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Background: The Finite Dimensional Problem

Let us take two orthonormal bases B1 = (un)Nn=1,B2 = (vn)Nn=1 of CN

and form the change of basis matrix U ∈ CN×N ,Ui,j = 〈vj , ui 〉. B1 is
typically called the ‘sampling basis’ and B2 the ‘reconstruction basis’.

Suppose we have a vector w ∈ CN that is ‘simple’ to express in basis B2

but we can only recieve a small number m� N of coefficients of the
form w̃i := 〈w , ui 〉 from B1 (which we call samples). Is it possible to
reconstruct w from such few coefficients?

The goal of compressed sensing, introduced by Candès, Donoho,
Romberg, Tao et al., is to try and use the property that w is ‘simple’
when expressed in B1 to somehow solve this seemingly ill-posed problem,
with some caveats on w ,m and the structure of U.



Background: Basic Concepts

What does ‘simple’ mean? We mean that the sparsity
s := #{vi ∈ B2 : 〈w , vi 〉 6= 0} of non-zero coefficients is very small
(s � N).

How do we take our samples? The m samples are taken uniformly at
random from the set (ui )

n
i=1.

What structure must U have? The matrix must have small incoherence
µ(U) := sup1≤i,j≤N |Ui,j |2 which can be interpreted as U being very
spread out and flat. Ideally we would have µ(U) = 1/N, in which case
we say U is perfectly incoherent.



Background: Basic Concepts

How does this all fit together then? We expect (i.e. with high
probability) a good reconstruction if

m & constant · µ(U) · s · N log(N)

How do we actually try to reconstruct w? We solve the convex
optimisation problem (Psamp denotes the projection map onto the
samples chosen)

x̂ := argmin
x∈CN

{
‖x‖1 s.t. PsampUx = Psampw̃}

This approach however does have its drawbacks as it assumes that µ(U)
is small, which is typically an unreasonable assumption for large scale or
infinite dimensional problems.



Background: Infinite-Dimensional Problems

Instead we typically have the behaviour |Ui,j | → 0 as i , j →∞:

Figure: Fourier-Legendre Polynomial Matrix: Absolute Values
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This suggests that we should not use a simple uniform approach, but
instead rely on the structure of the problem. We also need to modify
some of the concepts defined earlier.



Background: Infinite-Dimensional Bases

I Fourier Basis Bf : For x ∈ R, define

χk(x) = 2−1/2 exp (2πikx) · 1[−1,1](x), k ∈ Z.

Notice that (χk)k∈Z is a basis for L2[−1, 1]. We set Bf := (χk)k∈Z.
The Fourier basis is often the sampling basis.

I Legendre Polynomial Basis Bp: Pn(x) is an (n − 1)-degree
polynomial generated by the Gram-Schimdt othornormalisation
procedure applied to the sequence 1, x , x2, ... and the standard
integral inner product on L2[−1, 1].

I Wavelet Basis Bw: We use a scaling function φ and wavelet ψ and
scale and shift them (j ∈ N, k ∈ Z)

φk(x) = φ(x − k), ψj,k(x) = 2j/2ψ(2jx − k).

We take all such functions whose supports overlaps with [−1, 1] to
form the basis Bw.
These two bases are often the reconstruction bases.



Background: Infinite-Dimensional Problems
I Wavelets: These are a family of orthonormal functions that can be

grouped into different ‘resolution levels’. The most basic is probably
the Haar wavelet basis which closely resembles pixel graphics:

Level 0:
Scaling
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Level 0:
Wavelet
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Level 1:
Wavelet
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Level 2:
Wavelet
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Background: Infinite-Dimensional Problems

There are many different types of wavelet apart from the Haar wavelet.
One of the most famous types of wavelet are the Daubechies wavelets,
which are indexed by by n = 2, 4, 6, .... The higher n is the smoother the
wavelet and there are other benefits involving sparse approximation, but
the downside is they have larger support.

