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Abstract

Recently, it has been shown that incoherence is an unrealistic assumption for compressed sensing when
applied to infinite-dimensional inverse problems. Instead, the key property that permits efficient recovery
in such problems is so-called asymptotic incoherence. The purpose of this paper is to study this new
concept, and its implications towards the design of optimal sampling strategies. We determine how fast the
asymptotic incoherence can decay in general for isometries. Furthermore it is shown that Fourier sampling
and wavelet sparsity, whilst globally coherent, yield optimal asymptotic incoherence as a power law up
to a constant factor. Sharp bounds on the asymptotic incoherence for Fourier sampling with polynomial
bases are also provided. A numerical experiment is also presented to demonstrate the role of asymptotic
incoherence in finding good subsampling strategies.

1 Introduction
Compressed sensing, introduced by Candès, Romberg & Tao [8] and Donoho [13], has been one of the major
achievements in applied mathematics in the last decade [6, 12, 14–16]. By exploiting additional structure
such as sparsity and incoherence, one can solve inverse problems by uniform random subsampling and
convex optimisation methods, and thereby recover signals and images from far fewer measurements than
conventional wisdom suggests.

However, in many applications – including Magnetic Resonance Imaging (MRI) [17, 23], X-ray Com-
puted Tomography [9,25], Electron Microscopy [21,22], etc – incoherence is completely lacking. The reason
for this can be traced to the observation that classical inverse problems are typically based on the continuous
integral transforms of Fourier or Radon type. Via the Fourier slice theorem, the latter can be viewed as a
problem of sampling the continuous Fourier transform along radial lines. Hence in both settings, the result-
ing recovery problem is that of reconstructing an unknown function f from pointwise samples of its Fourier
transform. As an inverse problem, we can write this as follows:

g = Ff, f ∈ L2(Rd), (1.1)

where we are only given access to a finite set of pointwise values of g. Here

Ff(ω) =

∫
Rd
f(x)e−2πiω·x dx,

denotes the d-dimensional Fourier transform.
In compressed sensing, such a transform is combined with an appropriate sparsifying transformation

associated to a basis or frame, giving rise to an infinite measurement matrix U . Wavelets, or their various
generalizations, are frequently used as the sparsifying transformation, and for smooth functions, one often
considers orthogonal polynomials. However, the combination of Fourier samples and wavelet sparsity is
completely coherent (see Definition 1.1 for the definition of incoherence). Fortunately, as Figure 1 reveals,
although such a measurement matrix is coherent, it is also asymptotically incoherent: that is to say, the high
coherence (large matrix entries) are isolated to a leading submatrix of U (see Definition 1.4 for a formal
definition). This phenomenon has been well documented in [3,4,19]. It is precisely this property that allows
for the efficient use of compressed sensing in this setting. However, to do this successfully, one must employ
sampling strategies that differ substantially from uniform random subsampling, and take into account the
local variations in coherence. In other words, to properly understand how to subsample in this setting, it is
crucial to estimate the asymptotic coherence. Such estimates are the main topic of this paper.
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Figure 1: Plots of the absolute values of the entries of the matrix U corresponding to Fourier sampling with Daubechies6 boundary
wavelets (left) and Legendre polynomials (right). Light regions correspond to large values and dark regions to small values.

1.1 Compressed Sensing and the Coherence Barrier
Let us now provide some background regarding compressed sensing and incoherence. We commence with
the definition of the latter:

Definition 1.1 (Incoherence). Let U = (Uij)
N
i,j=1 ∈ CN×N be an isometry. The coherence of U is

µ(U) = max
i,j=1,...,N

|Uij |2 ∈ [N−1, 1].

We say that U is ‘perfectly incoherent’ if µ(U) = N−1.

Note that the definition of µ obviously extends to the infinite-dimensional case, where U is an isometry
of l2(N). Standard compressed sensing theory says that if x ∈ CN is s-sparse, i.e. x has at most s nonzero
components, then, with probability exceeding 1− ε, x is the unique minimiser to the problem

min
η∈CN

‖η‖l1 subject to PΩUη = PΩUx,

where PΩ is the projection onto span{ej : j ∈ Ω}, {ej} is the canonical basis, Ω is chosen uniformly at
random with |Ω| = m and

m & µ(U) ·N · s · log(ε−1) · log(N), (1.2)

(see [7] and [2])1.
The estimate (1.2) demonstrates how the three pillars of compressed sensing – sparsity, incoherence and

uniform random subsampling – combine to allow for recovery with substantial subsampling. However, now
suppose that µ(U) is large; for example, µ(U) ·N = O(N) as N →∞. In this case, (1.2) suggests that no
dramatic subsampling is possible: that is, we must take roughly N samples to recover x, even though x is
often extremely sparse. We refer to this phenomenon as the coherence barrier.

1.2 Overcoming the Coherence Barrier
When faced with the coherence barrier, the standard compressed sensing approach of subsampling uniformly
at random does not work. This begs the question: do we have an alternative? Empirically, it is known that the
answer to this question is yes: one can break the coherence barrier by sampling according to an appropriate
variable density. This was recently confirmed by mathematical analysis in [3, 4]. The key to this work is to
replace the three principles of compressed sensing with three new concepts – sparsity in levels, multi-level
sampling and local coherence – and prove recovery estimates akin to (1.2) under these more general settings.

1Here and elsewhere in this section we shall use the notation a & b to mean that there exists a constant C > 0 independent of all
relevant parameters such that a ≥ Cb.
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Let x be an element of either CN or l2(N). For r ∈ N let M = (M1, . . . ,Mr) ∈ Nr with 1 ≤ M1 <
. . . < Mr and s = (s1, . . . , sr) ∈ Nr, with sk ≤Mk −Mk−1, k = 1, . . . , r, where M0 = 0. We say that x
is (s,M)-sparse if, for each k = 1, . . . , r,

∆k := supp(x) ∩ {Mk−1 + 1, . . . ,Mk},

satisfies |∆k| ≤ sk. We denote the set of (s,M)-sparse vectors by Σs,M.

Definition 1.2 (Multi-level sampling scheme). Let r ∈ N, N = (N1, . . . , Nr) ∈ Nr with 1 ≤ N1 < . . . <
Nr, m = (m1, . . . ,mr) ∈ Nr, with mk ≤ Nk −Nk−1, k = 1, . . . , r, and suppose that

Ωk ⊆ {Nk−1 + 1, . . . , Nk}, |Ωk| = mk, k = 1, . . . , r,

are chosen uniformly at random, where N0 = 0. We refer to the set

Ω = ΩN,m := Ω1 ∪ . . . ∪ Ωr

as an (N,m)-multilevel sampling scheme.

Definition 1.3 (Local coherence). Let U be an isometry of either CN or l2(N). If N = (N1, . . . , Nr) ∈ Nr
and M = (M1, . . . ,Mr) ∈ Nr with 1 ≤ N1 < . . .Nr and 1 ≤M1 < . . . < Mr the (k, l)th local coherence
of U with respect to N and M is given by

µN,M(k, l) =

√
µ(P

Nk−1

Nk
UP

Ml−1

Ml
) · µ(P

Nk−1

Nk
U), k, l = 1, . . . , r, (1.3)

where N0 = M0 = 0 and P ab denotes the projection matrix corresponding to indices {a+ 1, . . . , b}.

In [3] a new theory of compressed sensing was introduced based on these new assumptions. Therein,
instead of a standard compressed sensing estimate (1.2) determining the total number of measurements, one
has the following estimate regarding the local number of measurements mk in the kth level:

1 &
Nk −Nk−1

mk
· log(ε−1) ·

(
r∑
l=1

µN,M(k, l) · sl

)
· log (N) , k = 1, . . . , r. (1.4)

In particular, the sampling strategy (i.e. the parameters N and m) is now determined through the local
sparsities and incoherences.

1.3 Asymptotic Incoherence
This estimate begs the following question: how do the local sparsity and incoherences behave in practice?
As described in [3,4], natural images possess not just sparsity, but so-called asymptotic sparsity. That is, the
ratios sk/(Nk − Nk−1) → 0 as k → ∞ in any appropriate basis (e.g. wavelets and their generalizations).
Furthermore, such problems are also asymptotically incoherent:

Definition 1.4. Let U : l2(N)→ l2(N) be bounded and linear. Then we say U is ‘asymptotically incoherent’
if, as N →∞,

µ(P⊥NU), µ(UP⊥N ) −→ 0. (1.5)

Note that the local coherence can be estimated as follows:

µN,M(k, l) ≤
√

min
(
µ(P⊥Nk−1

U), µ(UP⊥Ml−1
)
)
· µ(P⊥Nk−1

U). (1.6)

Hence, the combination of asymptotic sparsity and asymptotic incoherence allow the coherence barrier to
be broken. Images can be recovered from small numbers of measurements, and the appropriate multilevel
sampling strategy is determined via (1.4).

Nevertheless, it is clear from (1.6) that in order to determine the appropriate sampling density one needs
good estimates for µ(P⊥NU) and µ(UP⊥N ) for N ∈ N. This is the key contribution of this paper. Our main
results provide estimates for the precise convergence rate in (1.5).
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1.4 Main Results
In this paper we focus on studying operators U ∈ B(l2(N)) of the form Um,n = 〈τ(n), ρ(m)〉 where
(ρ(n))n∈N, (τ(n))n∈N enumerates two bases B1, B2 of subspaces in a Hilbert space and 〈·, ·〉 denotes the
inner product. Our aim is to determine the optimal decay rate of the coherence µ(P⊥NU) and, by swapping
the two basesB1, B2 around, of µ(UP⊥N ) . The decay rate of µ(P⊥NU) depends not only on the basesB1, B2,
but also on the way we enumerate the basis B1, which could be used to guide, for example, how we might
subsample from B1. This leads us to the following two key questions:

1. What are the fastest possible decay rates for µ(P⊥NU) and µ(UP⊥N )?

2. What are examples of orderings of B1 and B2 that produce these optimal decay rates?

One important issue is how we interpret these questions; to what degree of accuracy do we want to
describe the optimal decay rate and the optimal ordering(s)? It turns out (see Figure 2) that, in the Fourier-
wavelet case, simply looking for an ordering with fastest decay can lead to unnecessarily complex orderings
that are wavelet dependent. However, if we only want to find the optimal decay rate up to multiplication by
a constant we admit optimal orderings that are simple and wavelet independent.

