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Abstract

In this paper, we consider the problem of recovering a compactly-supported multivariate
function from a collection of pointwise samples of its Fourier transform taken nonuniformly.
We do this by using the concept of weighted Fourier frames. A seminal result of Beurling
shows that sample points give rise to a classical Fourier frame provided they are relatively
separated and of sufficient density. However, this result does not allow for arbitrary cluster-
ing of sample points, as is often the case in practice. Whilst keeping the density condition
sharp and dimension independent, our first result removes the separation condition and
shows that density alone suffices. However, this result does not lead to estimates for the
frame bounds. A known result of Gröchenig provides explicit estimates, but only subject
to a density condition that deteriorates linearly with dimension. In our second result we
improve these bounds by reducing this dimension dependence. In particular, we provide ex-
plicit frame bounds which are dimensionless for functions having compact support contained
in a sphere. Next, we demonstrate how our two main results give new insight into a recon-
struction algorithm – based on the existing generalized sampling framework – that allows
for stable and quasi-optimal reconstruction in any particular basis from a finite collection
of samples. Finally, we construct sufficiently dense sampling schemes that are often used
in practice – jittered, radial and spiral sampling schemes – and provide several examples
illustrating the effectiveness of our approach when tested on these schemes.

1 Introduction

The recovery of a compactly-supported function from pointwise measurements of its Fourier
transform – or equivalently, the recovery of a band-limited function from its direct samples –
has been the subject of comprehensive research during the past century, driven by numerous
practical applications ranging from Magnetic Resonance Imaging (MRI) to Computed Tomog-
raphy (CT), geophysical imaging, seismology and microscopy. In many of these applications,
the case when the data is acquired nonuniformly is of particular interest. For instance, MR
scanners often use spiral sampling geometries for fast data acquisition. Such sampling geome-
tries are often preferable because of the higher resolution obtained in the Fourier domain and
the lower magnetic gradients required to scan along such trajectories. Another important ex-
ample is radial (also known as polar) sampling of the Fourier transform, which is used in MRI,
as well as in applications where the Radon transform is involved in the sampling process; CT,
for instance. For examples of different sampling patterns used in applications see Figure 1.
Spurred by its practical importance, the past decades have witnessed the development of an ex-
tensive mathematical theory of nonuniform sampling, as evidenced by a vast body of literature.
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Figure 1: Different sampling schemes: (i) jittered sampling scheme, a standard model when the mea-
surements are not taken exactly on a uniform grid, often used MRI, seismology and geophysics [8, 37],
(ii) polar sampling scheme used in computed tomography [20], (iii) spiral and (iv) interleaving spiral
used in MRI [16]. All of them satisfy an appropriate (K, δE◦)-density condition (see Definition 3.4), for
E = [−1, 1]2, δE◦ < 0.25 and K = 4.

An inexhaustive list includes the books of Marvasti [37], Benedetto and Ferreira [12], Young
[50], Seip [44] and others, as well as many excellent articles; see [8, 10, 11, 21, 22, 28, 45] and
references therein.

In the case of Cartesian sampling, the celebrated Nyquist–Shannon theorem [47] guarantees
a full reconstruction of a compactly-supported signal from its Fourier measurements, provided
that the samples are taken equidistantly at a sufficiently large rate, equal to or exceeding the so-
called Nyquist rate. In other words, the samples must be taken uniformly and densely enough.
Nonuniform sampling is typically studied within the context of so-called Fourier frames. The
theory of Fourier frames was developed by Duffin and Shaeffer [17], more than half a century
ago, and its roots can be traced back to earlier works of Paley and Wiener [39] and Levinson [36].
In one dimension, there exists a near-complete characterization of Fourier frames in terms of
the density of underlying samples, due primarily to Beurling [13], Landau [35], Jaffard [32] and
Seip [43]. However, in higher dimensions, the situation becomes considerably more complicated
[11, 38]. Nevertheless, Beurling’s seminal paper [13] (see also [14]) provides a sharp sufficient
condition for sampling points in multiple dimensions to give rise to a Fourier frame. For a more
detailed review on the theory of Fourier frames and nonuniform sampling, see [11, 15].

1.1 Main results

A limitation of the results mentioned above is that they require a minimal separation between
the sampling points. In particular, clustering of sampling points deteriorates the associated
frame bounds, which leads to numerical instability. The main contribution of the first part
of this paper removes the minimal separation restriction whilst keeping the sharpness of the
result. Through the use of a weighted Fourier frame approach, based on Gröchenig’s earlier
work (see below), we adapt Beurling’s result to allow for arbitrary clustering of sampling points.
Specifically, we prove the following:

Theorem 1.1. Let H = {f ∈ L2(Rd) : supp(f) ⊆ E}, where E ⊆ Rd is compact, convex
and symmetric. If a countable set Ω ⊆ R̂d has density δE◦ < 1/4 (see Definition 2.1) then
there exist weights µω > 0 such that {√µωeω}ω∈Ω is a weighted Fourier frame for H, where
eω(x) = ei2πω·x1E(x). In other words, there exist constants A,B > 0 such that

∀f ∈ H\{0}, A‖f‖2 ≤
∑
ω∈Ω

µω|f̂(ω)|2 ≤ B‖f‖2.

In particular, it suffices to choose the weights {µω}ω∈Ω as the measures of Voronoi regions (see
Definition (2.4)) with respect to the |·|E◦ norm (see (2.3) and (2.4)).
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The 1/4 density condition given here is sharp: if a countable set Ω does not satisfy the
required density condition, then the associated family of weighted exponentials {√µωeω}ω∈Ω

does not have to give a weighted Fourier frame with the weights chosen as in Theorem 1.1.
This result has both theoretical and practical significance. First, it is interesting to address

the issue of arbitrary clustering, since it is natural to anticipate that adding more sampling
points should not impair the recovery of a function. Second, this scenario often arises in ap-
plications. For example, consider Fourier measurements acquired on a polar sampling scheme.
By increasing the number of radial lines along which samples are acquired, the sampling points
cluster at low frequencies, which deteriorates the frame bounds of the corresponding Fourier
frame. On the other hand, if we weight those points according to their relative densities, the
resulting weighted Fourier frame has controllable frame bounds.

Weighted Fourier frames, which we also refer to as weighted frames of exponentials, were
studied by Gröchenig [25], and later also by Gabardo [24]. In [25], Gröchenig presents a sufficient
density condition in order for a family of exponentials to constitute a weighted Fourier frame,
and provides explicit frame bounds. This density condition is sharp in dimension d = 1, but
fails to be sharp in higher dimensions, with the estimate on the density deteriorating linearly,
and the estimates on the frame bounds, exponentially in d. The multidimensional result has
been improved in [9], but under the assumption that the sampling set consists of a sequence
of uniformly distributed independent random variables. In this setting, Bass and Grochenig
provide rather probabilistic estimates.

