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Figure 3: The three images display the absolute values of various sensing matrices. A lighter colour represents
larger absolute values. (Left) DFT · DWT−1

2 , (middle) DFT · DWT−1
10 and (right) HAD · DWT−1

Haar where
DFT is the Discrete Fourier Transform, HAD the Hadamard transform and DWT−1

N the Inverse Wavelet
Transform corresponding to Daubechies wavelets with N vanishing moments.

where the matrices Mi ∈ Cai × Cai are isometries and ai is the length of the i-th wavelet level. We shall
consider the standard compressed sensing problem of recovering x ∈ Cn, where n = a1 +a2 + · · ·+aJ , from
knowledge of PΩMx for some sampling set Ω with |Ω| � n. Given the block diagonality of M it is natural
to consider a subsampling scheme that fits this structure. In particular, let

Ω = Ω1 ∪ . . . ∪ ΩJ , Ωj ∈

{
j−1∑
k=1

ak + 1, . . . ,

j∑
k=1

ak

}
, 2 ≤ j ≤ J,

and Ω1 ⊂ {1, . . . , a1}. Also, let
PΩ = PΩ1

⊕ . . .⊕ PΩJ ,

where the direct sum refers to the obvious separation given by the structure ofM . Note that the block diagonal
structure of M is a simplified model of the real world, however, as Figure 3 demonstrates, it is a good approx-
imation when considering the popular matrices DFT · DWT−1 and HAD · DWT−1. Here DFT denotes the
discrete Fourier transform, HAD the Hadamard transform and DWT the discrete wavelet transform. In fact,
HAD · DWT−1

Haar is actually completely block diagonal. The simplest example is when J = 2. The general
idea follows from this simple model. Suppose that

x = (x1, x2), x1 = (x1
1, . . . , x

1
a1

), x2 = (x2
1, . . . , x

2
a2

), a1, a2 ∈ N,

and
s1 = |supp(x1)|, s2 = |supp(x2)|.

Given that it is natural to consider wavelets as the recovery basis, we will have that

s2 � s1,

(see Section 3.1 for a discussion of this phenomenon). Suppose now that PΩ1
M1 and PΩ2

M2 actually satisfy
the RIP with reasonable constants δ1

s1 ≈ δ2
s2 respectively. In this case we can easily recover x from PΩMx

using `1 recovery. If the global RIP is the explanation for the success of compressed sensing, we would require
δs1+s2 to be of reasonable size for PΩM , so that we can recover x̃ = Qreversex from PΩMx̃. This leads to
problems: since s2 � s1 we may have δ1

s1 ≈ δ
2
s2 � δ2

s1 .
As δs1+s2 ≥ δ2

s1 , it is conceivable that the global RIP constant δs1+s2 is huge despite the relatively small
magnitude of both δ1

s1 and δ2
s2 . The only conclusion is that despite our ability to recover using PΩM , there is

no reason to suspect that the global RIP constant for PΩM is sufficiently small for a result like Theorem 1.3
to apply.

Without equally good recovery on each wavelet level, there is no reason to suspect that the RIP constant
corresponding to the entire matrix will be small. This is unrealistic - the levels corresponding to coarser details
of an image (the more ‘important’ wavelet levels) typically exhibit better recovery than the finer detail wavelet
levels. Even though the RIP is unable to explain the success of compressed sensing in Figure 2, it is clear that
with these examples compressed sensing is indeed successful. We would like to emphasize the point that the
RIP is merely a sufficient but not necessary condition for compressed sensing.
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Remark 2.1. Although this example is simplified, both regarding the sampling procedure and the number of
wavelet levels, similar arguments will explain the lack of RIP for different variable density sampling schemes.
The key is that successful variable density sampling schemes will depend on the distribution of coefficients,
just like this simplified example does.

3 A new theory for compressed sensing
The current mathematical theory for compressive sensing revolves around a few key ideas. These are the
concepts of sparsity, incoherence, uniform subsampling and the RIP. In [1] and [20], it was shown that these
concepts are absent for a large class of compressed sensing problems. To solve this problem, the new concepts
of asymptotic sparsity, asymptotic incoherence and multi-level sampling were introduced. We now introduce
the fourth new concept in the new theory of compressive sensing: the RIP in levels. This generalisation of the
RIP replaces the idea of uniform recovery of s-sparse signals with that of uniform recovery of (s,M)-sparse
signals. We shall detail this new idea in this section.

3.1 A level based alternative: the RIP in levels
The examples given in Figure 2 all involve reconstructing in a basis that is divided into various levels. It is this
level based structure that allows us to introduce a new concept which we term the ‘RIP in levels’. We shall
demonstrate such a concept based on our observations with wavelets, which we give a brief description of in
the following section. Despite our focus on wavelets in the next few pages, it should be noted that our work
applies equally to all level based reconstruction bases.

3.1.1 Wavelets

A multiresolution analysis (as defined in [19]) for L2(X) (where X is an interval or a square) is formed by
constructing scaling spaces (Vj)

∞
j=0 and wavelet spaces (Wj)

∞
j=0 with Vj ,Wj ⊂ L2(X) so that

1. For each j ≥ 0, Vj ⊂ Vj+1.

2. If f(·) ∈ Vj then f(2·) ∈ Vj+1, and vice-versa.

3.
∞⋃
j=0

Vj = L2(X).

4.
∞⋂
j=0

Vj = {0}.

5. Wj is the orthogonal complement of Vj in Vj+1.

For natural images f , the largest coefficients in the wavelet expansion of f appear in the levels corresponding
to smaller j. Closer examination of the relative sparsity in each level also reveals a pattern: let w be the
collection of wavelet coefficients of f and for a given level k let Sk be the indices of all wavelet coefficients of
f in the k-th level. Additionally, letMn be the largest (in absolute value) n wavelet coefficients of f . Given
ε ∈ [0, 1], we define the functions s(ε) and sk(ε) (as in [1]) by

s(ε) := min

n :

∥∥∥∥∥ ∑
i∈Mn

wi

∥∥∥∥∥ ≥ ε
∥∥∥∥∥∥
∞∑
k=0

∑
i∈Sk

wi

∥∥∥∥∥∥
 , sk(ε) := |Ms(ε) ∩ Sk|.

More succinctly, sk(ε) represents the relative sparsity of the wavelet coefficients of f at the kth scale. If an
image is very well represented by wavelets, we would like sk(ε) to be small for as large ε as possible. However,
one can make the following observation: if we define the numbers Mk so that Mk−Mk−1 = |Sk| (the reason
for this choice of notation will become clear in Section 3.1.2) then the ratios sk(ε)

Mk−Mk−1
decay very rapidly for

a fixed ε. Numerical examples showing this phenomenon with Haar Wavelets are displayed in Figure 4. The
point is that the sparsity has a structure which the traditional RIP ignores.
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Figure 4: The relative sparsity of Haar wavelet coefficients of two image. The leftmost column displays the
image in question. The middle and final columns display the values of sk(ε) for ε ∈ [0.5, 1] and ε ∈ [0.86, 1]
respectively, where k represents a wavelet level. Of particular importance is the rapid decay of sk(ε) as k
grows larger.

3.1.2 (s,M)-sparsity and the flip test in levels

Theorem 1.3 and any similar theorems all suggest that we are able to recover all s-sparse vectors exactly,
independent of which levels the s-sparse vectors are supported on. Instead of such a stringent requirement,
we can take advantage of the structure of our problem. We have observed that, for wavelets, as k → ∞
sk(ε)/(Mk−Mk−1) decays rapidly (see Figure 4). To further understand this phenomenon, in [1] the concept
of (s,M)-sparsity was introduced.

Definition 3.1 ((s,M)-sparsity). Let

M = (M0,M1, . . . ,Ml) ∈ Nl+1

with 1 ≤ M1 < M2 < · · · < Ml and M0 = 0, where the natural number l is called the number of levels.
Additionally, let

s = (s1, s2, . . . , sl) ∈ Nl,

with si ≤Mi −Mi−1. We call (s,M) a sparsity pattern. A set Λ of integers is said to be (s,M)-sparse if

Λ ⊂ {M0 + 1,M0 + 2, . . . ,Ml}

and for each i ∈ {1, 2, . . . , l},

|Λ ∩ {Mi−1 + 1,Mi−1 + 2, . . . ,Mi} | ≤ si.