In the general case, i.e. for any pair of bases (B1, B2), we have the following result on the fastest possible
decay:

Theorem 1.5. Suppose U ∈ B(l2(N)) is an isometry2. Then we cannot, for any α > 1, have the decay

µ(P⊥NU) = O

(
1

Nα

)
, N →∞.

Futhermore the sum
∑
N µ(P⊥NU) must diverge.

This theorem is directly implied by Theorem 2.14. Furthermore, Lemma 2.16 shows that this statement
on the fastest decay of µ(P⊥NU) cannot be strengthened.

In this paper we shall answer questions 1. and 2. for the following specific cases:

Theorem 1.6. Let U ∈ B(l2(N)) be defined as above. If B1 is a one-dimensional Fourier basis and B2 is a
one-dimensional Daubechies3 wavelet basis, then the fastest decay possible is

µ(P⊥NU), µ(UP⊥N ) = O

(
1

N

)
, N →∞,

and this decay can be realised by orderings of the two bases (B1, B2). Moreover, by Theorem 1.5, there is
no other pair of orthonormal bases (B1, B2), with corresponding U ∈ B(l2(N)) an isometry, that can yield
faster decay on the asymptotic incoherence as a power of N . Consequently we say that the wavelet with
Fourier case has the fastest decaying asymptotic incoherence of any pair of orthonormal bases up to powers
of N .

This theorem is an easy to state, however weaker version of Theorem 3.8 which describes this result
in full detail. We mention here that the notion of one ordering having a faster decay rate than another is
described rigorously in Definition 2.4.

Theorem 1.7. Let U ∈ B(l2(N)) be defined as above. If B1 is a one-dimensional Fourier basis and B2 is a
one-dimensional Legendre polynomial basis, then the fastest decay possible is

µ(P⊥NU), µ(UP⊥N ) = O

(
1

N2/3

)
, N →∞,

and this decay can be realised by orderings of the two bases (B1, B2).

2Which includes the case where B1, B2 are orthonormal and the span of B1 contains B2.
3We include Haar wavelets as a special case.
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As with the previous result, this theorem is an easy to state, however weaker version of Theorem 4.4,
where we go into further detail.

For these one-dimensional cases we find that canonical orderings give the optimal decay rate; we order
the wavelet basis according to their levels, use the natural ordering of the Legendre polynomial basis and
order the Fourier basis according to size of frequency.

It should also be mentioned that in all cases we first provide bounds on the row incoherences4, namely
µ(πNU) and µ(UπN ), where πN denotes the projection onto the N th coordinate (see (2.2)). From these
bounds on the row incoherences we derive the results given above. For example the Fourier-Wavelet result
is originally stated as

µ(πNU), µ(UπN ) = O

(
1

N

)
, N →∞.

1.5 Outline for the Remainder of the Paper
Before going into more theory, we shall outline the structure for the rest of the paper. We present the general
framework in Section 2 where the notions of optimal decay rates and optimal orderings are defined and a
few general results for any pair of bases are proved.

After this the analysis is split into cases; (i) the one-dimensional case and (ii) the multi-dimensional
case, which is more technical but a natural extension of (i), and is therefore deferred to a later paper. The
framework setup in Section 2 is central to the multi-dimensional case as well.

Next we tackle the main theorems presented in the introduction, first considering the one-dimensional
Fourier-Wavelet cases in Section 3. We then study the one-dimensional Fourier-polynomial cases in Section
4.

Finally we analyse how the different structures of the Fourier-wavelet and Fourier-polynomial cases lead
to differing optimal subsampling schemes with a simple numerical example in Section 5.

2 Coherences and Orderings
We work in an infinite dimensional separable Hilbert spaceHwith two closed infinite dimensional subspaces
V1, V2 spanned by orthonormal bases B1, B2 respectively,

V1 = Span{f ∈ B1}, V2 = Span{f ∈ B2}.

We call (B1, B2) a ‘basis pair’.

Definition 2.1 (Ordering). Let S be a set. Say that a function ρ : N → S is an ‘ordering’ of S if it is
bijective.

Definition 2.2 (Change of Basis Matrix). For a basis pair (B1, B2), with corresponding orderings ρ : N→
B1 and τ : N→ B2, form a matrix U by the equation

Um,n := 〈τ(n), ρ(m)〉. (2.1)

Whenever a matrix U is formed in this way we write ‘U := [(B1, ρ), (B2, τ)]’.

2.1 Comparing Orderings and Decay Rates
We start this section by defining two useful projections.

Definition 2.3. We define the following linear projection operators from l2(N) to itself as follows:

QN (x)i :=

{
0 i < N

xi i ≥ N
, πN (x)i :=

{
0 i 6= N

xi i = N
. (2.2)

4Row incoherences have also been studied from a finite-dimensional viewpoint in [19], where they are called “local coherences”.
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We are interested in studying the asymptotic incoherence of the matrix U , namely we would like to see
how µ(P⊥NU) behaves as N gets large. For notational simplicity we shall work with µ(QNU) (which is
equal to µ(P⊥N−1U) for N ≥ 2). We will also be looking at the row coherence of U , defined as µ(πNU).
Notice that if we permute the columns of U then this does not effect µ(QNU) or µ(πNU), which means
that µ(QNU) and µ(πNU) are independent of the ordering of B2. Since we want to see how asymptotic
incoherence behaves with different orderings, we need a precise way of saying one ordering has a slower
decay rate than another:

Definition 2.4 (Relations on the set of orderings). Let ρ1, ρ2 : N → B1 be any two orderings of a basis B1

and τ any ordering of a basis B2. Let U1 := [(B1, ρ1), (B2, τ)], U2 := [(B1, ρ2), (B2, τ)] as in (2.1). If
there is a constant C > 0 such that

µ(QNU
1) ≤ C · µ(QNU

2), ∀N ∈ N,

then we write ρ1 ≺ ρ2 and say that ‘ρ1 has a faster decay rate than ρ2 for the basis pair (B1, B2)’. If also
ρ2 ≺ ρ1 we write ρ1 ∼ ρ2. These relations, defined on the set of orderings of B1 which we shall denote as
R(B1), depend only on the basis pair (B1, B2), and are therefore independent of τ .

Notice that ≺ is a reflexive transitive relation on R(B1) and ∼ is an equivalence relation on R(B1).
Furthermore, we can use the relation to define a partial order on the equivalence classes of R(B1) by the
definition

[a] ≺ [b] ⇔ a ≺ b,

where [a] denotes the equivalence class containing a. Furthermore, we say an equivalence class [a] is ‘opti-
mal’ if we have

[a] ≺ [b], ∀b ∈ R(B1).

Definition 2.5 (Optimal ordering). Given the setup above, then any element of the optimal equivalence class
is called an ‘optimal ordering of the basis pair (B1, B2)’.

It shall be shown shortly in Lemma 2.9 that optimal orderings always exist . Notice that ρ is an opti-
mal ordering if and only if for every other ordering ρ′ we have ρ ≺ ρ′. In order to study the asymptotic
incoherence of the matrix U , we need the following definitions.

Definition 2.6. Let f, g : N→ R>0. We write f . g to mean there is a constant C > 0 such that

f(N) ≤ C · g(N), ∀N ∈ N.

If both f . g and g . f holds, we write ‘f ≈ g’.

Definition 2.7 (Optimal decay rate). Suppose ρ : N→ B1 is an optimal ordering for the basis pair (B1, B2)
and U = [(B1, ρ), (B2, τ)] a corresponding incoherence matrix (with some ordering τ of B2). Then any
decreasing function f : N→ R>0 which satisfies f ≈ g, where g is defined by g(N) = µ(QNU), ∀N ∈ N,
is said to be an ‘optimal decay rate’ of the basis pair (B1, B2).

Notice that an optimal decay rate is unique up to the equivalence relation≈ defined on the set of functions
f : N→ R>0. Next we define the concept of best ordering.

Definition 2.8 (Best ordering). Let (B1, B2) be a basis pair. Then any ordering ρ : N → B1 is said to be
a ‘best ordering’ if for any other ordering τ of B2 and U = [(B1, ρ), (B2, τ)] we have that the function
g(N) := µ(πNU) is decreasing.

Notice that for a best ordering we have µ(πNU) = µ(QNU). If ρ′ is any other ordering and U ′ =
[(B1, ρ

′), (B2, τ)] then since QNU ′ must contain one of the first N rows of U we must have that

µ(QNU
′) ≥ min

M=1,...N
µ(πMU) ≥ µ(πNU) = µ(QNU),

and we deduce that ρ ≺ ρ′. This shows that any best ordering is optimal.

Lemma 2.9. Suppose that we have a basis pair (B1, B2). Then one of the following two results must hold:

(1) There is at least one best ordering.
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(2) Every ordering of B1 is optimal for (B1, B2).

In either case, optimal orderings always exist.

Proof. Let ρ : N → B1, τ : N → B2 be any orderings of B1, B2 respectively and U = [(B1, ρ), (B2, τ)].
Now first assume that for any finite subset D ⊂ N

sup
N∈N\D

µ(πNU), (2.3)

is attained for some N ∈ N \D. In this case we can then construct a best ordering ρ∗ : N→ B1 inductively
by letting (for N = 1)

ρ∗(1) ∈ argmax
f∈B1

sup
n∈N
|〈τ(n), f〉|,

and for N ≥ 2 we set
ρ∗(N) ∈ argmax

f∈B1

f /∈{ρ∗(1),...,ρ∗(N−1)}

sup
n∈N
|〈τ(n), f〉|.

Note that it is clear from the construction that this is an actual ordering. Therefore if our original assumption
holds we conclude that 1) must hold too. If our assumption does not hold this means there exists a finite
subset D ⊂ N such that the supremum (2.3) is not attained for any N ∈ N \ D. This means that if we
remove finitely many elements from N \ D the supremum will remain unchanged. Therefore if N ′ is the
largest natural number in D we find that

µ(QMU) = sup
N∈N\D

µ(πNU), ∀M > N ′,

and so µ(QNU) is eventually constant as a function of N . This means that for any ordering ρ′ of B1 and
U ′ = [(B1, ρ

′), (B2, τ)], µ(QNU
′) is eventually constant. If follows that any two orderings of B1 are

equivalent under ∼ and consequently 2) holds.

Lemma 2.10. Suppose that we have a basis pair (B1, B2) with two orderings ρ : N→ B1, τ : N→ B2 of
B1, B2 respectively. If U = [(B1, ρ), (B2, τ)] satisfies

µ(πNU)→ 0 as N →∞,

then a best ordering exists.