Our work focuses on deterministic statements and provides two improvements of Gröchenig’s
result from [25]. First, as discussed above, in Theorem 1.1 we provide a density condition which
is both sharp and dimensionless. Unfortunately, however, this condition does not give rise to
explicit frame bounds. Therefore, in our second result we present explicit frame bounds under
a less stringent density condition than previously known:

Theorem 1.2. Let H = {f ∈ L2(Rd) : supp(f) ⊆ E}, where E ⊆ Rd is compact. Suppose that
|·|∗ is an arbitrary norm on Rd and c∗ > 0 is the smallest constant for which |·| ≤ c∗ |·|∗, where
|·| denotes the Euclidean norm. Let Ω ⊆ Rd be δ∗-dense (see Definition 2.1) with

δ∗ <
log(2)

2πmEc∗
, (1.1)

where mE = supx∈E |x|. Then {√µωeω}ω∈Ω is a weighted Fourier frame for H with the weights
defined as the measures of Voronoi regions with respect to norm |·|∗. The weighted Fourier frame
bounds A,B > 0 satisfy

√
A ≥ 2− exp(2πmEδ∗c

∗),
√
B ≤ exp(2πmEδ∗c

∗) < 2.

Taking |·|∗ = |·| for simplicity, where |·| is the Euclidean norm, we see that the key estimate
(1.1), which is a refinement of Gröchenig’s, deteriorates with dimension only for certain function
supports E. Specifically, it depends on the radius of the largest sphere in which E is contained.
In particular, (1.1) is dimensionless when a function has a compact support contained in the
unit Euclidean ball B1. In this case, Theorem 1.1 gives the sharp sufficient condition δ < 0.25
(where δ corresponds to the Euclidean norm) but without explicit frame bounds. On the other
hand, Theorem 1.2 provides explicit frame bounds under the slightly stronger, but dimension
independent, condition δ < log(2)

2π ≈ 0.11.
We note at this stage that, whilst Gröchenig was arguably the first to rigorously study

weighted Fourier frames in sampling, the use of weights is commonplace in MRI reconstructions,
where they are often referred to as ‘density compensation factors’ (see [16, 46] and references
therein). However, such approaches are often heuristic. Building on Gröchenig’s earlier work,
our results provide further mathematical sampling theory for their use.

In practice, one only has access to a finite number of samples. In the final part of this paper,
we consider a reconstruction algorithm for this problem, based on the generalized sampling (GS)
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framework introduced in [3] (see also [2, 4, 5, 6]). In particular, in Section 3, we give the third
main result of this paper, Theorem 3.5, which shows that stable, quasi-optimal reconstruction
is possible in any subspace T ⊆ H provided the samples satisfy the same density conditions
as in Theorems 1.1 and 1.2, and additionally, provided the samples possess a sufficiently large
bandwidth, in a sense we define later. Hence, we extend the analysis of the framework considered
in [1] – so-called nonuniform generalized sampling (NUGS) – to the multidimensional setting.
An important issue in higher dimensions is that of efficient implementation. As has been
already noted in [1], this is not the case with wavelet reconstruction bases, since then the
NUGS reconstruction can be computed efficiently by using nonuniform fast Fourier transforms
(NUFFTs) [23].

We also remark that our analog recovery model is the same as that used with great success in
the recent work of Guerquin-Kern, Haberlin, Pruessmann and Unser [29] on iterative, wavelet-
based reconstructions for MRI. Moreover, the popular iterative reconstruction algorithm of
Sutton, Noll and Fessler [46] for non-Cartesian MRI is a special case of NUGS based on a
digital signal model. The results we prove in this paper provide theoretical foundations for
the success of those algorithms. Moreover, our results also improve existing bounds for the
well-known ACT (Adaptive weights, Conjugate gradients, Toeplitz) algorithm in nonuniform
sampling [21, 22, 27, 28], which can also be viewed as a particular case of NUGS. For further
discussion, see §3.2 of this paper.

The remainder of this paper is organized as follows. In §2 we consider weighted Fourier
frames and the proofs of Theorems 1.1 and 1.2. We discuss the NUGS framework in §3, and
show stable and accurate recovery by using the results from §2. Next in §4 we construct several
popular sampling schemes so that they satisfy appropriate density conditions. Finally, we
illustrate our theoretical results in §5 with some numerical experiments.

2 Weighted frames of exponentials

2.1 Background material and preliminaries

Let
H =

{
f ∈ L2(Rd) : supp(f) ⊆ E

}
be the Hilbert space of square-integrable functions supported on a compact set E ⊆ Rd, with
the standard L2-norm ‖·‖ and L2-inner product 〈·, ·〉. The d-dimensional Euclidean vector space
is denoted by Rd, and, following a standard convention, R̂d is used whenever Rd is considered
as a frequency domain. For f ∈ H, the Fourier transform is defined by

f̂(ω) =

∫
E
f(x)e−i2πω·x dx, ω ∈ R̂d,

where · stands for Euclidean inner product. We also use the following notation

eω(x) = ei2πω·x1E(x), (2.1)

where 1E is the indicator function of the set E. Note that f̂(ω) = 〈f, eω〉.
Let |·|∗ denote an arbitrary norm on Rd. Note that for every such norm the set {x ∈ Rd :

|x|∗ ≤ 1} is convex, compact and symmetric. Moreover, all norms on a finite dimensional space
are equivalent to the Euclidean norm, which we denote simply by |·|. Hence, by c∗, c

∗ > 0, we
denote the sharp constants for which

∀x ∈ Rd, c∗|x|∗ ≤ |x| ≤ c∗|x|∗. (2.2)

Conversely, if E ⊆ Rd is a compact, convex and symmetric set, the function |·|E : Rd → R
defined by

∀x ∈ Rd, |x|E = inf{a > 0 : x ∈ aE}, (2.3)
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is a norm on Rd [11]. Here, E is the unit ball with the respect to the norm |·|E , i.e.

E = {x ∈ Rd : |x|E ≤ 1}.

Also, for such set E ⊆ Rd, its polar set is defined as

E◦ = {ŷ ∈ R̂d : ∀x ∈ E, x · ŷ ≤ 1}. (2.4)

Note that E◦ is itself a convex, compact and symmetric set in R̂d, which is the unit ball with
respect to the norm |·|E◦ . Also observe that, if E is the unit ball in the Euclidean norm, which
we denote by B1, then B1 = B◦1 and |·|B1 = |·|B◦1 = |·|.