A vector is said to be (s,M)-sparse if its support is an (s,M)-sparse set. The collection of (s,M)-sparse
vectors is denoted by Σs,M.

Remark 3.2. If (s,M) is a sparsity pattern, we will sometimes refer to (as,M)-sparse sets for some natural
number a even though asi may be larger than Mi −Mi−1. To make sense of such a statement, we define (in
this context)

as := (min(as1,M1 −M0),min(as2,M2 −M0), . . . ,min(asl,Ml −Ml−1)) .
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We can also define σs,M(x)1 as a natural extension of σs(x)1. Namely,

σs,M(x)1 := min
x̂∈Σs,M

‖x− x̂‖1.

Let us now look at a specific case where (s,M) represents wavelet levels (again, we emphasize that
wavelets are simply one example of a level based system and that our work is more general). Roughly speaking,
we can choose s and M such that x is (s,M)-sparse if it has fewer non-zero coefficients in the finer wavelet
levels. As in Theorem 1.3 (where we take ε = 0 corresponding to an absence of noise), we shall examine
solutions x̃ to the problem

min ‖x̂‖1 such that Ux = Ux̂. (3.1)

Instead of asking for
‖x− x̃‖1 ≤ Cσs(x)1

and

‖x− x̃‖2 ≤ C
σs(x)1√

s
,

we might instead look for a condition on U that allows us to conclude that

‖x− x̃‖1 ≤ Cσs,M(x)1, (3.2)

and

‖x− x̃‖2 ≤
Cσs,M(x)1√

s1 + s2 + · · ·+ sl
, (3.3)

for some constant C, independent of x and s, ηs,M. In Section 2.1, we saw that there was a simple test that
was able to tell us if a matrix does not exhibit the RIP. However, the argument in Section 2.1 does not hold if
we only insist on results of a form similar to equations (3.2) and (3.3). Instead, we can describe a ‘flip test in
levels’ in the following way:

1. Suppose that a matrix U ∈ Cm×n satisfies (3.2) and (3.3) when performing an `1 minimization of the
same form as (3.1). Take a sample vector x1 and compute y1 := Ux1. Set x̃1 to be the solution to (3.1)
where we seek to reconstruct x1 from y1.

2. For an operator Q which permutes entries of vectors in Cn such that

Q(Σs,M) = Σs,M (3.4)

set x2 := Qx1, and compute y2 := Ux2. Again, set x̃2 to be the solution to (3.1) where we seek to
reconstruct x2 from y2.

3. Equation (3.4) implies that Cσs,M(x1)1 = Cσs,M(x2)1, because

σs,M(x2)1 = min
x̂2∈Σs,M

‖x2 − x̂2‖1

= min
x̂2∈Q(Σs,M)

‖x2 − x̂2‖1

= min
x̂1∈Σs,M

‖x2 −Qx̂1‖1

= min
x̂1∈Σs,M

‖Qx1 −Qx̂1‖1

= min
x̂1∈Σs,M

‖x1 − x̂1‖1 = σs,M(x1)1

where we have used the fact that permutations are isometries in the final line.

4. From (3.2), we have
‖x2 − x̃2‖1 ≤ Cσs,M(x1)1

Again, since permutations are isometries,

‖x1 −Q−1x̃2‖1 ≤ Cσs,M(x1)1.
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Table 2: Flip test in levels with randomly generated permutations

Image Subsampling percentage Max Min Standard deviation
College 1 12.48% 4.0560% 3.8955% 0.0642%
College 2 97.17% 0.4991% 0.4983% 0.0001%

Rocks 12.48% 5.6246% 5.5785% 0.0118%
College 3 27.51% 2.0074% 1.9860% 0.0032%

A table displaying relative error percentages ‖x−x̃‖2/‖x‖2 for various images x as in Figure 5 with recovered
image x̃. Each image was processed with a fixed subsampling pattern and 1000 randomly generated permu-
tations as described in Section 3.1.2. The columns labelled ‘Max’, ‘Min’ and ‘Standard deviation’ list the
maximum, minimum and standard deviation of the relative errors taken over all tested permutations.

5. If x1 is well approximated by x̃1 and equations (3.2) and (3.3) are in some sense optimal, we expect
‖x1 − x̃1‖1 ≈ Cσs,M(x1)1. Thus, x1 should also be well approximated by Q−1x̃2.

6. If this fails, then equations (3.2) and (3.3) cannot be the reason for the success of compressed sensing
with the matrix U .

Condition (3.4) now requires us to consider different permutations than a simple reverse permutation as in
Section 2.1. A natural adaptation of Qreverse to this new ‘flip test in levels’ is a permutation that just reverses
coefficients within each wavelet level. Figure 5 displays what happens when we attempt to do the flip test
with this permutation. In this case, we see that the performance of CS reconstruction under flipping and the
performance of standard CS reconstruction are very similar. This suggests that uniform recovery within the
class of (s,M)-sparse vectors (as in 3.2 and 3.3) is possible with a variety of practical compressive sensing
matrices. Indeed, in Table 2 we also consider a collection of randomly generated Q for which equation (3.4)
holds. We see that once again, performance with permutations within the levels is similar to standard CS
performance.

3.1.3 The RIP in levels

Given the success of the ‘flip test in levels’, let us now try to find a sufficient condition on a matrix U ∈ Cm×n
that allows us to conclude (3.2) and (3.3). If the RIP implies (1.4) then the obvious idea is to extend the RIP
to a so-called ‘RIP in levels’, defined as follows:

Definition 3.3 (RIP in levels). We say that U satisfies the RIP in levels (RIPL) with RIPL constant δs,M ≥ 0
and sparsity pattern (s,M) if for all x in Σs,M we have

(1− δs,M)‖x‖22 ≤ ‖Ux‖22 ≤ (1 + δs,M)‖x‖22.

We will see that the RIP in levels allows us to obtain error estimates on ‖x− x̃‖1 and ‖x− x̃‖2.

4 Main results
If a matrixU ∈ Cm×n satisfies the RIP then we have control over the values of ‖Uei‖2 where i ∈ {1, 2, . . . , n}
and ei is the i-th standard basis element of Cn. To ensure that the same thing happens with the RIPL we make
the following two definitions:

Definition 4.1 (Ratio constant). The ratio constant of a sparsity pattern (s,M), which we denote by ηs,M, is
given by

ηs,M := max
i,j

si
sj
.

If there is a j for which sj = 0 then we write ηs,M =∞.

Definition 4.2. A sparsity pattern (s,M) is said to cover a matrix U ∈ Cm×n if

10



CS reconstruction CS reconstruction w/ flip in levels Subsampling pattern used

College 1
2048×2048

12%

DFT·DWT−1
3

MRI,
Spectroscopy,
Radio-
interferometry

College 2
2048×2048

97%

DFT·DWT−1
4

MRI,
Spectroscopy,
Radio-
interferometry

Rocks
2048×2048

12%

HAD·DWT−1
2

Comp. imag.,
Hadamard
spectroscopy,
Fluorescence
microscopy

College 3
2048×2048

27.5%

DFT·DWT−1
3

Electron
microscopy,
Computerized
tomography

Figure 5: Standard reconstruction (left column) and the result of the flip test where the wavelet coefficients
are flipped within each level (middle column). The right column shows the subsampling pattern used. The
percentage shown is the fraction of Fourier or Hadamard coefficients that were sampled. DWT−1

N denotes the
Inverse Wavelet Transform corresponding to Daubechies wavelets with N vanishing moments.
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1. ηs,M <∞

2. Ml ≥ n where l is the number of levels for (s,M).

If a sparsity pattern does not cover U because it fails to satisfy either 1 or 2 from the definition of a sparsity
pattern covering a matrix U then we cannot guarantee recovery of (s,M)-sparse vectors, even in the case that
δs,M = 0. We shall justify the necessity of both conditions using two counterexamples. Firstly, we shall
provide a matrix U , a sparsity pattern (s,M) and an (s,M) vector x1 ∈ Cn such that ηs,M = ∞, δs,M = 0
and x1 is not recovered by standard `1 minimization. Indeed, consider the following

U =

(
1 2
0 0

)
, s = (1, 0), M = (0, 1), x1 =

(
1
0

)
.