Proof. The supremum (2.3) is always attained and therefore we fall into case 1) of the previous lemma.

Since µ(P⊥NU) → 0 as N → ∞ implies µ(πNU) → 0 as N → ∞ we also deduce that if U is
asymptotically incoherent then there must be a best ordering.

Remark 2.1 Given a basis pair (B1, B2), it is tempting just to search for a best ordering. This, however,
can be problematic if we want to find optimal orderings that are simple to describe and independent from
any factors that are also independent of the optimal decay rate. Figure 2 shows an example where the best
orderings are wavelet dependent, even though the optimal equivalence classes can be described in a wavelet
independent manner. Although the difference between the best orderings is very minor in Figure 2, this
difference becomes more noticeable when working in higher dimensions.

In later sections of this paper we shall first deduce bounds on the row incoherence µ(πNU) and then use
these to deduce bounds on µ(QNU). The next important Lemma describes a few connections between these
two notions of coherence.

Lemma 2.11. 1): Let (B1, B2) be a basis pair and τ any ordering of B2. Furthermore, let B′1 ⊂ B1 have
an ordering ρ1 : N → B′1, and define U1 := [(B′1, ρ1), (B2, τ)]. Suppose that that there is a decreasing
function f1 : N→ R>0 such that

f1(N) ≤ µ(πNU1), ∀N ∈ N.

Then if ρ2 : N→ B1 is an ordering, U2 = [(B1, ρ2), (B2, τ)] and f2 : N→ R>0 is a function with

µ(QNU2) ≤ f2(N), ∀N ∈ N,
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(a) Incoherence matrix and column maxima for a Haar
wavelet basis (with Fourier).
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(b) Incoherence matrix and column maxima for
Daubechies6 wavelet basis.

Figure 2: Here are two (20 × 20 centrally truncated) wavelet-Fourier Incoherence matrices (brighter means larger absolute value)
and their corresponding column maxima. The columns denote the Fourier basis (viewed as Z) and the rows denote the wavelet basis
(ordered top to bottom). Notice that there is a slight difference in the best orderings (by looking around −10,+10 on the horizontal
axis) even though the general decay rate is similar. The maxima are taken over a much larger matrix to ensure accuracy.

then f1(N) ≤ f2(N) for every N ∈ N.
2): Let ρ be an ordering of B1 with U := [(B1, ρ), (B2, τ)] and f : N → R≥0 be a decreasing function

with f(N)→ 0 as N →∞. If, for some constants C1, C2 > 0, we have

C1f(N) ≤ µ(πNU) ≤ C2f(N), ∀N ∈ N, (2.4)

then ρ is an optimal ordering and f is a representative of the optimal decay rate.

Proof. 1): Let θ(N) denote the smallest m ∈ N such that ρ1(m) ∈ {ρ2(k)}∞k=N and m′ = m′(N) ∈
{N,N + 1, . . .} be such that ρ1(θ(N)) = ρ2(m′(N)). Now notice that θ(N) ≤ N since {ρ2(k)}∞k=N can
only miss at most the first N − 1 of the ρ1(k)’s. Combining this with the fact that f1 is decreasing we see
that

f1(N) ≤ f1(θ(N)) ≤ µ(πθ(N)U1) = µ(πm′(N)U2) ≤ µ(QNU2) ≤ f2(N).

2): By (2.4) and Lemma 2.9 we know there is a best ordering ρ∗ of B1 with corresponding matrix U∗ =
[(B1, ρ

∗), (B2, τ)]. Furthermore if g is a representative of the optimal decay rate we know that there are
constants D1, D2 > 0 such that for every N ∈ N,

D1 · g(N) ≤ µ(πNU
∗) = µ(QNU

∗) ≤ D2 · g(N). (2.5)

However, we also know from f being decreasing and (2.4) that

C1 · f(N) ≤ µ(πNU) ≤ µ(QNU) = max
N ′≥N

µ(πN ′U) ≤ C2 · max
N ′≥N

f(N ′) = C2 · f(N). (2.6)
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Therefore we may apply part 1 of the Lemma twice to (2.5) & (2.6) to deduce f . g and g . f , which
implies f ≈ g.

Definition 2.12 (Strongly optimal ordering). Let (B1, B2) be a basis pair and τ any ordering of B2. Then
any ordering ρ of B1 that satisfies (2.4) for some decreasing function f is said to be a ‘strongly optimal
ordering’.

Notice that any best ordering is also a strongly optimal ordering. Furthermore if g is a representative of
the optimal decay rate then by Lemma 2.11 an ordering ρ is strongly optimal if and only if there are constants
C1, C2 > 0 such that

C1 · g(N) ≤ µ(πNU) ≤ C2 · g(N), ∀N ∈ N.

Throughout this paper we would like to define an ordering according to a particular property of the basis
but this property may not be enough to specify a unique ordering. To deal with this issue we introduce the
notion of consistency:

Definition 2.13 (Consistent ordering). Let F : S → R where S is a set. We say that an ordering ρ : N→ S
is ‘consistent with respect to F’ if

F (f) < F (g) ⇒ ρ−1(f) < ρ−1(g), ∀f, g ∈ S.

Before moving onto specific cases, we consider the general case where U is an isometry and ask; is there
a universal lower bound on the incoherence?

Theorem 2.14. Let U ∈ B(l2(N)) be an isometry. Then
∑
N µ(QNU) diverges.

Proof. Suppose that
∑
N µ(QNU) converges, Then, we can find N ′ ∈ N such that

∑∞
N=N ′ µ(QNU) ≤

1/42. Therefore if we write U = (ui,j)i,j∈N then

∞∑
N=N ′

|uN,j |2 ≤
∞∑

N=N ′

µ(QNU) ≤ 1/42, j ∈ N (2.7)

Now define the vectors

vj := (ui,j)i∈N, v1
j := (ui,j)

N ′−1
i=1 , v2

j := (ui,j)
∞
i=N ′ , j ∈ N.

Inequality (2.7) says that ‖v2
j ‖2 ≤ 1/4 for every j ∈ N. Since U is an isometry, we know its columns are

normalised, i.e. ‖vj‖2 = 1, and so we deduce ‖v1
j ‖2 ≥ 3/4 for every j ∈ N. Let wj := v1

j /‖v1
j ‖2, j ∈ N.

Since the wj ∈ CN ′−1 are all finite dimensional we claim that

sup
j,j′∈{1,...,M}

j 6=j′

|〈wj , wj′〉| → 1, as M →∞. (2.8)

To see this, notice that for every ε > 0, there exists a δ > 0, such that for all j ∈ N the set Wj(ε) := {w ∈
CN ′−1 : |〈wj , w〉| > 1− ε} contains the open set Bδ(wj) of radius δ centered at wj . It must be the case that
there are j1, j2 ∈ N, j1 6= j2 such that Bδ/2(wj1) ∩Bδ/2(wj2) 6= ∅, else the union⋃

j∈N
Bδ/2(wj) ∪

⋃
w 6∈

⋃
j∈N Bδ/2(wj)

w∈CN
′−1

Bδ/4(w),

would form an open cover of the unit ball in CN ′−1 with no finite subcover5, contradicting compactness of
the unit ball in CN ′−1. SinceBδ/2(wj1)∩Bδ/2(wj2) 6= ∅, wj1 ∈ Bδ(wj2) ⊂Wj2(ε) and so |〈wj1 , wj2〉| >
1− ε. Since ε > 0 was arbitrary we have proved (2.8).

Therefore, by (2.8) we know there exists j1, j2 ∈ N, j1 6= j2 such that |〈wj1 , wj2〉| > 1/2 and therefore
we deduce that

|〈v1
j1 , v

1
j2〉| >

1

2
‖v1
j1‖2‖v

1
j2‖2 >

32

2 · 42
. (2.9)

5Any finite subcover would miss infinitely many of the points wj .
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Furthermore, since ‖v2
j1
‖2, ‖v2

j1
‖2 ≤ 1/4 we know that

|〈v2
j1 , v

2
j2〉| ≤ ‖v

2
j1‖2‖v

2
j1‖2 ≤

1

42
. (2.10)

Therefore, combining (2.9) with (2.10) gives us

|〈vj1 , vj2〉| = |〈v1
j1 , v

1
j2〉+ 〈v2

j1 , v
2
j2〉| ≥ |〈v

1
j1 , v

1
j2〉| − |〈v

2
j1 , v

2
j2〉|

≥ 32

2 · 42
− 1

42
=

7

2 · 42
> 0.

However, since U is an isometry and j1 6= j2, we know that 〈vj1 , vj2〉 = 0 and therefore we have a contra-
diction.

Corollary 2.15. Let U ∈ B(l2(N)) be any isometry. Then there does not exist an ε > 0 such that

µ(QNU) = O(N−1−ε), N →∞.

Noting the above corollary and that µ(U) = N−1 is the best result possible for the finite U ∈ CN ×
CN case, it might be tempting to believe µ(QNU) = O(N−1) is the best decay rate we can achieve for
an isometry. However, it turns out that Theorem 2.14 cannot be improved without imposing additional
conditions on U :

Lemma 2.16. Let f, g : N→ R be any two strictly positive decreasing functions and suppose that
∑
N f(N)

diverges. Then there exists U ∈ B(l2(N)) an isometry with

µ(QNU) ≤ f(N), µ(UQN ) ≤ g(N), N ∈ N. (2.11)

Proof. The proof is constructive. We may assume without loss of generality that f(N), g(N) ≤ 1 for all
N ∈ N. We will construct a matrix U = (ui,j)i,j∈N satisfying (2.11) with normalised columns, vj :=
(ui,j)i∈N, j ∈ N, having disjoint support. With this in mind we partition N as follows:

N =

∞⋃
i=1

Ωi, Ωi := 2i−1N \ 2iN.

Let j ∈ N be fixed and define recursively (for6 N ∈ N )

(vj)N =



(
g(j)f(N)

)1/2
, if

∑N−1
i=1 ((vj)i)

2 + g(j)f(N) ≤ 1, N ∈ Ωj ,(
1−

∑N−1
i=1 ((vj)i)

2
)1/2

, if
∑N−1
i=1 ((vj)i)

2 ≤ 1,∑N−1
i=1 ((vj)i)

2 + g(j)f(N) ≥ 1, N ∈ Ωj ,

0, Otherwise.