Throughout the paper, we denote `p norm by |·|p, i.e. for x ∈ Rd, |x|p =
(∑d

j=1 |xj |p
)1/p

.

Hence |·|2 = |·|B1 = |·|. Also, we recall the well-know inequality

∀x ∈ Rd, |x|q ≤ |x|r ≤ d1/r−1/q|x|q, q > r > 0. (2.5)

Now, let Ω ⊆ R̂d be a countable set of sampling points, which we also refer to as a sampling
scheme. The set Ω is said to be separated if there exists a constant η > 0 such that

∀ω, λ ∈ Ω, ω 6= λ, |ω − λ| ≥ η,

and it is relatively separated if it is a finite union of separated sets. It is clear that, if Ω is
separated in Euclidean metric then it is separated in any metric on R̂d and vice-versa.

Next, we introduce the crucial notion of density of a countable set Ω ⊆ R̂d. This definition
originates in Beurling’s work [13] and it is used frequently in multidimensional nonuniform
sampling literature.

Definition 2.1. Let Ω be a sampling scheme contained in a closed, simply connected set Y ⊆ R̂d
with 0 in its interior. Let |·|∗ be an arbitrary norm on Rd, and let δ∗ ∈ (0, 1/4). We say that Ω
is δ∗-dense in the domain Y if

δ∗ = sup
ŷ∈Y

inf
ω∈Ω
|ω − ŷ|∗.

If |·|∗ = |·|E for a compact, convex and symmetric set E, then we write δE. Also, to emphasise
the sampling scheme, where necessary we use notation δ∗(Ω).

Note that the δ∗-density condition from the Definition 2.1 is equivalent to the δ∗-covering
condition: there exists δ∗ ∈ (0, 1/4) such that for all ρ ≥ δ∗ it holds that

Y ⊆
⋃
ω∈Ω

{
x ∈ Rd : |x− ω|∗ ≤ ρ

}
.

Before we define weighted frames, let us discuss the classical frames of exponentials. A
countable family of functions {eω}ω∈Ω ⊆ H is said to be a Fourier frame for H if there exist
constants A,B > 0 such that

∀f ∈ H\{0}, A‖f‖2 ≤
∑
ω∈Ω

|f̂(ω)|2 ≤ B‖f‖2. (2.6)

The constants A and B are called upper and lower frame bounds, respectively. If {eω}ω∈Ω is
the frame, then the frame operator S : H→ H is defined by

∀f ∈ H, S : f 7→ Sf =
∑
ω∈Ω

f̂(ω)eω. (2.7)
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Since the inequality (2.6) holds, the frame operator S is a topological isomorphism with the
inverse S−1 : H→ H, and also

∀f ∈ H, f =
∑
ω∈Ω

〈S−1f, eω〉eω. (2.8)

Formula (2.8), with the appropriately truncated sum, is sometimes used for signal reconstruction
[11]. However, for the types of sets Ω considered in practice, finding the inverse frame operator
S−1 is often a nontrivial task. Typically, this renders such an approach infeasible in more than
one dimension.

If the relation (2.6) holds with A = B, the family {eω}ω∈Ω is called a tight frame, and
if A = B = 1, this family forms an orthonormal basis for H. In these cases, the relation
(2.6) is known as (generalized) Parseval’s equality. Also, then the frame operator becomes
S = AI, where I is the identity operator on H, and the formula (2.8) represents the Fourier
series of f . Moreover, the appropriately truncated Fourier series converges to f on H. This
leads to a considerably simpler framework in the case when the samples are acquired uniformly,
corresponding to an orthonormal basis or a tight frame for H.

In [13], Beurling provides a sufficient density condition for a nonuniform set of sampling
points to give a Fourier frame for H consisting of functions supported on the unit sphere in the
Euclidean norm. In what follows, we use a variation of Beurling’s result given by Benedetto
& Wu in [11] (see also the work by Olevskii & Ulanovskii [38]) which is a generalization to
arbitrary convex, compact and symmetric domains:

Theorem 2.2. Let E ⊆ Rd be compact, convex and symmetric set. If Ω ⊆ R̂d is relatively
separated and δE◦-dense in the domain Y = R̂d with δE◦ < 1/4, then {eω}ω∈Ω is a Fourier
frame for H.

Beurling [13] also shows that this result is sharp in the sense that there exists a countable
set with the density δE◦ = 1/4, where E is the unit ball in the Euclidean metric, which does
not satisfy the lower frame condition in (2.6) (see also [38, Prop. 4.1]).

Now we define weighted frames of exponentials:

Definition 2.3. A countable family of functions {√µωeω}ω∈Ω is a weighted Fourier frame for
H, with weights {µω}ω∈Ω, µω > 0, if there exist constants A,B > 0 such that

∀f ∈ H\{0}, A‖f‖2 ≤
∑
ω∈Ω

µω|f̂(ω)|2 ≤ B‖f‖2. (2.9)

For a weighted Fourier frame {√µωeω}ω∈Ω let us introduce the weighted Fourier frame
operator :

S : H→ H, f 7→ Sf =
∑
ω∈Ω

µωf̂(ω)eω. (2.10)

In view of the relation (2.9), we conclude that the weighted frame operator satisfies

∀f ∈ H\{0}, A‖f‖2 ≤ 〈Sf, f〉 ≤ B‖f‖2.

As discussed, the use of weights is to compensate for arbitrary clustering in Ω. In order to
define appropriate weights {µω}ω∈Ω corresponding to the sampling scheme Ω, in this paper, we
use measures of Voronoi regions. This is a standard practice in nonuniform sampling [8, 41].

Definition 2.4. Let Ω be a set of distinct points in Y ⊆ R̂d and let |·|∗ be an arbitrary norm
on Rd. The Voronoi region at ω ∈ Ω, with respect to the norm |·|∗ and in the domain Y , is
given by

V ∗ω = {ŷ ∈ Y : ∀λ ∈ Ω, λ 6= ω, |ω − ŷ|∗ ≤ |λ− ŷ|∗} .
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The Lebesgue measure of the Voronoi region V ∗ω we denote as

meas (V ∗ω ) =

∫
Y

1V ∗ω (ŷ) dŷ.

In [25], Gröchenig provides explicit frame bounds for weighted Fourier frames, provided the
sample points Ω are sufficiently dense. In one dimension, the condition on the density is sharp,
i.e sampling points with density such that δ < 1/4 give rise to a weighted Fourier frame, but
sets of points with lower density (i.e. bigger delta) do not necessarily yield a weighted Fourier
frame. However, the sharpness of the result is lost in higher dimensions.