By the definition of ηs,M, we have ηs,M = ∞ and it is obvious that δs,M = 0. Furthermore, even without
noise, x1 is not a minimizer of

min ‖x̃‖1 such that Ux1 = Ux̃.

because Ux1 = Ux2 with ‖x2‖1 = 1
2 where

x2 :=

(
0
1
2

)
.

It is therefore clear that Assumption 1 is necessary. We shall now provide a justification for Assumption 2 is
also a requirement if we wish for the RIPL to be a sufficient condition for recovery of (s,M)-sparse vectors.
This time, consider the following combination of U , (s,M) and x1:

U =

(
1 0 2
0 1 0

)
, s = (1, 1), M = (0, 1), x1 =

1
0
0

 .

and again, even though δs,M = 0, recovery is not possible because Ux1 = Ux2 with ‖x2‖1 = 1
2 where

x2 :=

0
0
1
2

 .

We shall therefore try to prove a result similar to Theorem 1.3 for the RIPL only in the case that (s,M)
covers U . We need one further definition to state a result equivalent to Theorem 1.3 for the RIPL. In equa-
tion (1.4) the bound on ||x − x̃||1 involves

√
s. This arises because s is the maximum number of non-zero

components that could be contained in an s-sparse vector. The equivalent for (s,M)-sparse vectors is the
following:

Definition 4.3. The number of elements of a sparsity pattern (s,M), which we denote by s̃, is given by

s̃ := s1 + s2 + · · ·+ sl

To prove that a sufficiently small RIP in levels constant implies an equation of the form (3.2), it is natural to
adapt the steps used in [3] to prove Theorem 1.3. The adaptation of Theorem 1.3 yields a sufficient condition
for recovery even in the noisy case.

Theorem 4.4. Let (s,M) be a sparsity pattern with l levels and ratio constant ηs,M. Suppose that the matrix
U ∈ Cm×n is covered by (s,M) and has a RIPL constant δ2s,M satisfying

δ2s,M <
1√

l
(√
ηs,M + 1

4

)2
+ 1

.

Let x ∈ Cn and y ∈ Cm such that ‖Ux−y‖2 ≤ ε. Then any x̃ ∈ Cn which solve the `1 minimization problem

min
x̂∈Cn

‖x̂‖1 subject to ‖Ux̂− y‖2 ≤ ε

12



also satisfy
‖x− x̃‖1 ≤ C1σs,M(x)1 +D1

√
s̃ ε (4.1)

and

‖x− x̃‖2 ≤
σs,M(x)1√

s̃

(
C2 + C ′2

4
√
lηs,M

)
+ ε
(
D2 +D′2

4
√
lηs,M

)
(4.2)

where
σs,M(x)1 := min ‖x− x̂2‖1 such that x̂2 is (s,M)-sparse

and C1, C2, C
′
2, D1, D2 and D′2 depend only on δ2s,M.

This result allows uniform recovery within the class of (s,M)-sparse vectors but the requirement on δ2s,M
depends on l and ηs,M. We make the following observations:

1. If we pick a sparsity pattern that uses lots of levels then we will require a better RIPL constant.

2. If we pick a sparsity pattern with fewer levels then typically we shall pick a collection of si so that sisj is
correspondingly larger for distinct i and j.

3. If the RIPL constant δ2s,M is sufficiently small so that the conclusion of Theorem 4.4, the bound on
‖x− x‖2 is weaker than the bound in Theorem 1.3.

As a consequence of these observations, at first glance it may appear that the results we have obtained with
the RIPL are weaker than those obtained using the standard RIP. However, Theorem 4.4 is stronger than
Theorem 1.3 in two senses. Firstly, if one considers a sparsity pattern with one level then Theorem 4.4 reduces
to Theorem 1.3. Secondly, the conclusion of Theorem 1.3 does not apply at all if we do not have the RIP.
Therefore, for the examples given in Figure 2, Theorem 1.3 does not apply at all.

Ideally, it would be possible to find a constant C such that if the RIPL constant is smaller than C then
recovery of all (s,M)-sparse vectors would be possible. Unfortunately, we shall demonstrate that this is
impossible in Theorems 4.5 and 4.6. Indeed, the result that we have proven is optimal up to constant terms, as
the following results confirm.

Theorem 4.5. Fix a ∈ N. There exists m,n ∈ N, a matrix U ∈ Cm×n with two levels and a sparsity pattern
(s,M) that covers U such that the RIPL constant δas,M and ratio constant ηs,M corresponding to U satisfy

δas,M ≤
1

|f(ηs,M)|

where f(ηs,M) = o(η
1
2

s,M), but there is an (s,M) sparse z1 such that

z1 /∈ arg min ‖z‖1 such that Uz = Uz1.

Roughly speaking, Theorem 4.5 says that if we fix the number of levels and try to replace the condition

δ2s,M <
1√

l
(√
ηs,M + 1

4

)2
+ 1

with a condition of the form
δ2s,M <

1

C
√
l

(ηs,M)
−α2

for some constant C and some α < 1 then the conclusion of Theorem 4.4 ceases to hold. In particular, the
requirement on δ2s,M cannot be independent of ηs,M. The parameter a in the statement of Theorem 4.5 says
that we cannot simply fix the issue by changing δ2s,M to δ3s,M or any further multiple of s.

Similarly, we can state and prove a similar theorem that shows that the dependence on the number of levels,
l, cannot be ignored.

13



Theorem 4.6. Fix a ∈ N. There exists m,n ∈ N, a matrix U ∈ Cm×n and a sparsity pattern (s,M) that
covers U with ratio constant ηs,M = 1 and l levels such that the RIPL constant δas,M corresponding to U
satisfies

δas,M ≤
1

|f(l)|

where f(l) = o(l
1
2 ), but there is an (s,M) sparse z1 such that

z1 /∈ arg min ‖z‖1 such that Uz = Uz1.

Furthermore, Theorem 4.7 shows that the `2 error estimate on ‖x− x̃‖2 is optimal up to constant terms.

Theorem 4.7. The `2 result (4.2) in Theorem 4.4 is sharp in the following sense:

1. For any f(η) = o(η
1
4 ), g(η) = O(

√
η) and a ∈ N, there are natural numbers m and n, a matrix

U2 ∈ Cm×n and a sparsity pattern (s,M) with two levels that such that

• (s,M) covers U2

• The RIPL constant corresponding to the sparsity pattern (as,M), denoted by δas,M, satisfies

δas,M ≤
1

g(ηs,M)
.

• There exist vectors z and z1 such that U(z − z1) = 0 and ‖z‖1 ≤ ‖z1‖1 but

‖z − z1‖2 >
f(ηs,M)√
‖s̃‖1

σs,M(z1)1.

2. For any f(l) = o(l
1
4 ), g(l) = O(

√
l) and a ∈ N, there are natural numbers m and n, a matrix

U2 ∈ Cm×n and a sparsity pattern (s,M) with ηs,M = 1 such that

• (s,M) covers U2

• The RIPL constant corresponding to the sparsity pattern (as,M), denoted by δas,M, satisfies

δas,M ≤
1

g(l)
.

• There exist vectors z and z1 such that U(z − z1) = 0 and ‖z‖1 ≤ ‖z1‖1 but

‖z − z1‖2 >
f(l)√
‖s̃‖1

σs,M(z1)1.

Theorems of a similar form to Theorem 1.3 typically begin by proving the robust `2 nullspace property of
order s.

Definition 4.8. A matrix U ∈ Cm×n is said to satisfy the `2 robust nullspace property of order s if there is a
ρ ∈ (0, 1) and a τ > 0 such that for all vectors v ∈ Cn and all S which are subsets of {1, 2, 3, . . . , n} with
|S| ≤ s,

‖vS‖2 ≤
ρ√
s
‖vSc‖1 + τ‖Uv‖2.