(2.12)

It is immediate from the definition that vj is supported on Ωj and ((vj)N )2 ≤ f(N)g(j) for every N, j ∈ N
which implies that (2.11) holds. Furthermore, it easy to show by induction on N that ‖vj‖2 ≤ 1 . Since f is
decreasing and by the structure of the set Ωj ,

∑
N∈Ωj

f(N) diverges for every j and consequently there is
an N ′ ∈ N such that ∑

N∈Ωj
N≤N ′

g(j)f(N) ≥ 1,
∑
N∈Ωj

N≤N ′−1

g(j)f(N) ≤ 1.

For N ≤ N ′ − 1, N ∈ Ωj we fall into the first case of (2.12), however for N = N ′ we fall into case 2, and
therefore

∑N ′

i=1((vj)i)
2 = 1. This means ‖vj‖2 = 1 for every j and consequently U is an isometry.

Although this negative result shows that we cannot define an analogue of perfect incoherence for asymp-
totic incoherence, if we restrict our decay function to be a power law, i.e. f(N) := CN−α for some constants
α,C > 0 then the largest possible value of α > 0 such that (2.11) holds for an isometry U is α = 1, which
shall be attained by our first example.

From hereon in we shall work with specific bases and find optimal orderings and decay rates for each
case.

6Here we use the convention that
∑N−1

i=1 is an empty sum if N = 1.
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3 1D Fourier-Wavelet Case
In this section we shall be using a Fourier basis and a wavelet basis. However we shall consider two types of
wavelet basis in this section: standard wavelets and boundary wavelets. Before doing this this, we will first
define and order the Fourier basis.

Let ε > 0 be fixed. For x ∈ R, define

χk(x) =
√
ε exp (2πiεkx) · 1[(−2ε)−1,(2ε)−1](x), k ∈ Z. (3.1)

Notice that (χk)k∈Z is a basis for L2[(−2ε)−1, (2ε)−1]. We set Bf = Bf(ε) := (χk)k∈Z. (The little f here
stands for ‘Fourier’).

Definition 3.1 (Standard ordering). We define Ff : Bf → N∪ {0} by Ff(χk) = |k| and say that an ordering
ρ : N→ Bf is a ‘standard ordering’ if it is consistent with Ff (recall Definition 2.13).

For convenience in what follows we shall identifyBf(ε) with Z by the function λ : Bf → Z, λ(χk) := k
which means that for any ordering ρ of Bf(ε) we have

ρ(m)(x) =
√
ε exp (2πiε · λ ◦ ρ(m)x) · 1[(−2ε)−1,(2ε)−1](x), ∀m ∈ N.

Definition 3.1 says that an ordering ρ of Bf(ε) is standard if and only if the function |λ ◦ ρ| is nondecreasing.
Therefore ρ is standard if and only if we have {λ ◦ ρ(2n), λ ◦ ρ(2n + 1)} = {+n,−n} for n ∈ N and
λ ◦ ρ(1) = 0 and consequently if ρ is standard then |λ ◦ ρ(m)| = d(m − 1)/2e. We now define and order
the two types of wavelet basis.

3.1 Case 1 - Standard Wavelets
Take a Daubechies wavelet ψ and corresponding scaling function φ in L2(R) with

Supp(φ) = Supp(ψ) = [−p+ 1, p].

We write
φj,k(x) = 2j/2φ(2jx− k), ψj,k(x) = 2j/2ψ(2jx− k),

Vj := Span{φj,k : k ∈ Z}, Wj := Span{ψj,k : k ∈ Z}.

With the above notation, (Vj)j∈Z is the multiresolution analysis for φ, with the conventions

Vj ⊂ Vj+1, Vj+1 = Vj ⊕Wj .

where Wj here is the orthogonal complement of Vj in Vj+1. For a fixed J ∈ N we define the set7

Bw :=

 Supp(φJ,k) ∩ (−1, 1) 6= ∅,
φJ,k, ψj,k : Supp(ψj,k) ∩ (−1, 1) 6= ∅,

j ∈ N, j ≥ J, k ∈ Z

 , (3.2)

Let ρ be an ordering of Bw. Notice that since L2(R) = VJ ⊕
⊕∞

j=JWj for all f ∈ L2(R) with supp(f) ⊆
[−1, 1] we have

f =

∞∑
n=1

cnρ(n) for some (cn)n∈N ∈ `2(N).

Definition 3.2 (Leveled ordering (standard wavelets)). Define Fw : Bw → R by

Fw(f) =

{
j, if f ∈Wj

−1, if f ∈ VJ
,

and say that any ordering τ : N→ Bw is a ‘leveled ordering’ if it is consistent with Fw.

Notice that Fw(ψj,k) = j. We use the name “leveled” here since requiring an ordering to be leveled
means that you can order however you like within the individual wavelet levels themselves, as long as you
correctly order the sequence of wavelet levels according to scale.

7‘w’ here stands for ‘wavelet’.
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3.2 Case 2 - Boundary Wavelets
We now look at an alternative way of decomposing a function f ∈ L2([−1, 1]) in terms of a wavelet basis,
namely using boundary wavelets [24, Section 7.5.3]. The basis functions all have support contained within
[−1, 1], while still spanning L2[−1, 1]. Furthermore, the boundary wavelet basis retains the ability to re-
construct polynomials of order up to p − 1 from the corresponding standard wavelet basis. We shall not go
into great detail here but we will outline the construction; we take, along with a Daubechies wavelet ψ and
corresponding scaling function φ with Supp(ψ) = Supp(φ) = [−p+ 1, p], boundary scaling functions and
wavelets (using the same notation as in [24] 8)

φleft
n , φright

n , ψleft
n , ψright

n , n = 0, · · · , p− 1.

Like in the standard wavelet case we shift and scale these functions,

φleft
j,n(x) = 2j/2φleft

n (2j(x+ 1)), φright
j,n (x) = 2j/2φright

n (2j(x− 1)).

We are then able to construct nested spaces , (V int
j )j≥J , for J ≥ dlog2(p)e, such thatL2([−1, 1]) =

⊕∞
j=0 V

int
j

and V int
j+1 = V int

j ⊕W int
j by defining

V int
j = Span

{
φleft
j,n, φ

right
j,n

φj,k
:
n = 0, · · · , p− 1

k ∈ Z s.t. Supp(φj,k) ⊂ [−1, 1]

}
,

W int
j = Span

{
ψleft
j,n, ψ

right
j,n

ψj,k
:
n = 0, · · · , p− 1

k ∈ Z s.t. Supp(ψj,k) ⊂ [−1, 1]

}
.

We then take the spanning elements of V int
J and the spanning elements of W int

j for every j ≥ J to form
the basis Bbw (bw for ’boundary wavelets’).

Definition 3.3 (Leveled ordering (boundary wavelets)). Define Fw : Bbw → R by the formula

Fbw(f) =

{
j, if f ∈W int

j

−1, if f ∈ V int
J

.

Then we say that an ordering τ : N→ Bbw of this basis is a ‘leveled ordering’ if it is consistent with Fbw.

3.3 Proof of Theorem 1.6
Suppose that ρ is an ordering of the Fourier basis Bf = Bf(ε), τ is an ordering of a wavelet basis Bw (or
Bbw) and set U = [(Bf(ε), ρ), (Bw, τ)] (or U = [(Bf(ε), ρ), (Bbw, τ)]). Recall that the basis Bf(ε) spans
L2[(−2ε)−1, (2ε)−1].

Remark 3.1 For standard wavelets if we requireU to be an isometry we must impose the constraint (2ε)−1 ≥
1 + 2−J(p − 1) otherwise the elements in Bw do not lie in the span of Bf(ε). For convenience we rewrite
this as ε ∈ IJ,p where

IJ,p := (0, (2 + 2−J+1(p− 1))−1].

If Bw is replaced by Bbw, we only require ε ≤ 1/2, since every function in Bbw has support contained in
[−1, 1]. For the rest of this section, we shall assume these constraints on ε hold.

With U defined as above (with either Bw or Bbw), the key observations for handling the entries of U are

Um,n = 〈τ(n), ρ(m)〉 =

∫
R

√
ε exp(−2πiεx · λ ◦ ρ(m)) · τ(n)(x) dx

=
√
εFτ(n)(ε · λ ◦ ρ(m)),

(3.3)

recalling that F denotes the Fourier Transform. We also observe that

Fφj,k(ω) = e−2πi2−jkω2−j/2Fφ(2−jω), Fψj,k(ω) = e−2πi2−jkω2−j/2Fψ(2−jω),

Fψleft
j,n(ω) = 2−j/2e2πiFψleft

n (2−jω), Fψright
j,n (ω) = 2−j/2e−2πiFψright

n (2−jω).
(3.4)

We now come to our first optimal incoherence estimate.
8We use [−1, 1] instead of [0, 1] as our reconstruction interval here, but everything else is the same.
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Proposition 3.4. Let τ be any leveled ordering of a standard wavelet basis and U = [(Bw, τ), (Bf(ε), ρ)]
for any ordering ρ of the Fourier Basis Bf(ε). Then there are constants C1, C2 > 0, dependent on the choice
of wavelet, such that for all ε ∈ IJ,p and N ∈ N, we have

ε · C1

N
≤ µ(πNU) ≤ ε · C2

N
. (3.5)

Furthermore, suppose that τ is instead an ordering of a boundary wavelet basis andU = [(Bbw, τ), (Bf(ε), ρ)]
for any ordering ρ of the Fourier Basis Bf(ε). Then there are constants C1, C2 > 0, dependent on the choice
of wavelet, such that for all ε ∈ (0, 1/2] and N ∈ N, (3.5) holds.

Proof. By equation (3.3) we know that (since λ ◦ ρ : N→ Z is bijective)

µ(πNU) = sup
m∈N

ε|Fτ(N)(ε · λ ◦ ρ(m))|2 = sup
m∈Z

ε|Fτ(N)(εm)|2.