Here we state Gröchenig’s multidimensional result [27, Prop. 7.3], which is a more recent
reformulation of [25, Thm. 5]:

Theorem 2.5. Let H = {f ∈ L2(Rd) : supp(f) ⊆ E}, where E = [−1, 1]d. If Ω ⊆ R̂d is a
δB1-dense set of distinct points such that

δB1 <
log(2)

2πd
, (2.11)

then {√µωeω}ω∈Ω is a weighted Fourier frame for H, where the weights are defined as measures
of the Voronoi regions of the points Ω with respect to Euclidean norm. The weighted frame
bounds A,B > 0 satisfy

√
A ≥ 2− e2πδB1d,

√
B ≤ e2πδB1d < 2.

Note that the bound (2.11) deteriorates linearly with the dimension d. Also, E can be
any rectangular domain of the form

∏d
i=1[−si, si], since supp(f) ⊆

∏d
i=1[−si, si] implies that

f̃(x) = f(x1/s1, . . . , xd/sd) has support in [−1, 1]d. Hence, the result is stated for E = [−1, 1]d

without loss of generality [27]. Moreover note that, E may also be any compact set that is a
subset of [−1, 1]d such as any `p unit ball, p > 0, for example.

2.2 Weighted Fourier frames with explicit frame bounds and the proof of
Theorem 1.2

Much like Beurling’s result, Theorem 2.2, it is expected that the density condition for weighted
Fourier frames given in Theorem 2.5 does not depend on dimension. Unfortunately, Gröchenig’s
estimates deteriorate linearly with the dimension d, and thus cease to be sharp. Therefore, in
Theorem 1.2 we provide an modification of Gröchenig’s result by presenting explicit bounds
with slower, and sometimes no deterioration with respect to dimension.

The estimates in Theorem 1.2 are presented in terms of the following quantity

mE = sup
x∈E
|x|, (2.12)

where E ⊆ Rd and |·| is Euclidean norm. Note that mB1 = 1 and therefore it is independent of
dimension for spheres. Moreover, if E is the `p unit ball, i.e. E = {x : Rd : |x|p ≤ 1}, p > 0,
then

mE = max{1, d1/2−1/p}, (2.13)

due to inequality (2.5).
Let us recall here the multinomial formula. For any k ∈ N0 and x ∈ Rd, we have∑

|α|1=k

k!

α!
xα = (x1 + · · ·+ xd)

k, (2.14)
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where α = (α1, . . . , αd), |α|1 = |α1|+ . . .+ |αd|, α! =
∏d
j=1 αj ! and xα =

∏d
j=1 x

αj
j . Regarding

the multi-index notation, in what follows, we also use the derivative operator defined as

Dα =
∂|α|1

∂α1
x1 · · · ∂

αd
xd

.

Now we are ready to give prove our main result for weighted Fourier frames with explicit
bounds, namely Theorem 1.2.

Proof of Theorem 1.2. The proof is set up in the same manner as the proof of Gröchenig’s
original result, Theorem 2.5. For a function f ∈ H\{0}, define

χ(ŷ) =
∑
ω∈Ω

f̂(ω)1V ∗ω (ŷ), ŷ ∈ R̂d.

Since the sets V ∗ω , ω ∈ Ω, make disjoint partition of R̂d, it holds that

‖χ‖ =

√∑
ω∈Ω

µω|f̂(ω)|2,

where µω = meas(V ∗ω ). Note that

‖f‖ − ‖f̂ − χ‖ ≤ ‖χ‖ ≤ ‖f̂ − χ‖+ ‖f‖. (2.15)

Hence, we aim to estimate ‖f̂ −χ‖. Again, by using properties of Voronoi regions, it is possible
to conclude

‖f̂ − χ‖ =

√∑
ω∈Ω

∫
V ∗ω

|f̂(ŷ)− f̂(ω)|2 dŷ.

In order to estimate |f̂(ŷ) − f̂(ω)|2, for all ω ∈ Ω and all ŷ ∈ V ∗ω , Taylor’s expansion of f̂ –
which is an entire function – is used. Therefore, by the Cauchy–Schwarz inequality we get

|f̂(ŷ)− f̂(ω)|2 ≤

∑
α 6=0

|(ŷ − ω)α|
α!

|Dαf̂(ŷ)|

2

≤
∑
α 6=0

c|α|1(ŷ − ω)2α

α!

∑
α 6=0

c−|α|1

α!
|Dαf̂(ŷ)|2, (2.16)

for some constant c > 0 to be determined later. The inequality (2.16) is where this proof starts
to differ from Gröchenig’s original proof. For the first term in (2.16), by the multinomial formula
(2.14) we get∑
α 6=0

c|α|1(ŷ − ω)2α

α!
=

∞∑
k=0

ck

k!

∑
|α|1=k

k!

α!
(ŷ − ω)2α − 1 =

∞∑
k=0

ck

k!
|ŷ − ω|2k − 1 ≤ exp(c(δ∗c

∗)2)− 1,

where in the final inequality δ∗-density of the set Ω is used:

∀ω ∈ Ω, ∀ŷ ∈ V ∗ω , |ŷ − ω| ≤ δ∗c∗.

Now consider the other term in (2.16). If we integrate over the Voronoi region V ∗ω and sum over
ω ∈ Ω then∑

α 6=0

c−|α|1

α!

∑
ω∈Ω

∫
V ∗ω

|Dαf̂(ŷ)|2 dŷ =

∞∑
k=1

c−k

k!

∑
|α|1=k

k!

α!
‖Dαf̂‖2

=

∞∑
k=1

c−k

k!

∫
E

∑
|α|1=k

k!

α!
(2πx)2α|f(x)|2 dx,
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since by Parseval’s identity

‖Dαf̂‖2 = ‖F̂‖2 = ‖F‖2 =

∫
E

(2πx)2α|f(x)|2 dx,

where F (x) = (−i2πx)αf(x). Hence, again by the multinomial formula (2.14), we obtain

∑
α6=0

c−|α|1

α!

∑
ω∈Ω

∫
V ∗ω

|Dαf̂(ŷ)|2 dŷ =
∞∑
k=1

c−k(2πmE)2k

k!
‖f‖2 =

(
exp((2πmE)2/c)− 1

)
‖f‖2.

Therefore, from (2.16), we get

‖f̂ − χ‖2 ≤
(
exp(c(δ∗c

∗)2)− 1
) (

exp((2πmE)2/c)− 1
)
‖f‖2.