The implication is then the following Theorem: (for example, see [18], Theorem 4.22)

Theorem 4.9. Suppose that U ∈ Cm×n satisfies the `2 robust nullspace property of order s with constants
ρ ∈ (0, 1) and τ > 0. Then any solutions x̃ ∈ Cn to the `1 minimization problem

min
x̂∈Cn

‖x̂‖1 subject to ‖Ux̂− y‖2 ≤ ε

where ‖Ux− y‖2 ≤ ε satisfy

‖x̃− x‖1 ≤ C1σs,M(x) +D1ε
√
s

‖x̃− x‖2 ≤
C2σs,M(x)√

s
+D2ε

where the constants C1, C2, D1 and D2 depend only on ρ and τ .
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The corresponding natural extension of the `2 robust nullspace of order s to the (s,M)-sparse case is the
`2 robust nullspace property of order (s,M).

Definition 4.10. A matrix U ∈ Cm×n satisfies the `2 robust nullspace property of order (s,M) if there is a
ρ ∈ (0, 1) and a τ > 0 such that

‖vS‖2 ≤
ρ√
s̃
‖vSc‖1 + τ‖Uv‖2 (4.3)

for all (s,M)-sparse sets S and vectors v ∈ Cn.

The (s,M)-sparse version of Theorem 4.9 is Theorem 4.11.

Theorem 4.11. Suppose that a matrix U ∈ Cm×n satisfies the `2 robust nullspace property of order (s,M)
with constants ρ ∈ (0, 1) and τ > 0. Let x ∈ Cn and y ∈ Cm such that ‖Ux− y‖2 < ε. Then any solutions
x̃ of the `1 minimization problem

min
x̂∈Cn

‖x̂‖1 subject to ‖Ux̂− y‖2 ≤ ε

satisfy

‖x̃− x‖1 ≤ A1σs,M(x)1 + C1ε
√
s̃ (4.4)

‖x̃− x‖2 ≤
σs,M(x)1√

s̃

(
A2 +B2

4
√
lηs,M

)
+ 2ε

(
C2 +D2

4
√
lηs,M

)
(4.5)

where

A1 :=
2 + 2ρ

1− ρ
, C1 :=

4τ

1− ρ
, A2 :=

2ρ+ 2ρ2

1− ρ
,

B2 :=

(
2
√
ρ+ 1

)
(1 + ρ)

1− ρ
, C2 :=

ρτ + τ

1− ρ
and D2 :=

4
√
ρτ + 3τ − ρτ

2− 2ρ
.

This Theorem explains where the dependence on ηs,M and l in the estimate ‖x − x̃‖2 in Theorem 4.4
emerges from. Analogous to proving the `2 error estimates in Theorem 1.3 using the `2 robust nullspace
property of order s, we prove the `2 error estimate in Theorem 4.4 by showing that a sufficiently small RIPL
constant implies the robust `2 nullspace property of order (s,M). The `2 error estimate (4.5) follows and we
are left with a dependence on 4

√
lηs,M in the right hand side of (4.2). As before, Theorem 4.12 shows that this

is optimal.

Theorem 4.12. The result in Theorem 4.11 is sharp, in the sense that

1. For any f satisfying
f(ρ, τ, η) = o(η

1
4 ) for fixed ρ ∈ (0, 1) and τ > 0

there exists natural numbers m and n, a matrix U2 ∈ Cm×n and a sparsity pattern (s,M) with ratio
constant ηs,M and two levels such that

• (s,M) covers U2

• U2 satisfies the `2 robust nullspace property of order (s,M) with constants ρ ∈ (0, 1) and τ > 0

• There exist vectors z and z1 such that U2(z − z1) = 0 and ‖z‖1 ≤ ‖z1‖1 but

‖z − z1‖2 >
f(ρ, τ, ηs,M)√

s̃
σs,M(z1)1.

2. For any f satisfying
f(ρ, τ, l) = o(l

1
4 ) for fixed ρ ∈ (0, 1) and τ > 0

there exists natural numbers m,n, a matrix U2 ∈ Cm×n and a sparsity pattern (s,M) with ratio
constant ηs,M = 1 and l levels such that

• (s,M) covers U2

• U2 satisfies the `2 robust nullspace property of order (s,M) with constants ρ ∈ (0, 1) and τ > 0
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• There exist vectors z and z1 such that U(z − z1) = 0 and ‖z‖1 ≤ ‖z1‖1 but

‖z − z1‖2 >
f(ρ, τ, l)√

s̃
σs,M(z1)1.

The conclusions that we can draw from the above theorems are the following:

1. The RIPL will guarantee `1 and `2 estimates on the size of the error ‖x̃ − x‖, provided that the RIPL
constant is sufficiently small (Theorem 4.4).

2. The requirement that the RIPL constant is sufficiently small is dependent on √ηs,M and
√
l. This is

optimal up to constants (Theorem 4.5 and Theorem 4.6).

3. The `2 error when using the RIPL has additional factors of the form 4
√
l and 4

√
ηs,M. Again, these are

optimal up to constants (Theorem 4.7).

4. Typically, we use the robust `2 nullspace property of order s to give us a bound on the `2 error in using
x̃ to approximate x. When this concept is extended to a robust `2 nullspace property of order (s,M)
then the `2 error gains additional factors of the form 4

√
l and 4

√
ηs,M (Theorem 4.11).

5. These factors are optimal up to constants, so that even if we ignore the RIPL and still try to prove results
using the `2 robust nullspace property of order (s,M) then we would be unable to improve the `2 error
(Theorem 4.12).

We have demonstrated that the RIP in levels may be able to explain why permutations within levels are pos-
sible and why more general permutations are impossible. The results that we have obtained give a sufficient
condition on the RIP in levels constant that guarantees (s,M)-sparse recovery. Furthermore, we have managed
to demonstrate that this condition and the conclusions that follow from it are optimal up to constants.

5 Conclusions and open problems
The flip test demonstrates that in practical applications the ability to recover sparse signals depends on the
structure of the sparsity, so that a tool that guarantees uniform recovery of all s-sparse signals does not apply.
The flip test with permutations within the levels suggests that reasonable sampling schemes provide a different
form of uniform recovery, namely, the recovery of (s,M)-sparse signals. It is therefore natural to try to find
theoretical tools that are able to analyse and describe this phenomenon. However, we are now left with the
fundamental problems:

• Given a sampling basis (say Fourier) and a recovery basis (say wavelets) and a sparsity pattern (s,M),
what kind of sampling procedure will give the RIPL according to (s,M)?

• How many samples must one draw, and how should they be distributed (as a function of (s,M)), in
order to obtain the RIPL?

Note that these problems are vast as the sampling patterns will not only depend on the sparsity patterns,
but of course also on the sampling basis and recovery basis (or frame). Thus, covering all interesting cases in
application will yield an incredibly rich mathematical theory.
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6 Proofs
We shall present the proofs in a different arrangement to the order in which their statements were presented.
The first proof that we shall present is that of Theorem 4.11.
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6.1 Proof of Theorem 4.11
We begin with the following lemma:

Lemma 6.1. Suppose that U ∈ Cm×n satisfies the `2 robust nullspace property of order (s,M) with constants
ρ ∈ (0, 1) and τ > 0. Fix v ∈ Cn, and let S be an (s,M)-sparse set such that.

1. For all (s,M)-sparse sets T , ‖vS‖1 ≥ ‖vT ‖1.

2. |S| = s̃.

Then

‖v‖2 ≤
‖vSc‖1√

s̃

[
ρ+

(
√
ρ+

1

2

)
4
√
lηs,M

]
+ τ‖Uv‖2

[
4
√
lηs,M

2
+ 1

]
.

Proof. For i = 1, 2, . . . , l, we define Si0 to be Si0 = S ∩ {Mi−1 + 1,Mi−1 + 2, . . . ,Mi} . Let

m = max
i=1,2,...,l

min
j∈Si0
|vj |.

Since |Si0| = si (otherwise |S| < s̃), we can see that given any i = 1, 2, . . . , l

‖vS‖2 =

√∑
n∈S
|v|2n ≥

√∑
j∈Si0

|v|2j ≥
√
si min
j∈Si0
|vj | ≥ min

k=1,2,...,l

√
sk min

j∈Si0
|vj |

so that ‖vS‖2 ≥ m min
k=1,2...,l

√
sk. Furthermore, |vj | ≤ m for each j ∈ Sc otherwise there is an (s,M)-sparse

T with ‖vT ‖1 > ‖vS‖1.
Therefore

‖vSc‖22 =
∑
j∈Sc
|vj |2 ≤

∑
j∈Sc

m|vj | ≤
‖vSc‖1‖vS‖2

min
√
si

.