(a) Daubechies4
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(b) Daubechies8
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(c) Daubechies16
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Concepts

In previous work by Adcock, Anders, Bogdan & Poon it was shown that
the traditional compressed sensing concepts can be effectively generalised:

I Sparsity is changed to sparsity in levels. This means we break
down N into regions Si (i = 1, ..., r) and define
si (f ) := #{j ∈ Si : 〈f , gj〉} 6= 0 where (gj)

∞
j=1 is the basis B2.

I Subsampling is also done in levels. Again, we break N (which
denotes B1 here) down into subsets Ωi and uniformly subsample
within these sets to different degrees.

I Incoherence is replaced by the asymptotic incoherences
µ(P⊥N U), µ(UP⊥N ) where P⊥N (x) = (xN+1, xN+2, ...).



Subsampling Guarentees

Combining sparsity in levels Si = {Mi−1 + 1, ...,Mi} with subsampling in
levels Ωi = {Ni−1 + 1, ...,Ni} we require the number of samples mi in Ωi

to satisfy the following if we expect good reconstruction:

mk & |Ωk | ·
r∑

l=1

µM,N(k , l) · sl · log(Nr ),

where the local incoherence µM,N(k , l) is defined by

µM,N(k, l) =

√
min

(
(µ(P⊥Nk

U), µ(UP⊥Ml
)
)
· µ(P⊥Nk

U).

Therefore how much we can subsample in each level depends on how
small the sparsity is and how small the asymptotic coherence is. (it
should be mentioned that we have very much oversimplified things here
as there are some others factors at play as well)



Start of the General Theory

The goal of this talk is to discuss the decay of µ(P⊥N U) as N →∞ in
general and in specifc cases. We begin by reclarifying the theoretical
framework:

We work in an infinite dimensional separable Hilbert space H with two
closed infinite dimensional subspaces V1,V2 spanned by orthonormal
bases B1,B2 respectively,

V1 = Span{f ∈ B1}, V2 = Span{f ∈ B2}.

We call (B1,B2) a ‘basis pair’.

U ∈ B(`2(N)) is then supposed to be ‘the change of basis matrix from
the basis B2 to the basis B1’ and we are expected to study the decay of
µ(P⊥N U) as N →∞.



A Slight Problem...Lost Without Orderings

From the way the problem is posed we expect this decay to depend only
on the two bases but µ(P⊥N U) depends entirely on how we order the basis
B1. This forces us to make the following additional definitions:

Definition (Ordering)
Let S be a set. Say that a function ρ : N→ S is an ‘ordering’ of S if it is
bijective.

Definition (Change of Basis Matrix)
For a basis pair (B1,B2), with corresponding orderings ρ : N→ B1 and
τ : N→ B2, form a matrix U by the equation

Um,n := 〈τ(n), ρ(m)〉. (1)

Whenever a matrix U is formed in this way we write
‘U := [(B1, ρ), (B2, τ)]’.



Comparing Orderings and Decay Rates

We define the following linear projection operators from `2(N) to itself as
follows:

QN(x)i :=

{
0 i < N

xi i ≥ N
, πN(x)i :=

{
0 i 6= N

xi i = N
.

µ(πNU) is typically called the row coherence as it describes the maxima
over the Nth row of U. We shall often be comparing it with the
asymptotic coherence µ(QNU) (which is equal to µ(P⊥N−1U) for
N ≥ 2). For example we have the simple inequality µ(πNU) ≤ µ(QNU).

Notice that if we permute the columns of U then this does not effect
µ(QNU) or µ(πNU), which means that µ(QNU) and µ(πNU) are
independent of the ordering of B2.



Comparing Orderings and Decay Rates

At first glance there seems to be an extremely simple way to describe the
fastest decay of µ(QNU):

Definition (Best ordering)
Let (B1,B2) be a basis pair. Then any ordering ρ : N→ B1 is said to be a
‘best ordering’ if for any other ordering τ of B2 and U = [(B1, ρ), (B2, τ)]
we have that the function g(N) := µ(πNU) is decreasing.

While a best ordering certainly optimises the decay of µ(QNU), it turns
out that this notion can lead to some unnecessarily complex orderings in
many examples...