If we equate the two terms, then we set c = 2πmE/(δ∗c
∗) to get

‖f̂ − χ‖ ≤ (exp(2πmEδ∗c
∗)− 1) ‖f‖.

Thus (2.15) now gives

√
B ≤ exp(2πmEδ∗c

∗),
√
A ≥ 2− exp(2πmEδ∗c

∗),

with the condition that

δ∗ <
log(2)

2πmEc∗
,

as required.

To illustrate this result, let E = {x ∈ Rd : |x|p ≤ 1}, p > 0, and let |·|∗ be the `q norm,
q ≥ 1. Then, the density condition (1.1) becomes

δq <
log(2)

2πmax{1, d1/2−1/p}max{1, d1/2−1/q}
, (2.17)

due to (2.5) and (2.13). This bound attains minimum for p = q = ∞, when it deteriorates
linearly with the dimension d. However, in all other cases the deterioration of the bound on
density, and also, the deterioration of weighted frame bounds estimations, is slower with the
dimension. Moreover, they are independent of dimension whenever p ≤ 2 and q ≤ 2.

To compare this theorem with Gröchenig result given in Theorem 1.2, we set p = ∞ and
q = 2 in (2.17). The bound (2.17) gives δ2 <

log(2)

2π
√
d
, whereas (2.11) gives δ2 <

log(2)
2πd . Hence

Theorem 1.2 leads to an improvement by a factor of
√
d and no deterioration in the constant

log(2)
2π .

2.3 Sharp sufficient condition for weighted Fourier frames and the proof of
Theorem 1.1

The relative separation of a sampling set Ω is necessary and sufficient for the existence of an
upper frame bound [50, Thm. 2.17], see also [32]. However, if we introduce appropriate weights
{µω}ω∈Ω to compensate for the clustering of the sampling points Ω, and consider {√µωeω}ω∈Ω

instead of {eω}ω∈Ω, then this condition ceases to be necessary, as it is evident from Grochenig’s
Theorem 2.5 and the improved result given in Theorem 1.2. On the other hand, in order to
have a lower weighted frame bound, the condition on density from Theorem 1.2 is still far from
being sharp. To mitigate this, we next establish Theorem 1.1.

Without imposing restrictions such as separation, Theorem 1.1 gives sufficient condition on
a density of set of points to yield a weighted Fourier frame, which is dimension independent.
Therefore, in all dimensions, once this density condition is fulfilled, the sampling points are
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allowed to cluster arbitrarily, as long as the appropriate weights are used. Moreover, this
result is sharp, as can be seen by following the same arguments which lead to the sharpness of
Beurling’s result (Theorem 2.2).

Note that, in this theorem, as well as in Beurling’s Theorem 2.2, it is required that E is
compact, convex and symmetric. This is due to a characterization of Paley-Wiener spaces that
holds for such sets E (see [38, Thm. A]).

In order to prove Theorem 1.1, we need the following lemma.

Lemma 2.6. If Ω is a sequence with the density δE◦(Ω) < 1/4 in R̂d, then there exists a
subsequence Ω̃ ⊆ Ω which is η−separated for some η > 0, and also has density δE◦(Ω̃) < 1/4 in
R̂d.

Proof. To begin with, we introduce some notation. For the set E, we define E(0, 1) = S,
E(0, r) = rE and E(x, r) = x+ rE. Here, for δE◦ , we simply write δ.

Let us choose ε > 0 such that δ + ε/2 < 1/4 and set δ1 = δ + ε. Now define Ω̃ inductively
as follows. For arbitrary picked point ω0 ∈ Ω, set ω̃0 = ω0. Given ω̃0, . . . , ω̃N , define ω̃N+1 by

ω̃N+1 ∈ Ω ∩ E◦(x, δ),

where

x ∈ ∂G = ∂

 ⋃
ω̃n∈Ω̃N

E◦ (ω̃n, δ1)

 and Ω̃N = {ω̃n}Nn=0.

Here, we picked any x ∈ ∂G and then, for that x, any ω̃N+1 ∈ Ω ∩ E◦(x, δ). Finally, we let
Ω̃ = {ω̃n}∞n=0.

Note that for any x ∈ R̂d there must exist a point ω ∈ Ω in the set E◦(x, δ) such that x is
covered by E◦(ω, δ), since Ω is δ−dense in the norm |·|E◦ and R̂d can be covered by the sets
E◦(ω, δ), ω ∈ Ω. Moreover, for every x ∈ ∂G, every ω ∈ Ω ∩ E◦(x, δ) must be different than
any other ω ∈ Ω̃N , since δ < δ1. Also, note that for every such ω ∈ Ω ∩ E◦(x, δ) it holds that

ε = δ1 − δ ≤ inf
ω̃n∈Ω̃N

|ω − ω̃n|E◦ ≤ δ1 + δ = 2δ + ε.

Therefore if we choose ω̃N+1 from Ω ∩ E◦(x, δ) arbitrarily, and continue the procedure until
G = R̂d, by the construction, Ω̃ is δ̃-dense in the norm |·|E◦ where δ̃ = (2δ + ε)/2 < 1/4. Also,
it is ε-separated in the norm |·|E◦ , and therefore, it is η-separated in the Euclidean norm for
some η(ε) > 0.

Proof of Theorem 1.1. First of all, Gröchenig’s result gives the explicit upper bound B (Theo-
rem 2.5). Note that the upper bound B in Theorem 1.2 improves the dimension dependence of
the bound given by the original Gröchenig’s result.

For the lower bound, we note that if Ω is separated, then everything follows easily. If we
denote the volume, i.e. the measure of the ball Bη/2 by meas(Bη/2), since Ω is separated with
the separation η > 0, we get∑

ω∈Ω

µω|f̂(ω)|2 ≥ meas(Bη/2)
∑
ω∈Ω

|f̂(ω)|2 ≥ meas(Bη/2)A′‖f‖2,

where A′ > 0 comes from application of Theorem 2.2. Thus we take A = meas(Bη/2)A′ ∼
(η/2)dA′.

However, if Ω is not separated, we proceed as follows. By Lemma 2.6, we know that there
exists a subsequence Ω̃ ⊆ Ω with density δE◦(Ω̃) < 1/4 and separation η > 0. Let ε < η/2.
Then ∑

ω∈Ω

µω|f̂(ω)|2 ≥
∑
ω̃∈Ω̃

∑
ω∈Bε(ω̃)∩Ω

µω|f̂(ω)|2.
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Since f̂ is continuous function, from the Extreme value theorem, for each ω̃, we know there is
a point zω̃ ∈ Bε(ω̃) = Bε(ω̃), such that

∀ω ∈ Bε(ω̃), |f̂(ω)| ≥ |f̂(zω̃)|.