By the `2 robust nullspace property of order (s,M),

‖vSc‖1‖vS‖2 ≤
ρ√
s̃
‖vSc‖21 + τ‖Uv‖2‖vSc‖1.

Since
√
a+ b ≤

√
a+
√
b,

‖vSc‖2 ≤
1

min 4
√
si

(√
ρ

4
√
s̃
‖vSc‖1 +

√
τ‖Uv‖2‖vcS‖1

)
(6.1)

Using the arithmetic-geometric mean inequality,√
τ‖Uv‖2‖vSc‖1 =

√
τ‖Uv‖2

4
√
s̃
‖vSc‖1

4
√
s̃
≤ τ‖Uv‖2 4

√
s̃

2
+
‖vSc‖1
2 4
√
s̃

Therefore, (6.1) yields

‖vSc‖2 ≤
1

min 4
√
si

(√
ρ

4
√
s̃
‖vSc‖1 +

‖vSc‖1
2 4
√
s̃

+
τ‖Uv‖2 4

√
s̃

2

)

≤ ‖vSc‖1
4
√
s̃min 4

√
si

(
√
ρ+

1

2

)
+
τ‖Uv‖2 4

√
lηs,M

2

because s̃
min si

≤ lηs,M. Once again, employing the `2 nullspace property gives

‖v‖2 ≤ ‖vS‖2 + ‖vSc‖2

≤ ρ√
s̃
‖vSc‖1 + τ‖Uv‖2 +

‖vSc‖1
4
√
s̃min 4

√
si

(
√
ρ+

1

2

)
+
τ‖Uv‖2 4

√
lηs,M

2

≤ ‖vS
c‖1√
s̃

[
ρ+

(
√
ρ+

1

2

)
4
√
s̃

min 4
√
si

]
+ τ‖Uv‖2

[
4
√
lηs,M

2
+ 1

]

≤ ‖vS
c‖1√
s̃

[
ρ+

(
√
ρ+

1

2

)
4
√
lηs,M

]
+ τ‖Uv‖2

[
4
√
lηs,M

2
+ 1

]
.
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The remaining error estimates will follow from various properties related to the `1 robust nullspace prop-
erty (see [18], definition 4.17) holds. To be precise,

Definition 6.2. A matrix U ∈ Cm×n satisfies the `1 robust null space property relative to S with constants
ρ ∈ (0, 1) and τ ′ > 0 if

‖vS‖1 ≤ ρ‖vSc‖1 + τ ′‖Uv‖2 (6.2)

for any v ∈ Cn. We say that U satisfies the `1 robust null space property of order (s,M) if (6.2) holds for any
(s,M)-sparse sets S.

It is easy to see that if U satisfies the `2 robust nullspace property of order (s,M) with constants ρ and τ
then, for any (s,M)-sparse set S, U also satisfies the `1 robust nullspace property relative to S with constants
ρ and τ

√
s̃. Indeed, assume that U satisfies the `2 robust nullspace property of order (s,M) with constants ρ

and τ . Then
‖vS‖1 ≤

√
s̃‖vS‖2 ≤ ρ‖vSc‖1 + τ

√
s̃‖Uv‖2.

An immediate conclusion of the robust null space property is the following, proven in [18] as Theorem
4.20.

Lemma 6.3. Suppose that U ∈ Cm×n satisfies the `1 robust null space property with constants ρ ∈ (0, 1) and
τ ′ relative to a set S. Then for any complex vectors x, z ∈ Cn,

‖z − x‖1 ≤
1 + ρ

1− ρ
(‖z‖1 − ‖x‖1 + 2‖xSc‖1) +

2τ ′

1− ρ
‖U(z − x)‖2.

We can use this lemma to show the following important result, which is similar both in proof and statement
to Theorem 4.19 in [18].

Lemma 6.4. Suppose that a matrix U ∈ Cm×n satisfies the `1 robust nullspace property of order (s,M) with
constants ρ ∈ (0, 1) and τ ′ > 0. Furthermore, suppose that ‖Ux − y‖2 ≤ ε. Then any solutions x̃ to the `1

minimization problem
min
x̂∈Cn

‖x̂‖1 subject to ‖Ux̂− y‖2 ≤ ε

satisfy

‖x− x̃‖1 ≤
2 + 2ρ

1− ρ
σs,M(x)1 +

4τ ′ε

1− ρ
.

Proof. By Lemma 6.3, for any (s,M)-sparse set S

‖x− x̃‖1 ≤
1 + ρ

1− ρ
(‖x̃‖1 − ‖x‖1 + 2‖xSc‖1) +

2τ ′

1− ρ
‖U(x− x̃)‖2

Because both ‖Ux − y‖2 and ‖Ux̃ − y‖2 are smaller than or equal to ε, ‖Ux − Ux̃‖ ≤ 2ε. Furthermore,
because x̃ has minimal `1 norm, ‖x̃‖1 − ‖x‖1 ≤ 0. Thus

‖x− x̃‖1 ≤
2 + 2ρ

1− ρ
‖xSc‖1 +

4τ ′ε

1− ρ
.

If we take S to be the (s,M)-sparse set which maximizes ‖xS‖1, then

‖x− x̃‖1 ≤
2 + 2ρ

1− ρ
σs,M(x)1 +

4τ ′ε

1− ρ
.

We can combine these results to complete the proof of Theorem 4.11. Indeed, (4.4) follows immediately
from Lemma 6.4 and the fact that U satisfies the `1 robust nullspace property with constants ρ and τ

√
‖s‖1.

To prove (4.5), we can simply set v = x− x̃ in Lemma 6.1 to see that

‖x− x̃‖2 ≤
‖(x− x̃)Sc‖1√

s̃

[
ρ+

(
√
ρ+

1

2

)
4
√
lηs,M

]
+ τ‖U (x− x̃) ‖2

[
4
√
lηs,M

2
+ 1

]

≤ ‖x− x̃‖1√
s̃

[
ρ+

(
√
ρ+

1

2

)
4
√
lηs,M

]
+ 2τε

[
4
√
lηs,M

2
+ 1

]
and the result follows from (4.4).
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6.2 Proof of Theorem 4.4
It will suffice to prove that the conditions on U and (s,M) in Theorem 4.4 imply the `2 robust nullspace
property. To show this, we begin by stating the following inequality, proven in [4]

Lemma 6.5 (The norm inequality for `1 and `2). Let v = (v1, v2, . . . , vs) where v1 ≥ v2 ≥ v3 ≥ · · · ≥ vs.
Then

‖v‖2 ≤
1√
s
‖v‖1 +

√
s

4
(v1 − vs)

We will now prove the following additional lemma which is almost identical in statement and proof to that
of Lemma 6.1 in [3].

Lemma 6.6. Suppose that x, y ∈ Σs,M and that

‖Ux‖22 − ‖x‖22 = t‖x‖22. (6.3)

Furthermore, suppose that x and y are orthogonal. Then |〈Ux,Uy〉| ≤
√
δ2
2s,M − t2‖x‖2‖y‖2 where δ2s,M

is the restricted isometry constant corresponding to the sparsity pattern (2s,M) and the matrix U .

Proof. Without loss of generality, we can assume that ‖x‖2 = ‖y‖2 = 1. Note that for α, β ∈ R and γ ∈ C,
the vectors αx+ γy and βx− γy are contained in Σ2s,M. Therefore,

‖U (αx+ γy) ‖22 ≤ (1 + δ2s,M)‖αx+ γy‖22
= (1 + δ2s,M) (〈αx, αx〉+ 〈γy, αx〉+ 〈αx, γy〉+ 〈γy, γy〉)
= (1 + δ2s,M)(α2 + |γ|2) (6.4)

where the last line follows because 〈x, y〉 = 0 (from the orthogonality of x and y). Similarly,

− ‖U(βx− γy)‖22 ≤ −(1− δ2s,M)(β2 + |γ|2) (6.5)

We will now add these two inequalities. On the one hand (by using the assumption in (6.3) and the fact that
α,β are real), we have

‖U(αx+ γy)‖22 − ‖U(βx− γy)‖22 = α2‖Ux‖22 + 2Re(αγ 〈Ux,Uy〉) + |γ|2‖Uy‖22
−
(
β2‖Ux‖22 − 2Re(βγ 〈Ux,Uy〉) + |γ|2‖Uy‖22

)
= (1 + t)

(
α2 − β2

)
+ 2(α+ β)Re(γ 〈Ux,Uy〉)

and on the other hand (from (6.4) and (6.5))

‖U(αx+ γy)‖22 − ‖U(βx− γy)‖22 ≤ δ2s,M
(
α2 + β2 + 2|γ|2

)
+ α2 − β2.