Comparing Orderings and Decay Rates

Here are two (20 × 20
centrally truncated)

wavelet-Fourier Incoherence
matrices and their

corresponding column
maxima. The columns denote
the Fourier basis (viewed as
Z) and the rows denote the

wavelet basis (ordered top to
bottom).

Obeserve that the general
decay behaviour is the same,

even though the best
orderings are not.
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(d) Incoherence matrix
and column maxima for
a Haar wavelet basis.
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(e) Incoherence matrix
and column maxima for
Daubechies6 wavelet
basis.



Comparing Orderings and Decay Rates

This seemingly minor difference only becomes more prominent in higher
dimensions:

(f) 2D maxima for Haar wavelet
basis.

(g) 2D maxima for Daubechies16
wavelet basis.



Comparing Orderings and Decay Rates

Definition (Relations on the set of orderings)
Let ρ1, ρ2 : N→ B1 be any two orderings of a basis B1 and τ any ordering
of a basis B2. Let U1 := [(B1, ρ1), (B2, τ)], U2 := [(B1, ρ2), (B2, τ)] . If
there is a constant C > 0 such that

µ(QNU1) ≤ C · µ(QNU2), ∀N ∈ N,

then we write ρ1 ≺ ρ2 and say that ‘ρ1 has a faster decay rate than ρ2

for the basis pair (B1,B2)’. If also ρ2 ≺ ρ1 we write ρ1 ∼ ρ2. These
relations, defined on the set of orderings of B1 which we shall denote as
R(B1), depend only on the basis pair (B1,B2), and are therefore
independent of τ .

Notice that ≺ is a reflexive transitive relation on R(B1) and ∼ is an
equivalence relation on R(B1).



Comparing Orderings and Decay Rates

Definition (Optimal ordering)
ρ is an optimal ordering for (B1,B2) if for every other ordering ρ′ we
have ρ ≺ ρ′.

Definition (Optimal decay rate)
Let f , g : N→ R>0. We write f . g to mean there is a constant C > 0
such that

f (N) ≤ C · g(N), ∀N ∈ N.

If both f . g and g . f holds, we write ‘f ≈ g ’.

Suppose ρ : N→ B1 is an optimal ordering for the basis pair (B1,B2) and
U = [(B1, ρ), (B2, τ)]. Then any decreasing function f : N→ R>0 which
satisfies f ≈ g , where g is defined by g(N) = µ(QNU), ∀N ∈ N, is said
to represent the optimal decay rate of the basis pair (B1,B2).



Comparing Orderings and Decay Rates

So how do we actually find optimal orderings and the optimal decay rate?
The following tool often comes in handy:

Lemma
Let ρ be an ordering of B1 with U := [(B1, ρ), (B2, τ)] and f : N→ R≥0

be a decreasing function with f (N)→ 0 as N →∞. If, for some
constants C1,C2 > 0, we have

C1f (N) ≤ µ(πNU) ≤ C2f (N), ∀N ∈ N, (2)

then ρ is an optimal ordering and f is a representative of the optimal
decay rate.

If (2) holds for an ordering ρ then it is said to be a strongly optimal
ordering for (B1,B2).



Theoretical Limits on the Decay

So how fast can the optimal decay get?

Theorem
Let U ∈ B(l2(N)) be an isometry. Then

∑
N µ(QNU) diverges.

In fact this result cannot be improved:

Lemma
Let f : N→ R be a strictly positive decreasing functions and suppose
that

∑
N f (N) diverges. Then there exists U ∈ B(l2(N)) an isometry with

µ(QNU) ≤ f (N), N ∈ N. (3)

If we restrict our decay function to be a power law, i.e. f (N) := CN−α

for some constants α,C > 0 then the largest possible value of α > 0
such that (3) holds for an isometry U is α = 1.



Ordering the Bases

Apart from the Legendre polynomial basis, the other bases are currently
unordered. We shall use the following tool to order bases in a
straightforward fashion:

Definition (Consistent ordering)
Let F : S → R where S is a set. We say that an ordering ρ : N→ S is
‘consistent with respect to F’ if

F (f ) < F (g) ⇒ ρ−1(f ) < ρ−1(g), ∀f , g ∈ S .