Case 1 (Standard wavelets): In this case we define j(N) := Fw(τ(N)) and let a := 2p−1 ∈ N denote
the length of the support of the scaling function φ corresponding to Bw. Notice that for a leveled ordering of
Bw, the functions belonging to VJ come first, and there are of 2J+1 + a − 1 of these functions. Therefore,
for N ≤ 2J+1 + a− 1 we have that, by (3.4),

µ(πNU) = ε sup
m∈Z

2−J |Fφ(2−Jεm)|2. (3.6)

Furthermore, for the wavelet terms in Bw, which correspond to N ≥ 2J+1 + a, we have that, by (3.4),

µ(πNU) = ε sup
m∈Z

2−j(N)|Fψ(2−j(N)εm)|2. (3.7)

Since the wavelet is compactly supported and in L2(R) it is in L1(R) and so its Fourier transform is con-
tinuous. Notice that by this continuity and the Riemann-Lebesgue Lemma, we see that supω∈R |Fψ(ω)| =
|Fψ(ω̂)| for some ω̂ ∈ R. Therefore, since j(N) → ∞ as N → ∞ because the ordering τ is leveled, we
find that

supm∈Z |Fψ(ε2−j(N)m)|2

supω∈R |Fψ(ω)|2
−→ 1 as N →∞. (3.8)

Furthermore, this convergence is uniform in ε ∈ IJ,p as N → ∞. We are therefore left with handling the
2−j(N) term, which means estimating j(N) as N →∞.

Notice that for each value of j(N) ≥ J there are 2j(N)+1 +a−1 functions in our wavelet basis with this
value of j(N). For simplicity we shall use the simple bounds 2j(N)+1 ≤ 2j(N)+1 + a− 1 ≤ 2j(N)+a. Now
for every N ∈ N with j(N) > J , we must have had all the terms of the form f ∈ Bw, Fw(f) = j(N) − 1
come before N in the leveled ordering and there are at least 2j(N) of these terms. If j(N) = J we instead
have N > 2J+1 + a − 1 > 2J . Likewise for every N ∈ N with j(N) ≥ J there can be no more than∑j(N)
i=J 2(i+a) + 2J + a − 1 ≤ 2j(N)+a+2 terms that came before N . Therefore we have the inequality, for

j(N) ≥ J ,
2j(N) ≤ N ≤ 2j(N)+a+2. (3.9)

Now we will tackle the upper and lower bounds of (3.5) separately:
Upper Bound: We will show that µ(πNU) ≤ ε·C2

N . Notice from (3.9) we have the upper bound
2−j(N) ≤ 2a+2N−1 for j(N) ≥ J and therefore for these terms we can bound (3.7) by

ε sup
m∈Z

2−j(N)|Fψ(2−j(N)εm)|2 ≤ ε2a+2

N
· sup
ω∈R
|Fψ(ω)|2,

For the j(N) = −1 terms (i.e. N ≤ (2J+1 + a− 1)) we also have the simple bound

ε · 2−J sup
ω∈R
|Fφ(ω)|2 ≤ ε2−J 2J+1 + a− 1

N
· sup
ω∈R
|Fφ(ω)|2,

and so the upper bound is complete.
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Lower Bound: We will show that ε·C1

N ≤ µ(πNU). First notice that from (3.9) that we have the lower
bound 2−j(N) ≥ N−1. Next notice that from (3.8) there is an N ′ ∈ N independent of ε ∈ (0, 1/2p] such
that for all N ≥ N ′ we have

sup
m∈Z
|Fψ(ε2−j(N)m)|2 ≥ 1

2
sup
ω∈R
|Fψ(ω)|2.

Consequently for N ≥ N ′ we have the lower bound

µ(πNU) ≥ ε2−j(N) ·
supω∈R |Fψ(ω)|2

2
≥ ε

2N
· sup
ω∈R
|Fψ(ω)|2.

Therefore, in order to prove the lower bound, we need only show there exists a constant C > 0 such that
every N < N ′ we have µ(πNU) ≥ ε · C uniformly in ε ∈ IJ,p. This will be satisfied if we can show that
for every j ≥ J fixed there exists a constant C > 0 such that for all ε ∈ IJ,p

sup
m∈Z
|Fφ(2−Jεm)|2, sup

m∈Z
|Fψ(2−jεm)|2 ≥ C.

We will deal with latter term since the scaling function term is handled similarly. We know that for every
ε ∈ IJ,p fixed, supm∈Z |Fψ(2−jεm)|2 > 0 since if it were not the case we would find that 〈χm, ψj,0〉 = 0 for
every m, contradicting the χm forming a basis of L2([(−2ε)−1, (2ε)−1]). Next notice that by the Riemann-
Lebesgue Lemma and continuity of the Fourier transform of ψ, this supremum is a continuous function of ε
and that

sup
m∈Z
|Fψ(2−jεm)|2 → sup

ω∈R
|Fψ(ω)|2 > 0 as ε→ 0.

Consequently we deduce the supremum attains its lower bound as a function of ε on IJ,p and we are
done.

Case 2 (Boundary wavelets): The method of proof is the same except that we have additional
ψleft, φleft, ψright, φright terms to deal with. We also have slightly different behaviour of 2j(N), i.e. for N >
2J+1,

2j(N) ≤ N ≤ 2j(N)+2. (3.10)

This follows from observing that for each value of j(N) there are 2j(N)+1 functions in the wavelet basis,
and that we are using a leveled ordering. The details are omitted for the sake of brevity.

For estimating µ(QNU), we need the following condition on our scaling function / wavelet; there exists
a constant K > 0 s.t. ∀ω ∈ R \ {0},

|Fφ(ω)| ≤ K

|ω|1/2
. (3.11)

This condition holds for all Daubechies wavelets (see the proof of Proposition 4.7 in [11]), in fact it even
holds if we change the power of ω from 1/2 to 1.

Lemma 3.5. Let φ be a Daubechies scaling function, with corresponding mother wavelet ψ. Then, along
with (3.11), we also have

|Fψ(ω)| ≤ K

|ω|1/2
. (3.12)

Furthermore in the case of boundary wavelets we also have for some constant K > 0 and ω ∈ R \ {0}

|Fφleft
n (ω)|, |Fφright

n (ω)|, |Fψleft
n (ω)|, |Fψright

n (ω)| ≤ K

|ω|1/2
, (3.13)

along with (3.11) and (3.12). In fact (3.12) and (3.13) hold with the powers of 1/2 replaced by 1.

Proof. We notice that if (3.11) holds then we can use the equation (see (2.14) in [18])

Fψ(2ω) = exp(2iπω) · ν(2ω) ·m0(ω + 1/2) · Fφ(ω), (3.14)
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where m0 is the Fourier transform of the low pass filter of the scaling function φ and ν is function whose
modulus is always 19. Taking the modulus of this equation gives |Fψ(2ω)| = |m0(ω + 1/2)| · |Fφ(ω)|.
Therefore using this along with |m0(ω)| ≤ 1, ∀ω ∈ R (from (2.5) in [18]) we can show that (3.11) also
holds with φ replaced by ψ.

We now turn to the boundary wavelet estimates. We may assume p ≥ 2 since in the Haar case boundary
wavelets are redundant. First we note that the property of having a decay estimate of the form (3.11) is
closed under finite linear combinations. Next observe that if we prove an estimate of the form (3.11) for the
functions (see page 71 of [10])

φ̃k(x) =

2p−2∑
n=k

(
n

k

)
φ(x+ n− p+ 1) · 1[0,∞), k = 0, · · · , p− 1,

then we also have the same decay (with a different constant) for the functions φleft
k and ψleft

k since they are
finite linear combinations of these functions. A similar argument will work for the right boundary wavelets.
Let us consider an arbitrary term from the sum

Tn(x) := φ(x+ n− p+ 1) · 1[0,∞) = φ(x+ n− p+ 1) · 1[0,2p−1].

Now since we have expressed Tn as a product of two L2 functions we can apply the convolution rule on its
Fourier Transform to deduce FTn(ω) =

(
Fφ0,−n+p−1 ∗ F1[0,2p−1]

)
(ω). Now we make two observations:

1. |F1[0,2p−1](ω)| = |(exp(−2πi(2p−1)ω)−1)·(2πiω)−1| ≤ C1·(|ω|+1)−1 for some constantC1 > 0.

2. Excluding the Haar wavelet, for every Daubechies wavelet there exists constants α,C2 > 0 such
that |Fφ(ω)| ≤ C2 · (|ω|+ 1)−1−α (see the proof of Proposition 4.7 in [11]).

We now that claim that if two functions f, g satisfy

|f(ω)| ≤ C1 · (|ω|+ 1)−1, |g(ω)| ≤ C2 · (|ω|+ 1)−1−α, ∀ω ∈ R.

for some constants α,C1, C2 > 0 then |f ∗ g(ω)| ≤ C3 · |ω|−1 which will prove the lemma. To see this
notice that (without loss of generality ω > 0)

|f ∗ g(ω)| · |ω| ≤ C1C2

∫
R

|ω|
(|u|+ 1)(|ω − u|+ 1)1+α

du

≤ C1C2

(∫ ω/2

−∞

|ω|
(|u|+ 1)(|ω − u|+ 1)1+α

du

+

∫ +∞

ω/2

|ω|
(|u|+ 1)(|ω − u|+ 1)1+α

du

)
,

(3.15)

and notice that we would have shown the claim if we can bound the RHS uniformly in ω. By noting
|ω − u| + 1 ≥ |u| + 1, |ω − u| ≥ |ω/2| for u ∈ (−∞, ω/2] we see that the first integral is bounded
above by∫ ω/2

−∞

|ω|
(|u|+ 1)1+α/2(|u− ω|+ 1)1+α/2

du ≤
∫ ω/2

−∞

|ω|
(|u|+ 1)1+α/2(|ω/2|+ 1)1+α/2

du

≤
∫
R

21+α/2

(|u|+ 1)1+α/2
du = constant <∞.

To bound the last integral in (3.15) we simply use |ω|(|u|+ 1)−1 ≤ 2 for u ∈ [ω/2,∞) to give us a similar
uniform upper bound, completing the proof of the claim.

For our second incoherence result we will need a technical lemma.
9The equation here is not identical to that of the reference because of our choice of definition of the Fourier transform.
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Lemma 3.6. For any compactly supported wavelet ψ with a scaling function φ ∈ L1(R) there exists an
N ∈ N such that for all q ≥ N, (q ∈ N) we have

Lq := inf
ω∈[2−(q+1),2−q ]

|Fψ(ω)| > 0.

Proof. We recall from equation (3.14) that

|Fψ(2ω)| = |m0(ω + 1/2)| · |Fφ(ω)|. (3.16)

Furthermore, we also know that |Fφ(0)| = 1 and m0(1/2) = 0 [18]10. However, since φ is compactly
supported,m0 is a non-zero trigonometric polynomial so it follows that this zero at 1/2 is isolated. Therefore,
since Fφ is continuous, we deduce that (3.16) is nonzero when ω > 0 is sufficiently small.