Therefore,

(1 + t)
(
α2 − β2

)
+ 2(α+ β)Re(γ 〈Ux,Uy〉) ≤ δ2s,M

(
α2 + β2 + 2|γ|2

)
+ α2 − β2.

After choosing γ so that Re(γ 〈Ux,Uy〉) = | 〈Ux,Uy〉 | we obtain

| 〈Ux,Uy〉 | ≤ 1

2α+ 2β

(
(δ2s,M − t)α2 + (δ2s,M + t)β2 + 2δ2s,M

)
(6.6)

because |γ| = 1. By the definition of the RIP in levels constant, δ2s,M ≥ δs,M and so

|t| =
∣∣‖Ux‖22 − ‖x‖22∣∣ ≤ δs,M ≤ δ2s,M.

Therefore,
√

δ2s,M+t
δ2s,M−t ∈ R and so we can set α =

√
δ2s,M+t
δ2s,M−t and β = 1

α in equation (6.6). With these values,
we obtain

| 〈Ux,Uy〉 | ≤ α

2α2 + 2
(δ2s,M + t+ δ2s,M − t+ 2δ2s,M)

≤ 4δ2s,Mα(δ2s,M − t)
4δ2s,M

≤
√
δ2
2s,M − t2.
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Proof (of Theorem 4.4). Let x ∈ Cm be an arbitrary m dimensional complex vector, and let

xi := x{Mi−1+1,Mi−1+2,...,Mi}

denote the ith level of x. For an arbitrary vector v = (v1, v2, . . . , vn), we define |v| to be the vector
(|v1|, |v2|, . . . , |vn|). Furthermore, let Si0 denote the indexes of the sith largest elements of |xi| (if there are
less than si elements in xi then we zero pad xi until it has si elements in it), and S0 :=

⋃l
i=1 S

i
0. We then de-

fine Si1 to be the indexes of the sith largest elements of |xi| that are not contained in Si0 (again, if there are less
than si of these elements then we zero pad xi until there are si elements in xi

(Si0)
c ) and define S1 :=

⋃l
i=1 S

i
1.

In general, we can make a similar definition to form a collection of index sets labelled (Sij)i=1,2...,l,j=1,2,...

and corresponding (s,M)-sparse Sj .
These definitions and the fact that (s,M) covers U implies that if Ω =

⋃
j≥0

Sj then

xΩ = x. (6.7)

By the definition of S0, ‖xΛ‖1 ≤ ‖xS0
‖1 whenever Λ is (s,M)-sparse. By Theorem 4.11, it will suffice to

verify that √
‖s‖1‖xS0‖2 ≤ ρ‖xSc0‖1 + τ

√
‖s‖1‖Ux‖2 (6.8)

holds. Set
‖UxS0

‖22 = (1 + t)‖xS0
‖22. (6.9)

Clearly, |t| ≤ δs,M. Then

‖UxS0
‖22 = 〈UxS0

, UxS0
〉

= 〈UxS0
, Ux〉 −

∑
j≥1

〈
UxS0

, UxSj
〉
. (6.10)

where we have used (6.7). The first term on the right hand side can be bounded above by ‖UxS0
‖2‖Ux‖2

using the Cauchy-Schwarz inequality. Then (using (6.9))

| 〈UxS0
, Ux〉 | ≤

√
1 + t‖xS0

‖2‖Ux‖2. (6.11)

Furthermore, we can use Lemma 6.6 to see that∣∣∣∣∣∣
∑
j≥1

〈
UxS0

, UxSj
〉∣∣∣∣∣∣ ≤

√
δ2
2s − t2

∑
j≥1

‖xS0
‖2‖xSj‖2

≤ ‖xS0
‖2
√
δ2
2s − t2

l∑
i=1

∑
j≥1

‖xSij‖2 (6.12)

Let x+
i,j (correspondingly x−i,j) be the largest element of

∣∣∣xSij ∣∣∣ (correspondingly the smallest element of∣∣∣xSij ∣∣∣). By the norm inequality for `1 and `2 (Lemma 6.5),

∑
j≥1

‖xSij‖2 ≤
∑
j≥1

(
1
√
si
‖xSij‖1

)
+

√
si
4

∑
j≥1

(
x+
i,j − x

−
i,j

)

≤
∑
j≥1

(
1
√
si
‖xSij‖1

)
+

√
si
4

x+
i,1 +

∑
j≥2

x+
i,j −

∑
j≥1

x+
i,j


≤
∑
j≥1

(
1
√
si
‖xSij‖1

)
+

√
si
4

x+
i,1 +

∑
j≥1

(
x+
i,j+1 − x

−
i,j

)
≤
∑
j≥1

(
1
√
si
‖xSij‖1

)
+

√
si
4
x+
i,1
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where the last line follows because x+
i,j+1 − x

−
i,j ≤ 0.

Additionally,
√
si
4
x+
i,1 =

1

4

√
(x+
i,1)2 + (x+

i,1)2 + (x+
i,1)2 + · · ·+ (x+

i,1)2︸ ︷︷ ︸
si

≤ 1

4
‖xSi0‖2

because each element of
∣∣∣xSi0∣∣∣ is larger than x+

i,1. We conclude that

l∑
i=1

∑
j≥1

‖xSij‖2 ≤
∑
j≥1

l∑
i=1

1
√
si
‖xSij‖1 +

l∑
i=1

1

4
‖xSi0‖2

≤ 1

min
√
si

∑
j≥1

l∑
i=1

‖xSij‖1 +
1

4

√
l‖xS0‖2

≤ 1

min
√
si

∑
j≥1

‖xSj‖1 +
1

4

√
l‖xS0‖2

≤ 1

min
√
si

∥∥∥∥x ⋃
j≥1

Sj

∥∥∥∥
1

+
1

4

√
l‖xS0

‖2

where the second line follows from the Cauchy-Schwarz inequality applied to the vectors (1, 1, . . . , 1︸ ︷︷ ︸
l

) and

(‖xS1
0
‖2, ‖xS2

0
‖2, . . . , ‖xSl0‖2) and the third line and fourth line follows from the disjoint supports of the

vectors xSij and xSi′
j′

whenever i 6= i′ or j 6= j′. By (6.7) and the disjointedness of Si, Sj for i 6= j,⋃
j≥1

Sj = Sc0 so

l∑
i=1

∑
j≥1

‖xSij‖2 ≤
1

min
√
si
‖xSc0‖1 +

1

4

√
l‖xS0

‖2. (6.13)

Combining (6.9),(6.10),(6.11) and (6.12) yields

(1 + t)‖xS0‖22 ≤ ‖xS0‖2
√

1 + t‖Ux‖2 + ‖xS0‖2
√
δ2
2s − t2

l∑
i=1

∑
j≥1

‖xSij‖2.

Dividing by ‖xS0‖2 and employing (6.13) yields

(1 + t)‖xS0‖2 ≤
√

1 + t‖Ux‖2 +
√
δ2
2s − t2

(
1

min
√
si
‖xSc0‖1 +

1

4

√
l‖xS0‖2

)
. (6.14)

Let g(t) :=
δ2
2s−t

2

(1+t)2 for |t| ≤ δ2s,M. It is clear that g(δ2s,M) = g(−δ2s,M) = 0. Furthermore, g(t) ≥ 0 and g
is differentiable. Therefore g attains its maximum at tmax, where g′(tmax) = 0. A simple calculation shows
us that tmax = −δ2

2s,M. Thus

g(t) ≤
δ2
2s,M − δ4

2s,M(
1− δ2

2s,M

)2 =
δ2
2s,M

1− δ2
2s,M

.

Additionally,
1√

1 + t
≤ 1√

1− δ2s,M
.