Definition (Standard ordering)
We define Ff : Bf → N ∪ {0} by Ff(χk) = |k | and say that an ordering
ρ : N→ Bf is a ‘standard ordering’ if it is consistent with Ff .



Ordering the Bases

Definition (Leveled ordering)
Define Fw : Bw → R by

Fw(f ) =

{
j , if f = ψj,k

−1, if f = φk
,

and say that any ordering τ : N→ Bw is a ‘leveled ordering’ if it is
consistent with Fw.

We use the name “leveled” here since requiring an ordering to be leveled
means that you can order however you like within the individual wavelet
levels themselves, as long as you correctly order the sequence of wavelet
levels according to scale.



Incoherence Results

Theorem
Let ρ be a standard ordering of Bf , τ a leveled ordering of Bw and
U = [(Bf , ρ), (Bw, τ)]. Then we have, for some constants C1,C2 > 0 the
decay

C1 · N−1 ≤ µ(πNU), µ(UπN) ≤ C2 · N−1, ∀N ∈ N.

Consequently, both orderings are optimal and the optimal decays rates for
(B1,B2) and (B2,B1) are both represented by the function f (N) = N−1.



Incoherence Results

Theorem
Let ρ be a standard ordering of Bf , τ a natural ordering of Bp and
U = [(Bf , ρ), (Bp, τ)]. Then we have, for some constants C1,C2 > 0 the
decay

C1 · N−2/3 ≤ µ(πNU), µ(UπN),≤ C1 · N−2/3, ∀N ∈ N.

Consequently, both orderings are optimal and the optimal decays rates for
(B1,B2) and (B2,B1) are both represented by the function
f (N) = N−2/3.



A Simple 1D Experiment

Consider the problem of reconstruct-
ing the function f ∈ L2[−1, 1] from
its samples {〈f , g〉 : g ∈ Bf}, where
f is defined as

f (x) = (1− cos(8πx)) · 1[0,1](x).
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(a) Plot of f
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(c) Polynomial Coefficients



A Simple 1D Experiment
We shall be sampling Fourier coefficients and trying to reconstruct in
Daubechies4 wavelets and in Legendre polynomials. We already know
that there incoherence decays in a very different fashion (wavelets decay
faster and therefore we should be able to subsample more). On the other
hand polynomials provide a better direct approximation.

Figure: Two sampling patterns and their corresponding histograms.

−250 −200 −150 −100 −50 0 50 100 150 200 250
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) Histogram for Pattern A
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(b) Histogram for Pattern B



A Simple 1D Experiment

Figure: Reconstructions from Pattern A (above) with errors (below).
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A Simple 1D Experiment

Figure: Reconstructions from Pattern B with errors.
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Polynomial Reconstruction



Tensor Bases

Definition (Tensor basis)
Suppose that B is an orthonormal basis of some space T ≤ L2(R) (i.e.
T is a subspace L2(R)) and we already have an ordering ρ : N→ B.

Define ρd : Nd →
⊗d

j=1 T ≤ L2(Rd) by the formula (m ∈ Nd)

ρd(m)(x) :=
( d⊗

j=1

ρ(mj)
)

(x) =
d∏

j=1

ρ(mj)(xj).

This gives a basis of
⊗d

j=1 T ≤ L2(Rd) because of the formula

〈ρd(m), ρd(n)〉L2(Rd ) =
d∏

j=1

〈ρ(mj), ρ(nj)〉L2(R). (4)

We call Bd := (ρd(m))m∈Nd a ‘tensor basis’. The function ρd is said to
be the ‘d-dimensional indexing induced by ρ’. Notice that ρd is not an
ordering unless d = 1.



Tensor Bases

We would like to apply our results from the 1D case and extend them to
cover the multidimensional tensor case:

Lemma
Let (B1,B2) be a pair of bases with corresponding tensor bases Bd

1 ,B
d
2 .