Since also µω = meas
(
V E◦
ω

)
and the sets V E◦

ω are disjoint, we get

∑
ω∈Ω

µω|f̂(ω)|2 ≥
∑
ω̃∈Ω̃

|f̂(zω̃)|2
∑

ω∈Bε(ω̃)∩Ω

µω

 =
∑
ω̃∈Ω̃

|f̂(ω̃)|2meas

 ⋃
ω∈Bε(ω̃)∩Ω

V E◦
ω

 .

Now we claim the following: ⋃
ω∈Bε(ω̃)∩Ω

V E◦
ω ⊇ Bρ(ω̃), ρ =

ε

2

c1

c2
.

where 0 < c1 ≤ c2 <∞ are the constants such that

∀x ∈ Rd, c1 |x|E◦ ≤ |x| ≤ c2 |x|E◦ . (2.18)

To see this, let |ŷ − ω̃| ≤ ε
2
c1
c2

. Since ŷ ∈ V E◦
ω for some ω ∈ Ω, we have |ŷ − ω|E◦ ≤ |ŷ − ω̃|E◦ .

Therefore
|ŷ − ω| ≤ c2

c1
|ŷ − ω̃| ≤ ε

2
,

and hence
|ω − ω̃| ≤ |ŷ − ω|+ |ŷ − ω̃| ≤ ε.

Thus ω ∈ Bε(ω̃) ∩ Ω as required. Therefore, we get∑
ω∈Ω

µω|f̂(ω)|2 ≥ meas(Bρ)
∑
ω̄∈Ω̄

|f̂(ω̄)|2,

where Ω̄ = {zω̃ : ω̃ ∈ Ω̃}. To complete the proof, we only need to show that the set Ω̄ is
separated and sufficiently dense, so that we can apply the Theorem 2.2. Consider ω̄1 and ω̄2.
Then we clearly have

|ω̄1 − ω̄2| ≥ η − 2ε > 0,

since Ω̃ is separated with the separation η and the ω̄’s lie in the ε-cover of this set. Moreover,
it is straightforward to see that

δE◦(Ω̄) ≤ δE◦(Ω̃) +
ε

c1
.

Thus, since δE◦(Ω̃) < 1/4, we have the same for Ω̄ for sufficiently small ε > 0. We set A =
meas(Bρ)A′, where A′ > 0 is as in Theorem 2.2, and finish the proof.

Remark 2.7 From the proof of Theorem 1.1, we can conclude the following. If Ω has density
δE◦ < 1/4, it yields a weighted Fourier frame with the lower weighted Fourier frame bound of
the form

A = meas(Bρ)A′, ρ =
ε

2

c1

c2
,

where A′ > 0 is the lower Fourier frame bound from Beurling’s result (Theorem 2.2), the
constants c1, c2 > 0 relate |·|E◦ to the Euclidean norm by (2.18) and the constant ε > 0 is such
that ε < η/2, where η > 0 is the separation of a subsequence Ω̃ ⊆ Ω with the same density
δE◦ < 1/4. However, this does not in general have an explicit estimate of A since we typically
do not know an explicit estimate of A′. On the other hand, the upper weighted Fourier frame
bound B is explicitly estimated by Theorem 1.2.
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To end this section, in order to illustrate differences between classical and weighted Fourier
frames, as well as different uses of previously given results, let us consider the following two-
dimensional example.

Example 2.8 Let E = B1 ⊆ R2 and let

Λ1 = 1
8Z

2, Λ2 =

{(
1

n
,

1

m

)
: (n,m) ∈ Z2,min {|n|, |m|} > 8

}
.

Note that, for such E, E◦ = B1 and therefore the E◦-norm is the Euclidean norm |·|.
The set of points Λ1 is separated with the density

δB1(Λ1) =

√
2

16
≈ 0.0884 <

1

4
.

Therefore, by Theorem 2.2, we conclude the family of functions {eλ}λ∈Λ1 is a frame for L2(B1).
However, if we now consider the set

Ω = Λ1 ∪ Λ2,

for which δB1(Ω) = δB1(Λ1) =
√

2/16, Theorem 2.2 can not be used since Ω has infinitely many
accumulation points at

{0} ∪
{(

1

n
, 0

)
: n ∈ Z, |n| > 8

}
∪
{(

(0,
1

m

)
: m ∈ Z, |m| > 8

}
,

and therefore it is not separated. Moreover, it can be verified that the family {eω}ω∈Ω fails in
satisfying the right inequality of (2.6). To see this, we first note that∫

B1
e−2πiω·x dx =

J1(2π|ω|)
|ω|

,

where J1 is the Bessel function of the first kind and order 1. Therefore, there exists c > 0 such
that

c ≤
∣∣∣∣∫
B1

e−2πi( 1
n
x1+ 1

m
x2) dx1 dx2

∣∣∣∣2 ≤ π2, (2.19)

for all (n,m) ∈ Z2 such that
√

1/n2 + 1/m2 < aj′1,1/(2π) ≈ 0.6098, where a is some fixed
constant from the interval (0, 1) and j′1,1 is the first positive zero of the function J1. Hence,

it is enough to take the function g(x) = 1B1(x) for which ‖g‖2 = π, whereas
∑

ω∈Ω |ĝ(ω)|2 is
unbounded. Thus, we conclude that the set Ω does not give a Fourier frame.

On the other hand, if, for the same set of points Ω = Λ1 ∪ Λ2, we consider the weighted
family {√µωeω}ω∈Ω with the weights defined as Voronoi regions in `2-norm, this particular
function g satisfies the relation (2.9) with some 0 < A,B < ∞. This can be easily proved by
using the inequalities (2.19), and the fact that

∞∑
n=9

∞∑
m=9

(
1

n− 1
− 1

n+ 1

)(
1

m− 1
− 1

m+ 1

)
=

(
17

72

)2

.

which implies that the sum of Voronoi regions corresponding to the points Λ2 converges. More-
over, since δB1(Ω) =

√
2/16, by Theorem 1.1 we conclude that Ω gives rise to a weighted Fourier

frame.
Also, note that, in order to verify that Ω forms a weighted Fourier frame, Gröchenig’s original

result could not be used since

δB1(Ω) =

√
2

16
>

log(2)

4π
≈ 0.0552.
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However, since in this case mE = 1 and c∗ = 1 and since

δB1(Ω) =

√
2

16
<

log(2)

2π
≈ 0.1103,

we are able to use Theorem 1.2 to conclude that Ω generates a weighted Fourier frame with the
weighted Fourier frame bounds

√
A ≥ 0.2574 and

√
B ≤ 1.7426.