Combining this with (6.14) yields

‖xS0‖2 ≤
1√

1 + t
‖Ux‖2 +

√
g(t)

(
1

min
√
si
‖xSc0‖1 +

1

4

√
l‖xS0‖2

)
≤ 1√

1− δ2s,M
‖Ux‖2 +

δ2s,M√
1− δ2

2s,M

(
1

min
√
si
‖xSc0‖1 +

1

4

√
l‖xS0

‖2
)
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A simple rearrangement gives

‖xS0
‖2 ≤

√
1 + δ2s,M√

1− δ2
2s,M − δ2s,M

√
l/4
‖Ux‖2 +

δ2s,M

min
√
si

(√
1− δ2

2s,M − δ2s,M
√
l/4
)‖xSc0‖1 (6.15)

provided √
1− δ2

2s,M − δ2s,M
√
l/4 > 0. (6.16)

Multiplying (6.15) by
√
s̃ yields

√
s̃‖xS0‖ ≤

√
s̃

√
1 + δ2s,M√

1− δ2
2s,M − δ2s,M

√
l/4
‖Ux‖2 +

δ2s,M
√
s̃

min
√
si

(√
1− δ2

2s,M − δ2s,M
√
l/4
)‖xSc0‖1

≤ τ
√
s̃ ‖Ux‖2 +

δ2s,M√
1− δ2

2s,M − δ2s,M
√
l/4

√√√√ l∑
k=1

sk
min si

‖xSc0‖1

≤ τ
√
s̃ ‖Ux‖2 +

δ2s,M
√
lηs,M√

1− δ2
2s,M − δ2s,M

√
l/4
‖xSc0‖1

where

τ =

√
1 + δ2s,M√

1− δ2
2s,M − δ2s,M

√
l/4

.

It is clear that (6.8) is satisfied if condition (6.16) holds and

δ2s,M
√
lηs,M√

1− δ2
2s,M − δ2s,M

√
l/4

< 1. (6.17)

A simple rearrangement shows that (6.17) is equivalent to

δ2s,M <
1√

l
(√
ηs,M + 1

4

)2
+ 1

(6.18)

whilst (6.16) is equivalent to δ2s,M < 1√
l

16 +1
. Since

1√
l
(√
ηs,M + 1

4

)2
+ 1
≤ 1√

l
16 + 1

.

it will suffice for (6.18) to hold, completing the proof.

6.3 Proof of Theorem 4.5 and 4.6
Proof of Theorem 4.5. The ideas behind the counterexample in this proof are similar to those in [6]. We prove
this theorem in three stages. First we shall construct the matrix U . Next we shall show that our construction
does indeed have a RIP in levels constant satisfying (4.5). Finally, we shall explain why z1 exists.

Step I: Set n = C +C2, where the non-negative integer C is much greater than a (we shall give a precise
choice of C later). Let x1 ∈ Cn be the vector

x1 := λ(C,C, . . . , C︸ ︷︷ ︸
C

, 1, 1, . . . , 1︸ ︷︷ ︸
C2

).

With this definition, the first C elements of x1 have value Cλ and C components of value 0 and the next C2

elements have value λ. Our (s,M) sparsity pattern is given by s = (1, C2) and M = (0, C, C+C2). Clearly,
by the definition of the ratio constant, ηs,M = C2 (in particular, ηs,M is finite). Furthermore, λ is given by

λ =
1√

C3 + C2
(6.19)
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so that ‖x1‖2 = 1. By using this fact, we can form an orthonormal basis of CC+C2

that includes x1. We can
write this basis as (xi)C+C2

i=1 . Finally, for a vector v ∈ CC+C2

, we define the linear map U by

Uv :=

C+C2∑
i=2

vixi where v =

C+C2∑
i=1

vixi

In particular, notice that the nullspace of U is precisely the space spanned by x1, and that vi =
〈
v, xi

〉
.

Step II: Let γ be an (as,M) sparse vector. Our aim will be to estimate
∣∣ ‖Uγ‖22 − ‖γ‖22 ∣∣. Clearly,

‖Uγ‖22 − ‖γ‖22 = −|γ1|2, where γ1 is the coefficient corresponding to x1 in the expansion of γ in the basis
(xi). We therefore will only need to bound |γ1| = |

〈
γ, x1

〉
|. Let S be the support of γ. Then

|
〈
γS , x

1
〉
| = |

〈
γ, x1

S

〉
| ≤ ‖γ‖2‖x1

S‖2 ≤ λ‖γ‖2
√
aC2 + C2

where we have used the Cauchy-Schwarz inequality in the second line and in the third line we have used the
fact that x1

S has at most a elements of size λC and at most C2 elements of size λ. From (6.19) we get

|
〈
γ, x1

〉
| ≤

√
a+ 1

C + 1
‖γ‖2.

Therefore, ∣∣ ‖Uγ‖22 − ‖γ‖22 ∣∣ = |
〈
γ, x1

〉
|2 ≤ a+ 1

C + 1
‖γ‖22.

By the assumption that f(x) = o(x
1
2 ), we can find a C ∈ N sufficiently large so that a+1

C+1 ≤
1

|f(C2)| . Then
δas ≤ 1

|f(ηs,M)| as claimed.
Step III: Let

z1 := (C, 0, 0, . . . , 0, 0︸ ︷︷ ︸
C−1

, 1, 1, . . . , 1︸ ︷︷ ︸
C2

), z2 := (0, C, C, . . . , C, C︸ ︷︷ ︸
C−1

, 0, 0, . . . , 0︸ ︷︷ ︸
C2

).

It is clear that z1 is (s,M)-sparse. Additionally, ‖z1‖1 = C2 + C and ‖ − z2‖1 = (C − 1)C = C2 − C.
Because

U(z1 + z2) =
U(x1)

λ
= 0,

we have U(−z2) = U(z1). Since the kernel of U is of dimension 1, the only vectors z which satisfy U(z) =
U(z1) are z = z1 and z = −z2. Moreover, ‖z1‖1 > ‖ − z2‖1. Consequently

z1 /∈ arg min ‖z‖1 such that Uz = Uz1

so that recovering (s,M)-sparse vectors is not guaranteed.

Proof of Theorem 4.6. The proof of this theorem is almost identical to that of Theorem 4.5, so we shall omit
details here. Again, we set x1 so that

x1 := λ(C,C, . . . , C︸ ︷︷ ︸
C

, 1, 1, . . . , 1︸ ︷︷ ︸
C2

)

where C � a. We choose λ so that ‖x1‖2 = 1. In contrast to the proof of Theorem 4.5, we take

s = (1, 1, 1, . . . , 1︸ ︷︷ ︸
C2+1

), M = (0, C, C + 1, . . . , C + C2 − 1, C + C2).

This time, there are C2 + 1 levels and the ratio constant ηs,M is equal to 1. Once again, we produce an
orthonormal basis of CC+C2

that includes x1, which we label (xi)C+C2

i=1 and we define the linear map U by

Uv :=

C+C2∑
i=2

vixi where v =

C+C2∑
i=1

vixi.
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The same argument as before proves that for any (as,M)-sparse γ,∣∣ ‖Uγ‖22 − ‖γ‖22 ∣∣ ≤ a+ 1

C + 1
‖γ‖22

and again, taking C sufficiently large so that a+1
C+1 ≤

1
|f(C2+1)| yields δas,M ≤ 1

|f(l)| . The proof of the
existence of z1 is the identical to Step III in the proof of Theorem 4.5.