Let ρ1 be a strongly optimal ordering of B1 and ρd1 denote the
d-dimensional indexing induced by ρ1. Finally let U = [(B1, ρ1), (B2, τ)]
for some ordering τ of B2. Then if f represents the optimal decay rate
corresponding to the basis pair (B1,B2) we have, for some constants
C1,C2 > 0,

C d
1 ·

d∏
i=1

f (ni ) ≤ sup
g∈Bd

2

|〈ρd1 (n), g〉|2 =
d∏

i=1

µ(πni U) ≤ C d
2 ·

d∏
i=1

f (ni ), n ∈ Nd .



The Hyperbolic Approach

Suppose that we have a strongly optimal ordering ρ1 of B1 such that
f (n) = n−α for some α > 0. The previous Lemma tells us that to find
the optimal decay rate we should take an ordering σ : N→ Nd that is
consistent with 1/F (n) :=

∏d
i=1 1/f (ni ) =

∏d
i=1 nαi which is equivalent

to being consistent with 1/F 1/α(n) =
∏d

i=1 ni . This motivates the
following:

Definition (Corresponding to the Hyperbolic Cross)
Let Bd

1 be as before with corresponding d-dimensional indexing ρd1
induced by ρ1. Define FH : Nd → R by FH(n) =

∏d
i=1 ni . Then we say

an ordering σ : N→ Nd ‘corresponds to the hyperbolic cross’ if it is
consistent with FH .



The Hyperbolic Approach

Lemma (Hyperbolic Decay)
If σ : N→ Nd corresponds to the hyperbolic cross and d ≥ 2, then

d∏
i=1

σ(N)i ∼
(d − 1)!N

logd−1(N + 1)
=: hd(N) as N →∞.

Definition (Hyperbolic Ordering)
If ρ1 is a strongly optimal ordering for (B1,B2) then ρ : N→ B1 is said to
be ‘hyperbolic with respect to ρ1’ if we have

C1 · hd(N) ≤
d∏

i=1

(
(ρd1 )−1 ◦ ρ(N)

)
i
≤ C2 · hd(N), N ∈ N.

Notice that if σ : N→ Nd corresponds to the hyperbolic cross then
ρd1 ◦ σ is hyperbolic with respect to ρ1.



The Hyperbolic Approach

This allows us to determine the optimal decay rate for when the optimal
1D decay rate is a power of N. First the Fourier-Wavelet case:

Theorem
Suppose that B1 = Bf , B2 = Bp, ρ1 is a standard ordering and τ1 is a
natural ordering. Let Ud = [(Bd

1 , ρ), (Bd
2 , τ)] where ρ, τ is hyperbolic

with respect to ρ1,τ1 respectively. Then we have, for some constants
C1,C2 > 0,

C1 logd−1(N + 1)

N
≤ µ(πNUd), µ(UdπN) ≤ C2 logd−1(N + 1)

N
, N ∈ N.

If we compare this to our 1D result earlier we find that we gain extra log
factors as we increase the dimension. Therefore, as the dimension
increases, the optimal incoherence decay is getting worse and worse.



The Hyperbolic Approach

...and the Fourier-Polynomial case:

Theorem
Suppose that B1 = Bf , B2 = Bp, ρ1 is a standard ordering and τ1 is a
natural ordering. Let Ud = [(Bd

1 , ρ), (Bd
2 , τ)] where ρ, τ is hyperbolic

with respect to ρ1, τ1 respectively. Then we have, for some constants
C1,C2 > 0, that for all N ∈ N,

C1(logd−1(N + 1))2/3

N2/3
≤ µ(πNUd), µ(UdπN) ≤ C2(logd−1(N + 1))2/3

N2/3
.



A Simple Hyperbolic Ordering

Example (Hyperbolic Cross in Zd)
Suppose that we define a function F : Zd → R by

F (m) =
d∏

i=1

|max(|mi |, 1)|,

and say that a bijective function σ : N→ Zd ‘corresponds to the
hyperbolic cross in Zd ’ if it is consistent with F .