3 Multidimensional function recovery

Having provided guarantees for samples to give rise to weighted Fourier frames, we now consider
the question of function recovery. To do so, we shall use the generalized sampling approach
for nonuniform samples (NUGS) from [1]. As in [1], let Ω ⊆ R̂d be a countable set of distinct
frequencies, i.e. the sampling scheme, not necessarily taken on the Cartesian grid, and let T ⊆ H
be a finite-dimensional subspace; the so-called reconstruction space. Given that data {f̂(ω)}ω∈Ω

of an unknown function f ∈ H, NUGS provides a reconstruction, i.e. a mapping F : f 7→ f̃
depending on the given samples only, that satisfies the following two properties:

(i) F is quasi-optimal : there exists a constant µ = µ(F )�∞ such that

∀f ∈ H, ‖f − F (f)‖ ≤ µ‖f − PTf‖,

where PT denotes the orthogonal projection on T.

(ii) F is numerically stable: there exists a constant κ = κ(F )�∞ such that

∀g ∈ H, ‖F (g)‖ ≤ κ‖g‖.

As discussed in [1], the main feature of this approach is that it allows for arbitrary reconstruc-
tion subspaces T. In particular, the quality of the reconstruction is not determined by the
approximation properties of the sampling frame, but rather those of T, which can be chosen
according to the function f to be recovered. Often in practice, T may consist of wavelets since
it is well-known that multidimensional images in applications such as MRI and CT are well
represented using wavelets [49]. Quasi-optimality guarantees that the good intrinsic approxi-
mation properties of T are inherited by the reconstruction F (f). Stability, on the other hand,
is vital when dealing with noisy measurements.

3.1 NUGS framework

For convenience, here we recall the NUGS framework of [1] in more detail, and in particular,
the construction of F . We commence with the definition of an admissible sampling operator:

Definition 3.1 (Admissible sampling operator). Let Ω be a sampling scheme, S : H → H a
linear operator and let T be a finite-dimensional subspace of H. Suppose that S satisfies:

(i) for each f ∈ H, Sf depends only on the sampling data {f̂(ω)}ω∈Ω,

(ii) S is self-adjoint with respect to 〈·, ·〉 and

∀f, g ∈ H, |〈Sf, g〉|2 ≤ 〈Sf, f〉〈Sg, g〉,

(iii) there exists a positive constant C1 = C1(Ω,T) such that

∀f ∈ T, 〈Sf, f〉 ≥ C1‖f‖2. (3.1)
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Then S is said to be an admissible sampling operator for (Ω,T).

For convenience, we shall assume that C1 is the largest constant for which (3.1) holds. Given
such an operator S, we can also define the constant C2 = C2(Ω) by

∀f ∈ H, 〈Sf, f〉 ≤ C2‖f‖2. (3.2)

Likewise, we assume this constant is the smallest possible. Note that C2 exists since S is linear,
and therefore bounded.

Following [1], given a sampling scheme Ω, a finite-dimensional subspace T and an admissible
sampling operator S for the pair (Ω,T), we define the NUGS reconstruction f̃ ∈ T by

∀g ∈ T, 〈S f̃ , g〉 = 〈Sf, g〉, (3.3)

and write F = FΩ,T for the mapping f 7→ f̃ . If S is an admissible sampling operator with
constants C1 and C2 given by (3.1) and (3.2) respectively, then the ratio

C(Ω,T) =

√
C2

C1
(3.4)

is referred to as the NUGS reconstruction constant. As we shall see from the following result, the
constants C1 and C2 arising from an admissible sampling operator S determine the stability and
quasi-optimality of the resulting NUGS reconstruction via the reconstruction constant C(Ω,T).

Theorem 3.2 ([1], Thm. 3.4). Let Ω be a sampling scheme and T a finite-dimensional subspace,
and suppose that S is an admissible sampling operator for the pair (Ω,T). Then the NUGS
reconstruction F (f) = f̃ defined by (3.3) exists uniquely for any f ∈ H and we have the bound

∀f, h ∈ H, ‖f − F (f + h)‖ ≤ C(Ω,T) (‖f − PTf‖+ ‖h‖) , (3.5)

where C(Ω,T) is the corresponding NUGS reconstruction constant.

Note that (3.5) implies numerical stability and quasi-optimality of the mapping F with
κ = µ ≤ C(Ω,T). Therefore, this theorem provides existence and uniqueness of the stable and
quasi-optimal reconstruction defined by (3.3).

Whilst in previous sections Ω has been countably infinite, in practice we are almost always
faced with a finite sampling set ΩN = {ωn}Nn=1, for some N ∈ N. For convenience, let us now
assume that ΩN arises as a finite subset of points Ω forming a weighted Fourier frame, where
Ω1 ⊆ Ω2 ⊆ · · · ⊆ Ω. For such a sampling scheme ΩN , we choose S to be a truncated version of
the weighted Fourier frame operator (2.10) given by

SN : H→ H, f 7→ SNf =

N∑
n=1

µnf̂(ωn)eωn , (3.6)

which converges to S strongly on H when N →∞. If this is the case, (3.3) becomes equivalent
to the weighted least-squares data fit:

f̃ = argmin
g∈T

N∑
n=1

µn

∣∣∣f̂(ωn)− ĝ(ωn)
∣∣∣2 . (3.7)

For the operator SN defined by (3.6), the properties (i) and (ii) from the Definition 3.1 are im-
mediately satisfied. In what follows, by conveniently using the results on the weighted frames
given in the previous section, we prove that SN also satisfies property (iii), and thus ensures
a stable and quasi-optimal reconstruction in (3.7), provided that the sampling scheme is suffi-
ciently dense and wide in the frequency domain. By this, we shall extend the NUGS framework
from [1] to the multidimensional setting.
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We remark in passing that, although a finite set ΩN always gives rise to a Fourier frame for
its span, without weights the corresponding frame constants can deteriorate as N →∞. As an
illustration, consider the set of points Ω = Λ1∪Λ2 from the Example 2.8. If we take a sampling
scheme ΩN ⊆ Ω defined as

ΩN = {ω ∈ Ω : |ω|∞ ≤ N} ,

the upper frame bound B blows up as N →∞. However, as we see below, this issue is prevented
by an appropriate choice of weights {µω}ω∈ΩN .