6.4 Proof of Theorem 4.7
Proof. Once again, we prove this theorem in three stages. First we shall construct the matrix U2. Next, we
shall show that the matrix U2 has a sufficiently small RIPL constant. Finally, we shall explain why both z1

and z exist.
Step I: Let x1 be the vector

x1 := λ(0, 0, . . . , 0︸ ︷︷ ︸
C2

, 1, 1, . . . , 1︸ ︷︷ ︸
ω(ρ,C)+1

)

where ω(ρ, C) = ceil( 2C
ρ ) with a ρ ∈ (0, 1) which we will specify later and ceil(a) denotes the smallest

integer greater than or equal to a. In other words, the first C2 elements of x1 have value 0 and the next
ω(ρ, C) + 1 elements have value λ. We choose λ so that ‖x1‖2 = 1 and C so that C2 > ω(ρ, C). Our
(s,M) sparsity pattern is given by s = (C2, 1) and M = (0, C2, C2 + ω(ρ, C) + 1). By the definition of the
ratio constant, ηs,M = C2 (in particular, ηs,M is finite). Because ‖x1‖2 = 1, we can form an orthonormal

basis of CC2+ω(ρ,C)+1 that includes x1. We can write this basis as (xi)
C2+ω(ρ,C)+1
i=1 . Finally, for a vector

v ∈ CC2+ω(ρ,C)+1, we define the linear map U2 by

U2v :=

√
2w

τ
where w =

C2+ω(ρ,C)+1∑
i=2

vixi and v = v1x1 + w

In particular, notice that the nullspace of U2 is precisely the space spanned by x1, and that vi =
〈
v, xi

〉
.

Step II: Let γ be an (as,M) sparse vector. For our purposes, we take τ =
√

2. Then

‖U2γ‖22 − ‖γ‖22 = −|γ1|2,

where γ1 is the coefficient corresponding to x1 in the expansion of γ in the basis (xi). As in the proof of
Theorem 4.5, |γ1| = |

〈
γ, x1

〉
|. Let S be the support of γ. Then

|
〈
γS , x

1
〉
| = |

〈
γ, x1

S

〉
| ≤ ‖γ‖2‖x1

S‖2 ≤ λ‖γ‖2
√
a

where we have used the Cauchy-Schwarz inequality in the second line and in the third line we have used the
fact that x1

S has at most a elements of size λ. It is easy to see that λ = 1√
ω(ρ,C)+1

. Therefore,

∣∣ ‖U2γ‖22 − ‖γ‖22
∣∣ = |

〈
γ, x1

〉
|2 ≤ a

ω(ρ, C) + 1
‖γ‖22 ≤

ρa

2C
.

because ω(ρ, C) ≥ 2C
ρ . By the assumption that g(ηs,M) ≤ 1

A

√
ηs,M for some A > 0 and ηs,M sufficiently

large, and the fact that ηs,M = C2, we must have A
C ≤

1
g(ηs,M) . If we take ρ sufficiently small and C

sufficiently large, then

δas,M <
ρa

2C
≤ A

C
≤ 1

g(ηs,M)
.

as claimed.
Step III: Let z1 := x1 and z := 0, where z is defined so that z ∈ CC2+ω(ρ,C)+1. Because x1 is in the

kernel of U , U(z − z1) = 0. Furthermore, it is obvious that ‖z‖1 ≤ ‖z1‖1. Additionally, ‖z1‖2 = 1 and

σs,M(z1)1√
s̃

= λ
ω(ρ, C)√
C2 + 1

≤ ω(ρ, C)√
ω(ρ, C) (C2 + 1)

≤

√
2C + 1

ρ (C2 + 1)
≤
√

3

ρ
√
ηs,M
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since ηs,M = C2. Because f(ηs,M) = o(η
1
4

s,M),

σs,M(z1)1√
s̃

f(ηs,M)→ 0, ηs,M →∞.

The desired result follows by taking ηs,M sufficiently large so that

σs,M(z1)1√
s̃

f(ηs,M) ≤ 1.

Proof of part 2. The proof of part 2 follows with a few alterations to the previous case. We now use the
sparsity pattern

s = (1, 1, 1, . . . , 1︸ ︷︷ ︸
C2

, 1) and M = (0, 1, 2, . . . , C2, C2 + ω(ρ, C) + 1).

In this case, ηs,M = 1 and l = C2 + 1. The result follows by simply employing the same matrix U2 with this
new sparsity pattern.

6.5 Proofs of Theorem 4.12
The counterexample for Theorem 4.12 is the same as the one used in the proof of Theorem 4.7. In that case, the
matrix depended on three parameters: C, τ and ρ. We show that U2 satisfies the `2 robust nullspace property
of order (s,M) with parameters ρ and τ . The existence of z1 and z is identical to Step III in the proof of
Theorem 4.7.

Proof of part 1. Firstly, if S ⊂ T then ‖vS‖2 ≤ ‖vT ‖2 and

ρ√
s̃
‖vSc‖1 + τ‖Uv‖2 ≥

ρ√
s̃
‖vT c‖1 + τ‖Uv‖2

so it will suffice to prove that U2 satisfies (4.3) for (s,M)-sparse sets S with |S| = s̃.
Because wS and wSc have disjoint support, by the Cauchy-Schwarz inequality applied to the vectors (1, 1)
and (‖wS‖2, ‖wSc‖2) we get

√
2‖w‖2 ≥ ‖wS‖2 + ‖wSc‖2. Therefore,

τ‖Uv‖2 ≥
√

2‖w‖2 ≥ ‖wS‖2 + ‖wSc‖2. (6.20)

Furthermore, because |S| = s̃ ≥ |Sc| and ρ ∈ (0, 1)

‖wSc‖2 ≥
1√
|Sc|
‖wSc‖1 ≥

1√
s̃
‖wSc‖1 ≥

ρ√
s̃
‖wSc‖1 (6.21)

Combining 6.20 and (6.21) gives

τ‖Uv‖2 +
ρ√
s̃
‖vSc‖1 ≥ ‖wS‖2 +

ρ√
s̃
‖wSc‖1 +

ρ√
s̃
‖vSc‖1

≥ ‖wS‖2 +
ρ√
s̃
‖vSc − wSc‖1

≥ ‖wS‖2 +
ρ√
s̃
‖v1x1

Sc‖1 (6.22)

We shall now look at bounding ‖v1x1
S‖2 in terms of ‖v1x1

Sc‖1. We have

‖v1x1
S‖2 ≤ λ|v1| (6.23)

since at most one element of x1
S is non-zero and its value will be at most λ. Additionally, since each element

of x1
Sc has value λ and there are at least 2C

ρ of them

ρ‖v1x1
Sc‖1 ≥ ρ|v1|‖x1

Sc‖1 ≥
2λC

ρ
ρ|v1| ≥ 2λC|v1|.
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Therefore,

ρ√
s̃
‖v1x1

Sc‖1 ≥
2λC√
C2 + 1

|v1| ≥ λ|v1|. (6.24)

Using (6.23) and (6.24), we have ‖v1x1
S‖2 ≤

ρ√
s̃
‖v1x1

Sc‖1. We can conclude the proof that U satisfies the `2

robust nullspace property by combining this result with (6.22) as follows:

‖vS‖2 ≤ ‖v1x1
S‖2 + ‖wS‖2 ≤

ρ√
s̃
‖v1x1

Sc‖1 + ‖wS‖2 ≤ τ‖Uv‖2 +
ρ√
s̃
‖vSc‖1.

Proof of part 2. The proof of part 2 is identical. We simply adapt the sparsity pattern so that

s = (1, 1, 1, . . . , 1︸ ︷︷ ︸
C2

, 1)

and
M = (0, 1, 2, . . . , C2, C2 + ω(ρ, C) + 1).

We can apply the proceeding argument with this new sparsity pattern to obtain the required result.
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matical Textbooks]. B. G. Teubner, Stuttgart, second edition, 1998. Theorie und Anwendungen. [Theory
and applications].

[20] B. Roman, B. Adcock, and A. C. Hansen. On asymptotic structure in compressed sensing. CoRR,
abs/1406.4178, 2014.

[21] A. M. Tillmann and M. E. Pfetsch. The computational complexity of the restricted isometry prop-
erty, the nullspace property, and related concepts in compressed sensing. IEEE Trans. Inform. Theory,
60(2):1248–1259, 2014.

27


	1 Introduction
	1.1 Compressed sensing

	2 The absence of the RIP and the flip test
	2.1 The flip test
	2.2 Why don't we see the RIP?

	3 A new theory for compressed sensing
	3.1 A level based alternative: the RIP in levels
	3.1.1 Wavelets
	3.1.2 (s,M)-sparsity and the flip test in levels
	3.1.3 The RIP in levels


	4 Main results
	5 Conclusions and open problems
	6 Proofs
	6.1 Proof of Theorem ??
	6.2 Proof of Theorem ??
	6.3 Proof of Theorem ?? and ??
	6.4 Proof of Theorem ??
	6.5 Proofs of Theorem ??