Figure: Hyperbolic Fourier Ordering in Two Dimensions
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Tensor 2D Coherence

Figure: 2D Fourier-Haar Case

Original Coherence Hyperbolic Scaling



Tensor 2D Coherence

Figure: 2D Fourier-Haar Case
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Separable Wavelets - An Alternative to Tensors
While our argument works for all problems that involve a pair of tensor
bases, this does not include the most widely used multidimensional
wavelet basis - separable wavelets. Tensor wavelet bases have one major
drawback: lack of a proper scaling levels

Figure: Elements from a 2D Haar Tensor Basis



Separable Wavelets - An Alternative to Tensors
Seprable wavelets, on the other hand, still have a resolution structure and
as a result often provide better approximations to images.

Figure: Elements from a 2D Haar Separable Basis



Separable Wavelets - Definition

We repeat the notation of the one-dimensional case, with mother wavelet
(in one dimension) & scaling function ψ and φ.

φj,k(x) = 2j/2φ(2jx − k), ψj,k(x) = 2j/2ψ(2jx − k).

We can construct a d-dimensional scaling function Φ by taking the tensor
product of φ with itself, namely

Φ(x) :=
( d⊗

j=1

φ
)

(x) =
d∏

j=1

φ(xj), x ∈ Rd ,

Φ(x) is used to define the resolution structure. Now let φ0 := φ, φ1 := ψ
and for s ∈ {0, 1}d , j ≥ J, k ∈ Zd where J ∈ N is fixed and define the
functions

Ψs
j,k :=

d⊗
i=1

φsij,ki .

We then take all such functions whose support overlaps with (−1, 1)d to
form the basis Bd

sep (technically we also throw out functions with s = 0
and j > J).



Separable Wavelets - Leveled Ordering

Since we have a resolution structure we also have resolution levels and
so...

Definition (Leveled Ordering)
For any f ∈ Bd

sep define

F (f ) = j if f = Ψs
j,k

Then we say that an ordering τ : N→ Bd
sep is ‘leveled’ if τ is consistent

with F .

Theorem
Let τ be any leveled ordering of Bd

sep and U = [(Bd
sep, τ), (Bd

f , ρ)] for any

ordering ρ of Bd
f . Then there are constants C1,C2 > 0 such that for all

N ∈ N we have
C1

N
≤ µ(πNU) ≤ C2

N
.

Therefore τ is strongly optimal for the basis pair (Bd
sep,B

d
f ).



...but how to order the Fourier Basis?

We form the d-dimensional (tensor) Fourier basis Bd
f by taking products:

χk :=
d⊗

j=1

χkj , k ∈ Zd .

It is also convenient to identify Bd
f with Zd using the function

λd : Bd
f → Zd , λd(χk) := (λ(χk1 ), ..., λ(χkd )) = (k1, ..., kd) = k.

This means we can view orderings on Bd
f as orderings on Zd . We already

know an ordering on Zd , which is an ordering corresponding to the
hyperbolic cross. So how does this turn out?



Trying a Hyperbolic Ordering

Proposition
Let σ : N→ Zd correspond to the hyperbolic cross in Zd and define an
ordering ρ of Bd

f by ρ := λ−1
d ◦σ. Next let U = [(Bd

f , ρ), (Bd
sep, τ)] for any

ordering τ . Then there are constants C1,C2 > 0 such that for all N ∈ N

C1 logd−1(N + 1)

N
≤ µ(QNU) ≤ C2 logd−1(N + 1)

N
.

Sadly we still have the extra log factors from the tensor case.
Furthermore, since this estimate is for µ(QNU) and not µ(πNU) it is not
necessarily optimal, so we can possibly do better.

One natural option would be try and order Zd according to some sort of
measure of size. Maybe a norm will work?



Linear Orderings

Proposition
Let σ : N→ Zd correspond to a norm on Zd and define an ordering ρ of
Bd
f by ρ := λ−1

d ◦ σ. Next let U = [(Bd
f , ρ), (Bd

sep, τ)] for any ordering τ .
Furthermore, assume the following decay condition on the scaling
function holds:

|Fφ(ω)| ≤ K

|ω|d/2
, ω ∈ R \ {0}, (5)

where F denotes the Fourier Transform. Then there are constants
C1,C2 > 0 such that for all N ∈ N

C1

N
≤ µ(πNU) ≤ C2

N
.