We now prove an optimal incoherence result for U1 = [(Bf(ε), ρ), (Bw, τ)]. Notice that this matrix is
different to U2 = [(Bw, τ), (Bf(ε), ρ)] which was covered in Proposition 3.4. In particular, U1 = (U2)∗ (the
adjoint of U2) and so have that µ(πNU1) = µ(U2πN ).

Proposition 3.7. Let ρ be any standard ordering of the Fourier basis Bf(ε) and U = [(Bf(ε), ρ), (Bw, τ)]
for any standard wavelet ordering τ . There is a constant C1 > 0 such that for all ε ∈ IJ,p and N ∈ N, we
have the upper bound

µ(πNU) ≤ C1

N
.

Furthermore, there is a constant C2 > 0 such that for all ε ∈ IJ,p and N ≥ 1 + 2J+1ε−1 we have the lower
bound

µ(πNU) ≥ C2

N
.

Finally, if we replace Bw by Bbw in the above setup, the same conclusions also hold with the constraint
ε ∈ IJ,p replaced by ε ∈ (0, 1/2] .

Proof. Upper Bound: Since ρ is a standard ordering if m = 1 then λ ◦ ρ(m) = 0 and since |Fφ(0)| = 1,
Fψ(0) = 0 (see (3.16) and the line below it), in the case of standard wavelets we have µ(π1U) = ε2−J . In
the case of boundary wavelets we have the estimate

µ(π1U) ≤ ε · 2−J ·max(1, |ψleft(0)|, |ψright(0)|, |φleft(0)|, |φright(0)|)2,

Next let m ≥ 1. For standard wavelets we observe that the estimate (3.11) is strong enough to bound the
finitely many φJ,k terms as required since

|〈φk, ρ(m)〉|2 = ε2−J |Fφ(ε2−J · λ ◦ ρ(m))|2 ≤ ε2−J ·K2

|ε2−J · λ ◦ ρ(m)|
≤ 2K2

m− 1
,

where we used that ρ is a standard ordering in the last step (for boundary wavelets the same holds for the
finitely many V int

J terms). Therefore we are left with the terms involving the shifts and dilations of ψ (and for
boundary wavelets the ψleft

k , ψright
k terms as well). This is also a straightforward consequence of (3.11) since

we have

|〈ψj,k, ρ(m)〉|2 = ε2−j |Fψ(ε2−j · λ ◦ ρ(m))|2

≤ ε2−j · 2jK2

ε · |λ ◦ ρ(m)|
≤ K2

|λ ◦ ρ(m)|
≤ 2K2

m− 1
,

and for boundary wavelets we can tackle the ψleft
k , ψright

k terms in the same way. This gives the global bound
for m ≥ 2 (uniform in n and ε)

|〈τ(n), ρ(m)〉|2 ≤ 2K2

m− 1
≤ 4K2

m
.

Combining this with our bound on µ(π1U) (we just bound ε by 1) we obtain the required upper bound.

10See Section 2 Theorem 1.7 and Equation (3.1) in the reference.
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Lower Bound: For standard wavelets, given m ∈ N, m 6= 1, find n ∈ N such that τ(n) = ψj,0 with
j = dlog2(ε|λ ◦ ρ(m)|)e+ q, where q ∈ N is arbitrary but sufficiently large so that j ≥ J . Notice that this
means that ε2−j |λ ◦ ρ(m)| ∈ (2−q−1, 2−q]. Therefore, recalling the definition of Lq in Lemma 3.6, we see
that we have

|〈τ(n), ρ(m)〉|2 = ε2−j |Fψ(2−jελ ◦ ρ(m))|2

≥ ε2−dlog2(ε|λ◦ρ(m)|)e−q|Fψ(ε · 2−dlog2(ε|λ◦ρ(m)|)e−q · λ ◦ ρ(m))|2

≥
L2
q · 2−q

2|λ ◦ ρ(m)|
≥
L2
q · 2−q

m
.

We used m 6= 1 in the last step and the fact that the ordering ρ is standard. Recall that by Lemma 3.6
there exists a q ∈ N such that Lq > 0. We choose the same such q for all ε ∈ IJ,p. To ensure that
j = dlog2(ε|λ ◦ ρ(m)|)e + q satisfies j ≥ J we must therefore impose the constraint that m is sufficiently
large. j ≥ J is satisfied if

J ≤ log2(ε|λ ◦ ρ(m)|) ⇔ m ≥ 1 + 2J+1ε−1.

When using boundary wavelets the argument for the lower bound is identical.

Remark 3.2 The condition N ≥ 1 + 2J+1ε−1 cannot be replaced by N ∈ N for the lower bound since, in
the case of standard wavelets, for every fixed N ∈ N we have

µ(πNU) ≤ ε ·max
(

sup
ω∈R
|Fψ(ω)|2, sup

ω∈R
|Fφ(ω)|2

)
= O(ε).

Summarising the consequences of what we have proved in this section, while throwing away ε depen-
dence from our results, we have the following theorem.

Theorem 3.8. Let the Fourier basis Bf(ε) be defined as in (3.1) and a wavelet basis Bw be defined as
in Section 3.1 with ε ∈ IJ,p. Let ρ be a standard ordering of Bf(ε), τ a leveled ordering of Bw and
U = [(Bf(ε), ρ), (Bw, τ)]. Furthermore, suppose that (3.11) holds for the wavelet basis and ε is kept fixed.
Then we have, for some constants C1, C2 > 0 the decay

C1

N
≤ µ(P⊥NU), µ(UP⊥N ) ≤ C2

N
, ∀N ∈ N, (3.17)

which for either of the coherences µ(P⊥NU), µ(UP⊥N ), the decay cannot be improved by changing the order-
ings ρ, τ , except up to alteration of the constantsC1, C2 > 0. Furthermore, the ordering ρ is strongly optimal
for the basis pair (Bf(ε), Bw) and the ordering τ is strongly optimal for the basis pair (Bw, Bf(ε)). More-
over, there is no other pair of bases (B1, B2) and orderings ρ, τ , with correspondingU = [(B1, ρ), (B2, τ)] ∈
B(l2(N)) an isometry, that can yield faster decay on the asymptotic incoherence as a power of N ; namely
we cannot, for any α > 1, have the decay

µ(P⊥NU), µ(UP⊥N ) = O

(
1

Nα

)
N →∞.

Finally, if we replace the basis Bw with Bbw, defined in Section 3.2, in the setup above and also replace the
constraint IJ,p by ε ∈ (0, 1/2], the same conclusions also hold.

Proof. Proposition 3.7 gives us the following bound, for some constants C1, C2 > 0, when ε ∈ IJ,p is
fixed11:

C1

N
≤ µ(πNU) ≤ C2

N
, N ∈ N.

Likewise Proposition 3.4 gives us the same bounds for µ(UπN ). Using these bounds we deduce (3.17), with
a change of the constants, since

C1

N + 1
≤ µ(πN+1U) ≤ µ(P⊥NU) = max

N ′≥N+1
µ(πN ′U) ≤ max

N ′≥N+1

C2

N ′
=

C2

N + 1
.

The statements about strong optimality follow from Lemma 2.11. Strongly optimality implies optimality,
and therefore the statement about not being able to improve the decay rate follows. Finally, the statement
about attaining the fastest decay rate for an isometry (up to powers of N ) follows from Theorem 2.14.

11When ε is fixed we need not worry about the condition N ≥ 1 + 2J+1ε−1 since we can just change the lower bound constant C1

to incorporate the finitely many positive terms µ(πNU) for N < 1 + 2J+1ε−1.
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4 1D Fourier-Polynomial Case
If (pn)n∈N denotes the standard Legendre polynomials on [−1, 1] (so pn(1) = 1) then the L2-normalised
Legendre polynomials are defined by p̃n =

√
n− 1/2 · pn and we write Bp := (p̃n)∞n=1 (the p here stands

for “polynomial” ). Bp is already ordered; call this the natural ordering . We do not consider any alternative
orderings and shall show shortly that the natural ordering is optimal with the Fourier basis.

Before we start covering the incoherences for these two bases we will first need to prove a preliminary
result.

Lemma 4.1. Let Jn denote the nth Bessel function of the first kind and let j′n,k denote the kth non-negative
root of J ′n. Furthermore, Let jn denote the nth spherical Bessel function of the first kind and let a′n,k denote
the kth non-negative root of j′n. Then if n ≥ 1 we have

sup
x∈R
|Jn(x)| = |Jn(j′n,1)|, sup

x∈R
|jn(x)| = |jn(a′n,1)|.

Proof. The result for Jn follows from the arguments given in [26, Section 15]. Instead of repeating them
here again, we instead adapt the same approach to deduce the Lemma for jn. We will be using two facts
about jn. First, we have the power series expansion [1, Eqn. (10.1.2)]

jn(x) =

∞∑
m=0

(−1)m2n+1(n+m+ 1)!xn+2m

m!(2(n+m+ 1))!
. (4.1)

Second, we shall use the fact that jn is a solution to the following differential equation [1, Eqn. (10.1.1)]

x2jn(x)′′ + 2xj′n(x) + (x2 − n(n+ 1))jn(x) = 0. (4.2)

We first observe that by (4.1), |jn(−x)| = |jn(x)|, ∀x ∈ R and so we need only consider supx∈[0,+∞) |jn(x)|.
(4.2) can be rephrased as (

x2j′n(x)
)′

= (n(n+ 1)− x2)jn(x).

Therefore, noting that by (4.1), jn(x) > 0 for x > 0 sufficiently small, we deduce that x2j′n(x) is positive
for x ∈ (0, n(n+ 1)] and hence so is j′n(x). This tells us that a′n,k > n(n+ 1) for all k ∈ N.

Now consider the function

Λn(x) := j2
n(x) +

x2j′2n (x)

x2 − n(n+ 1)
, x ∈ (n(n+ 1),+∞).

Observe that Λn(a′n,k) = j2
n(a′n,k) for all n, k ∈ N. Moreover the derivative is always negative for x >

n(n+ 1):

Λ′n(x) = 2j′n(x)jn(x) +
2xj′2n (x) + 2x2j′n(x)j′′n(x)

x2 − n(n+ 1)
− 2x3j′2n (x)

(x2 − n(n+ 1))2

=
2j′n(x)

(
jn(x)(x2 − n(n+ 1)) + xj′n(x) + x2j′′n(x)

)
x2 − n(n+ 1)

− 2x3j′2n (x)

(x2 − n(n+ 1))2

= − 2xj′2n (x)

x2 − n(n+ 1)
− 2x3j′2n (x)

(x2 − n(n+ 1))2
< 0. (using (4.2))

(4.3)

This tells that |jn(a′n,1)| > |jn(a′n,2)| > |jn(a′n,3)|.... To finish the proof we notice that by (4.1), jn(0) = 0
for n ≥ 1 and furthermore, by [1, Eqn. (10.1.14)],

jn(x) =
(−i)n

2

∫ 1

−1

eixtpn(t) dt,

and therefore jn(x) → 0 as x → +∞ by the Riemann-Lebesgue Lemma. We therefore know that the
maxima of |jn(x)| on [0,+∞) must be attained at its first stationary point.

Proposition 4.2. Let τ be the natural ordering of the Legendre polynomial basis andU = [(Bp, τ), (Bf(ε), ρ)]
for any ordering ρ of the Fourier basis Bf(ε). Then there are constants C1, C2 > 0 such that for all
ε ∈ (0, 0.45] and N ∈ N,

ε · C1

N2/3
≤ µ(πNU) ≤ ε · C2

N2/3
.
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Proof. Upper Bound: First notice that

Um,n = 〈ρ(n), p̃m〉L2([−1,1])

=
√
ε ·
√
m− 1/2

∫ 1

−1

e2πiλ◦ρ(n)εtpm(t) dt

= im−12
√
ε(m− 1/2) · jm−1(2πελ ◦ ρ(n))

= im−1

√
m− 1/2√
λ ◦ ρ(n)

· Jm−1/2(2πελ ◦ ρ(n)), (n 6= 1)

(4.4)

where on the third line we have used [1, Eqn. (10.1.14)] and on the fourth line we have used the following
formula connecting the spherical Bessel function to the standard Bessel function:

jm(z) =

√
π

2z
Jm+1/2(z). (4.5)

Therefore, we find
µ(πNU) ≤ 4ε(N − 1/2) sup

t∈R
j2
N−1(t). (4.6)

We therefore need to estimate supt∈R |jm(t)|. By Lemma 4.1, we know that supt∈R |jm(t)| = |jm(a′m,1)|
for m ≥ 1, where a′m,1 denotes the first positive root of j′m.

Thus, we only need to have estimates for |jm(a′m,1)|. But we also know [1, Eqn. (10.1.61)], that the
following asymptotic expansion holds

jm(a′m,1) ∼ γ(m+ 1/2)−5/6 +O((m+ 1/2)−3/2), (4.7)

for some positive constant 1/2 < γ < 1. Therefore we know there exists N ′ ∈ N such that for all N > N ′

we have
sup
x∈R
|jN (x)| ≤ (N + 1/2)−5/6.

Applying this bound to (4.6) we get the upper bound

µ(πNU) ≤ 4ε(N − 1/2) · (N − 1/2)−5/3

≤ 4ε

(N − 1/2)2/3
≤ 8ε

N2/3
.

Therefore the upper bound is complete for the case N > N ′ (and notice that N ′ is independent of ε).
However since supx∈R |jN (x)| < ∞ for every N we can use (4.6) to cover the case N ≤ N ′, completing
the upper bound.

Lower Bound: We focus on the following equation taken from (4.4)

|Um,n| =
√
m− 1/2√
|λ ◦ ρ(n)|

· |Jm−1/2(2πελ ◦ ρ(n))|, (n 6= 1). (4.8)

Let j′ν,1 denote the first positive zero of J ′ν . From [1, Eqns. (9.5.16), (9.5.20)], we have the asymptotic
estimates

j′ν,1 ∼ ν + ζν1/3 +O(ν−1/3), (4.9)

J(j′ν,1) ∼ κ · ν−1/3 +O(ν−1), (4.10)

where κ, ζ > 0 are some constants. Next let km denote the nearest integer multiple of 2πε to j′m−1/2,1,
which means that |km − j′m−1/2,1| ≤ πε. We shall first prove a lower bound for |Jm−1/2(km)|. Before we
do so, we need the following two results:

1. 2J ′ν(x) = Jν−1(x)− Jν+1(x), [26, p. 45],

2. supx∈R |Jν(x)| = |Jν(j′ν,1)|, using Lemma 4.1 .
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These two results can be combined to give us supx∈R |J ′′ν (x)| ≤ |Jν(j′ν,1)|, which we will use in (4.11)
below.

By the triangle inequality |Jm−1/2(km)| ≥ |Jm−1/2(j′m−1/2,1)| − |Jm−1/2(km) − Jm−1/2(j′m−1/2,1)|
and we bound the latter term by using integrals12:

|Jm−1/2(km)− Jm−1/2(j′m−1/2,1)| =

∣∣∣∣∣
∫ km

j′
m−1/2,1

J ′m−1/2,1(t) dt

∣∣∣∣∣
=

∣∣∣∣∣
∫ km

j′
m−1/2,1

∫ t

j′
m−1/2,1

J ′′m−1/2,1(u) du dt

∣∣∣∣∣
≤

∣∣∣∣∣
∫ km

j′
m−1/2,1

∫ t

j′
m−1/2,1

|Jm−1/2(j′m−1/2,1)| du dt

∣∣∣∣∣
≤
|j′m−1/2,1 − km|

2

2
· |Jm−1/2(j′m−1/2,1)|

≤ (πε)2

2
· |Jm−1/2(j′m−1/2,1)|.

(4.11)

Notice that there is a constant 1 > d > 0 such that for all ε ∈ (0, 0.45] we have (πε)2/2 ≤ d and therefore
(4.11) becomes

|Jm−1/2(km)− Jm−1/2(j′m−1/2,1)| ≤ d · |Jm−1/2(j′m−1/2,1)|,
and therefore we deduce

|Jm−1/2(km)| ≥ |Jm−1/2(j′m−1/2,1)| − |Jm−1/2(km)− Jm−1/2(j′m−1/2,1)|
≥ (1− d) · |Jm−1/2(j′m−1/2,1)|.

Combining this inequality with (4.9), (4.10) gives us the following bound:√
m− 1/2√
km

· |Jm−1/2(km)| ≥

√
j′m−1/2,1
√
km

·
√
m− 1/2√
j′m−1/2,1

· (1− d)|Jm−1/2(j′m−1/2,1)|

=

√
j′m−1/2,1
√
km

·
√
m− 1/2√

m− 1/2 +O(m1/3)
· (1− d)(κ(m− 1/2)−1/3 +O(m−1)).

The first two fractions on the last line converge to 1 as m → ∞ and therefore we deduce that there is an
M ∈ N and a constant C > 0 (independent of ε) such that for all m ≥M we have√

m− 1/2√
km

· |Jm−1/2(km)| ≥ Cm−1/3. (4.12)

Therefore, given m ≥M , let n(m) ∈ N be such that 2πελ ◦ ρ(n) = km. Then by (4.12) and (4.8) we have

|Um,n(m)| =
√

2πε ·
√
m− 1/2√
km

· |Jm−1/2(km)| ≥
√

2πε · Cm−1/3.

Consequently we deduce that µ(πNU) ≥ 2πε · C2m−2/3 for N ≥M .
For N ≤M we observe that from (4.4)

µ(πNU) = 4ε(N − 1/2) sup
n∈Z
|jN−1(2πεn)|2.

As before we observe that since jN−1(x)→ 0 as x→∞, the supremum supn∈Z |jN−1(2πεn)| is a contin-
uous function of ε and moreover the supremum converges to supx∈R |jN−1(x)| > 0 as ε→ 0. Therefore by
compactness of [0, 0.45], we know there is a constant DN > 0 such that for all ε ∈ (0, 0.45] we have

µ(πNU) = 4ε(N − 1/2) ·D2
N .

This combined with the result µ(πNU) ≥ 2πε·C2m−2/3 forN ≥M gives us the required lower bound.
12The use of the second integral is valid since J ′

m−1/2,1
(t) = J ′

m−1/2,1
(t)−J ′

m−1/2,1
(j′

m−1/2,1
) by the definition of j′

m−1/2,1
.
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Like in Section 3 we now prove an optimal incoherence result for when we swap around the two bases.

Proposition 4.3. Let ρ be any standard ordering of the Fourier basis Bf(ε) and U = [(Bf(ε), ρ), (Bp, τ)]
for any Legendre polynomial basis ordering τ . Then there is a constant C1 > 0 such that for all ε ∈ (0, 1/2]
and N ∈ N

µ(πNU) ≤ C1ε
1/3

N2/3
.

Furthermore, there is a constant C2 > 0 such that for all ε ∈ (0, 1/2] there exists an M(ε) ∈ N such that
for all N ≥M we have the bound

µ(πNU) ≥ C2ε
1/3

N2/3
.

Proof. Upper Bound: Without loss of generality we can assume τ is the natural ordering of Bp. Recall that
from (4.4) (with m,n swapped because the U in the theorem is the adjoint of the one in (4.4)) we have

|Um,n|2 =
n− 1/2

|λ ◦ ρ(m)|
J2
n−1/2(2πελ ◦ ρ(m)) (4.13)

= 4ε(n− 1/2)j2
n−1(2πελ ◦ ρ(m)). (4.14)

We shall first derive two useful bounds; notice that if we apply (4.7) to (4.14) then we get the bound, for
some constant β > 0,

|Um,n|2 ≤ 4ε(n− 1/2) · (β(n− 1/2)−5/6)2 ≤ 4εβ2(n− 1/2)−2/3. (4.15)

Secondly we shall use the following inequality from [20]

|Jν(x)| ≤ bν−1/3 ν > 0, x ∈ R, (4.16)

where b > 0 is some constant. Applying this to (4.13) gives the bound

|Um,n|2 ≤
n− 1/2

|λ ◦ ρ(m)|
(b(n− 1/2)−1/3)2 ≤ b2(n− 1/2)1/3

|λ ◦ ρ(m)|
. (4.17)

Recall that our goal is to estimate |Um,n| uniformly in n as m → ∞. We first apply the case n − 1/2 ≥
ε|λ ◦ ρ(m)| to (4.15) to give the bound

|Um,n|2 ≤ 4εβ2(ελ ◦ ρ(m))−2/3 ≤ 4β2ε1/3

|λ ◦ ρ(m)|2/3
.