This result tells that we can find strongly optimal orderings with the
same decay rate as in 1D, provided that (5) holds, which is the case for
all Daubechies wavelets in 2D.



2D Unscaled Incoherences

(a) 2D maxima for Haar wavelet
basis.

(b) 2D maxima for Daubechies16
wavelet basis.



2D Scaled Incoherences

(c) 2D maxima for Haar wavelet
basis.

(d) 2D maxima for Daubechies16
wavelet basis.



Problems in Higher Dimensions

Example (3D Haar Wavelets)
If we do not have condition (5) then our argument can break down very
badly: For Haar wavelets we have an explicit formula for the Fourier
transform of the one-dimensional scaling function,

Fφ(ω) =
exp(2πiω)− 1

2πiω
.

Therefore we have that (5) is not satisfied for d = 3. If ρ is chosen to be
a linear ordering there are infinitely many m such that

|〈Φ, ρ(m)〉|2 ≥ E

m2/3
,

for some constant E . Therefore an upper bound of the form
Constant · N−1 is not possible for a linear ordering. Maybe we can try
some kind of combination of a Linear and Hyperbolic ordering, but how?



Semi-Hyperbolic Orderings
Definition
Let us define, for r , d ∈ N, r ≤ d the function

Hd,r (n) := max
i1,...,ir∈{1,...,d}

i1<...<ir

r∏
j=1

max(nij , 1), n ∈ Zd .

Then we say an ordering σ : N→ Zd is semi-hyperbolic of order r in d
dimensions if it is consistent with Hd,r .

Figure: Isosurfaces of H3,r , r = 1, 2, 3 describing the three types of ordering in 3D

(a) r = 1 (Linear) ;
Isosurface value=10.

(b) r = 2
(Semi-Hyperbolic) ;
Isosurface value=20.

(c) r = 3
(Hyperbolic) ;
Isosurface value=20.



Semi-Hyperbolic Orderings

Proposition
Let σ : N→ Zd be semihyperbolic of order r in d dimensions (with
r < d) and define an ordering ρ of Bd

f by ρ := λ−1
d ◦ σ. Next let

U = [(Bd
f , ρ), (Bd

sep, τ)] for any ordering τ . Furthermore, assume the
following decay condition on the scaling function holds:

|Fφ(ω)| ≤ K

|ω|d/2r
, ω ∈ R \ {0}, (6)

where F denotes the Fourier Transform. Then there are constants
C1,C2 > 0 such that for all N ∈ N

C1

N
≤ µ(QNU) ≤ C2

N
.

Furthermore, the ordering ρ is optimal for the basis pair (Bd
f ,B

d
sep).

Given d ∈ N it is always possible to find an r ∈ {1, ..., d − 1} such (6)
holds for any specific wavelet basis. Therefore we have found optimal
orderings for any wavelet case in any dimension with decay as in 1D.



3D Incoherence Isosurfaces: Daubechies8



3D Incoherence Isosurfaces: Daubechies4



3D Incoherence Isosurfaces: Haar



A Final 2D Compressed Sensing Test

2D Haar Basis Incoherence Decay Rates
Ordering Tensor Separable

Linear N−1/2 N−1

Hyperbolic log(N + 1) · N−1 log(N + 1) · N−1
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Figure: A 2D Spectrum that we’d like to reconstruct.



Sampling Patterns

(a) Subsampling in Levels with a
Linear Ordering

(b) Subsampling in Levels with a
Hyperbolic Ordering



Reconstructions Using Pattern (a)
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(c) Tensor Reconstruction
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(d) Separable Reconstruction



Reconstructions Using Pattern (a)
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(e) Tensor Reconstruction (closeup)
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(f) Separable Reconstruction
(closeup)



Reconstructions Using Pattern (b)
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(g) Tensor Reconstruction
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(h) Separable Reconstruction



Reconstructions Using Pattern (b)
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(i) Tensor Reconstruction (closeup)
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(j) Separable Reconstruction
(closeup)



Possible Future Work

I A few questions still remain open

I 3D Tests!

I Tackling different examples e.g. frames

I Studying the local coherence in more detail

I Linking this in with problems with fixed sparsity strutures