For the other case n− 1/2 ≤ ε|λ ◦ ρ(m)| we use (4.17) to give the bound

|Um,n|2 ≤
b2(ε|λ ◦ ρ(m)|)1/3

|λ ◦ ρ(m)|
≤ b2ε1/3

|λ ◦ ρ(m)|2/3
=

b2ε1/322/3

(m− 1)2/3
,

which gives a global upper bound in terms of m ≥ 2 and ε ∈ (0, 1/2]. If m = 0, i.e. λ ◦ ρ(m) = 0, then
since jn(0) = 0 for n ≥ 1 (see (4.1)) we deduce that µ(π1U) = ε|j0(0)|2 = ε which is a stronger bound
than required.

Lower Bound: By (4.9) we know that

j′n+1/2,1 − j
′
n−1/2,1 → 1 as n→∞. (4.18)

With this in mind let n(m) ∈ N denote the nearest j′n−1/2,1 to |2πελ ◦ ρ(m)|. From (4.18) we observe

|j′n(m)−1/2,1 − |2πελ ◦ ρ(m)|| ≤ 1/2 + η(m, ε), (4.19)

where η is such that η(m, ε)→ 0 as m→∞ for any fixed ε. By using the same method as in (4.11) we find
that

|Jn(m)−1/2,1(j′n(m)−1/2,1)− Jn(m)−1/2,1(|2πλ ◦ ρ(m)|)|

≤
|j′n(m)−1/2,1 − |2πελ ◦ ρ(m)||2

2
· |Jn(m)−1/2,1(j′n(m)−1/2,1)|

≤ 2−1 · (2−1 + η(m, ε))2 · |Jn(m)−1/2,1(j′n(m)−1/2,1)|
= ξ(m, ε) · |Jn(m)−1/2,1(j′n(m)−1/2,1)|.

21



Where ξ(m, ε)→ 8−1 as m→∞ with ε fixed. This tells us that

|Jn(m)−1/2,1(2πλ ◦ ρ(m))| = |Jn(m)−1/2,1(2πλ ◦ ρ(m))|
≥ |Jn(m)−1/2,1(j′n(m)−1/2,1)| − |Jn(m)−1/2,1(j′n(m)−1/2,1)− Jn(m)−1/2,1(|2πλ ◦ ρ(m)|)|

≥ (1− ξ(m, ε))|Jn(m)−1/2,1(j′n(m)−1/2,1)|.

Combining this with (4.13) we see that, using (4.10),

|Um,n(m)|2 =
n(m)− 1/2

|λ ◦ ρ(m)|
|J2
n(m)−1/2(2πελ ◦ ρ(m))|

≥ n(m)− 1/2

|λ ◦ ρ(m)|
·
(

1− ξ(m, ε)
)2

· |Jn(m)−1/2,1(j′n(m)−1/2,1)|2

≥ n(m)− 1/2

|λ ◦ ρ(m)|
·
(

1− ξ(m, ε)
)2(

κ(n(m)− 1/2)−1/3 +O((n(m)− 1/2)−1)
)2
.

(4.20)

By (4.9), (4.19) and the fact that ρ is a standard ordering we know that (for ε fixed)

n(m)

|πεm|
→ 1, as m→∞.

Therefore we know that there is anM(ε) ∈ N and a constantC > 0 such that for allm ≥M and ε ∈ (0, 1/2]
we have

|Um,n(m)|2 ≥ C · ε1/3 ·m−2/3.

Consequently for N ≥M(ε) we have µ(πNU) ≥ C · ε1/3 ·m−2/3.

Summarising our results in this section, while throwing away ε dependence again, we get the following
theorem.

Theorem 4.4. Let the Fourier basis Bf(ε) be defined as in (3.1) and a Legendre polynomial basis Bp be
defined as in the start of this section with ε ∈ (0, 1/2]. Let ρ be a standard ordering of Bf(ε) and τ a natural
ordering of Bp and U = [(Bf(ε), ρ), (Bp, τ)]. Then, keeping ε ∈ (0, 0.45] fixed we have, for some constants
C1, C2 > 0 the decay

C1

N2/3
≤ µ(P⊥NU), µ(UP⊥N ),≤ C2

N2/3
, ∀N ∈ N. (4.21)

For either of the coherences µ(P⊥NU), µ(UP⊥N ), the decay cannot be improved by changing the orderings
ρ, τ , except up to alteration of the constants C1, C2 > 0. Furthermore, the ordering ρ is strongly optimal for
the basis pair (Bf(ε), Bp) and τ is strongly optimal for the basis pair (Bp, Bf(ε)).

Proof. We first observe that by Propositions 4.2 & 4.3 with ε fixed we have that, for some constantsC1, C2 >
0 and M ∈ N,

C1

N2/3
≤ µ(πNU), µ(UπN ),≤ C2

N2/3
, ∀N ≥M.

This can then be extended to all N ∈ N, with perhaps a change the constants C1, C2 > 0, by observing that
µ(πNU), µ(UπN ) for any N are strictly positive (and constant since we have fixed ε).

We therefore deduce strong optimality of ρ, τ and inequality (4.21) from Lemma 2.11.

5 Asymptotic Incoherence and Subsampling Strategies
We have shown that there is faster asymptotic incoherence for the Fourier-wavelet case than for the Fourier-
polynomial case, and therefore we know that the corresponding U -matrix structures are different. We shall
demonstrate how this difference is vital for choosing an effective sampling strategy.

Consider the problem of reconstructing the function f ∈ L2[−1, 1] from its samples {〈f, g〉 : g ∈
Bf(1/2)}, where f is defined as

f(x) = (1− cos(8πx)) · 1[0,1](x), x ∈ [−1, 1]. (5.1)
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The function f is reconstructed as follows: Let U := [(Bf(2
−1), ρ), (B2, τ)] for some orderings ρ, τ and

a reconstruction basis B2. The number 2−1 is present here to ensure the span of Bf contains L1[−1, 1]. It is
assumed that ρ is a standard ordering. Next let Ω ⊂ N denote the set of subsamples from Bf(2

−1) (indexed
by ρ), PΩ the projection operator onto Ω and f̂ := (〈f, ρ(m)〉)m∈N. We then attempt to approximate f by∑∞
n=1 x̃nτ(n) where x̃ ∈ `1(N) solves the optimisation problem

min
x∈`1(N)

‖x‖1 subject to PΩUx = PΩf̂ . (5.2)

Since the optimisation problem is infinite dimensional we cannot solve it numerically so instead we proceed
as in [2] and truncate the problem, approximating f by

∑R
n=1 x̃nτ(n) (forR ∈ N large) where x̃ = (x̃n)Rn=1

now solves the optimisation problem

min
x∈CR

‖x‖1 subject to PΩUPRx = PΩf̂ . (5.3)

We shall be using the SPGL1 package [5] to solve (5.3) numerically. We focus on two choices of recon-

Figure 3: Coefficients of f when decomposed into different reconstruction bases.
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(a) First 300 coefficients (using a leveled order-
ing) of f in a Daubechies4 boundary wavelet ex-
pansion with J=6.
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(b) First 100 coefficients (using a natural order-
ing) of f in a Legendre polynomial expansion.

struction bases:

1. B2 = Bbw with Daubechies4 boundary wavelets, τ is a leveled ordering.

2. B2 = Bp with Legendre polynomials, τ is a natural ordering.

The coefficients of the decomposition of f into these two bases is shown in Figure 3. The coefficients in the
polynomial expansion decay quickly, but there is little sparsity in the first 40 coefficients. On the other hand
in the wavelet expansion there is large number of zeros in the first block of coefficients. This, combined with
asymptotic incoherence, will enable us to subsample.

Figure 4: Two sampling patterns and their corresponding histograms.
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(a) Sampling Pattern A
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(b) Histogram for Pattern A
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(c) Sampling Pattern B
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(d) Histogram for Pattern B

We shall be looking at two simple subsamping patterns and how they perform for each reconstruction
basis. We shall be subsampling from the first 501 coefficients, and since the ordering ρ is standard this means
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that these coefficients correspond to

{λ ◦ ρ(m) : m = 1, · · · , 501} = {−250,−249, · · · , 249, 250}.

If we were to sample all the 501 coefficients then we would achieve a highly accurate reconstruction from
both bases13. We now consider two subsampling patterns, denoted as pattern A and pattern B which are
presented in Figure 4, and now try to use them to reconstruct in the bases Bbw, Bp. Pattern A takes all
its samples from the first 101 coefficients and there is very little subsampling in this range. On the other
hand pattern B takes around 50% of the samples from across the first 501 coefficients. Both patterns are
constructed by uniformly subsampling in levels.

Figure 5: Reconstructions from Pattern A (above) with errors (below).
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(b) Polynomial Reconstruction

Let us first consider what happens when we use subsampling pattern A, which is shown in Figure 5. We
first look at the wavelet reconstruction, which has an L1 error of 1.52 × 10−1. The reconstruction fails to
reconstruct the smoothness of f , with the first and fourth peaks being particularly jagged. Next consider the
polynomial reconstruction, which has an L1 error of 8.68 × 10−3. Since polynomials provide a relatively
good linear approximation to f , it is unsurprising that using a near full-sampling subsampling pattern for the
first 101 Fourier coefficients would give a reasonable reconstruction.

Next we turn to reconstructing f using sampling pattern B. Reconstructions are given in Figure 6. First
we look at the wavelet reconstruction which has anL1 error of 7.14×10−3. Since the wavelet basis expansion
of f is sparse and we have asymptotic incoherence, we see that we can obtain a good wavelet reconstruction
by subsampling roughly 50% of the 501 Fourier samples. Finally we consider the polynomial reconstruction,
with an L1 error of 7.29 × 10−1. Due to poor sparsity and slow asymptotic incoherence, subsampling fails
to be successful.

This therefore demonstrates that a subsampling pattern should not only be dependent on the function that
we are trying to reconstruct, but also on the reconstruction bases that we are using. We must stress here that
the ability to find two subsampling patterns, where each gives a better reconstruction in a different basis,
relies crucially on the different incoherence structures of the two reconstruction problems and not simply the
sparsity structure when decomposed into the two reconstruction bases; the same phenomenon can also be
demonstrated if we remove f completely and instead fix the sparsity structure (which means solving for a

13For all our reconstructions we will be using R = 1024.
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Figure 6: Reconstructions from Pattern B with errors.
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(b) Polynomial Reconstruction

fixed x̃ in our optimisation setup). Asymptotic incoherence not only facilitates subsampling but also allows
us to investigate the link between good subsampling patterns and reconstruction bases.
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