Remark 3.3 Our purpose in this section is to provide analysis of the reconstruction of a
function f from finitely-many samples in an arbitrary subspace T. Consequently, we shall not
address the specific algorithmic details, besides from noting that f̃ can be computed by solving
an algebraic least squares problem. Computational complexity depends on the choice of T; for
example, if a wavelet basis is used then the number of operations is O (N logN). We refer to
[1] for more information.

3.2 Relation to previous work

The function recovery method NUGS used in this paper is based on the work of the authors
[1]. This is a special instance of a more general approach of sampling and reconstruction in
abstract Hilbert spaces, known as generalized sampling (GS). Although introduced by two of
the authors in [3] it has its origins in earlier work of Unser & Aldroubi [48], Eldar [18], Eldar
& Werther [19], Gröchenig [26, 27], Hrycak & Gröchenig [30], Shizgal & Jung [33], Aldroubi [7]
and others.

In [26] (see also [27, 28, 21, 22]), the problem of recovering a bandlimited function from
its own nonuniform samples was considered, where the arbitrary clustering is addressed by
using weighted Fourier frames, exactly the same as we do in this paper. Specifically, Gröchenig
et al. developed an efficient algorithm for the nonuniform sampling problem, known as the
ACT algorithm (Adaptive weights, Conjugate gradients, Toeplitz) where they consider the
reconstruction in a particular finite-dimensional space consisting of trigonometric polynomials.
This corresponds to a specific instance of NUGS with a Dirac basis for T. Convergence and
stability of the ACT algorithm [27, Thm. 7.1] are guaranteed by the sufficient sampling density
and the explicit weighted frame bounds given in [27, Prop. 7.3] (Theorem 2.5 here). The
result we prove below, Theorem 3.5, extends this in two ways. First, we have a less stringent
density requirement based on the bounds derived in Theorem 1.2, which also directly improves
the guarantees for ACT algorithm. Second, we allow for arbitrary choices of T which can be
tailored to the particular function f to be recovered.

In MRI and several other applications, a popular algorithm for reconstruction from nonuni-
form Fourier samples is known as the iterative reconstruction technique [46]. This can also be
viewed as an instance of NUGS, where T is a space of piecewise constant functions on a M ×M
grid (the term ‘iterative’ refers to the use of conjugate gradients to compute the reconstruction).
Equivalently, when M is a power of 2, then T can be expressed as the space spanned by Haar
wavelets up to some finite scale. As a result, Theorem 3.5 also provides guarantees for the
iterative reconstruction technique. These improve existing estimates (see [34, 40]), which are
based on Gröchenig’s original bounds. Importantly, we shall also show how NUGS allows one
to obtain better reconstructions, by replacing the Haar wavelet choice for the subspace T with
higher-order wavelets.

Let us also note here that there exists a vast wealth of other methods for solving the same
(or equivalent) recovery problem from nonuniform Fourier samples, which are fundamentally
different than ours. Unlike some common approaches in MRI, such as gridding [31], resampling
[42] or earlier mentioned iterative algorithms [46], we do not model f as a finite-length Fourier
series, or as a finite array of pixels, but rather as a function in L2-space. Hence, by using an
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appropriate approximation basis, we successfully avoid the unpleasant artefacts (e.g. Gibbs
ringing) associated with gridding and resampling algorithms and also we gain more accuracy
than with the iterative algorithms (see §5 Numerical results). On the other hand, there are
approaches commonly found in nonuniform sampling theory which do use analog model but
whose reconstruction is based on an iterative inversion of the frame operator [10, 11, 21, 8].
These approaches would be fine if one would be given infinitely-many samples and infinite
processing time, but since one has only finite data in practice, they typically lead to large
truncation errors (similar to Gibbs phenomena).

3.3 Sufficiently dense points for admissibility

We now wish to provide sufficient conditions for a finite sampling set to give an admissible
sampling operator of the form (3.6). This extends the work of [1, §4] to the multidimensional
setting.

Since we deal with finite sampling sets, which cannot be dense in the whole of R̂d, in what
follows we consider subsets of R̂d. Therefore, for a given sampling bandwidth K > 0, we use
the concept of (K, δ∗)-density :

Definition 3.4 ((K, δ∗)-density with respect to Y ). Let Ω ⊆ Rd be a set of sampling points,
K > 0 and let |·|∗ be an arbitrary norm on Rd. If there exist a closed, simply connected set

Y ⊆ R̂d with 0 in its interior such that:

(i) maxŷ∈Y |ŷ|∞ = 1,

(ii) Ω ⊆ YK , where YK = KY , and

(iii) Ω is δ∗-dense in the domain YK ,

then we say that the set Ω is (K, δ∗)-dense with respect to Y .

Let now ΩN = {ωn}Nn=1 be (K, δ∗)-dense with respect to Y , such that the corresponding set
Ω = {ωn}n∈N, ΩN ⊆ Ω, yields a weighted Fourier frame with the weights {µωn}n∈N and the
frame bounds A,B > 0. For a finite-dimensional subspace T ⊆ H we introduce the K-residuals
of T:

RK(T) = sup
{
‖f̂‖R̂d\YK : f ∈ T, ‖f‖ = 1

}
, and

R̃K(ΩN ,T) = sup


√ ∑
ω∈Ω\ΩN

µω|f̂(ω)|2 : f ∈ T, ‖f‖ = 1

 .
(3.8)

Note that both of these residuals converge to zero when K →∞, since T is finite dimensional.
Also, for all K > 0, we have that RK(T) ≤ 1 and R̃K(ΩN ,T) ≤

√
B.

We are ready to give our main result on NUGS.

Theorem 3.5. Let T ⊆ H = {f ∈ L2(Rd) : supp(f) ⊆ E} be finite-dimensional, E ⊆ Rd
compact, and let ΩN = {ωn}Nn=1 be a sampling scheme.

1. Let E be also convex and symmetric, and ΩN be (K, δE◦)-dense with respect to Y , with

δE◦ <
1

4
.

Denote by A and B the frame bounds corresponding to the weighed Fourier frame arising
from Ω = {ωn}n∈N, ΩN ⊆ Ω, and let ε > 0 be such that

ε <
√
A.
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If K > 0 is large enough so that

R̃K(ΩN ,T) ≤ ε,

then the operator SN , given by (3.6), is admissible sampling operator and the NUGS
reconstruction constant satisfies

C(ΩN ,T) ≤
√

B

A− ε2
. (3.9)

2. Let ΩN be (K, δ∗)-dense with respect to Y , with

δ∗ <
log(2)

2πmEc∗
,

where |·|∗ is an arbitrary norm on Rd and c∗ > 0 is the smallest constant such that
|·| ≤ c∗ |·|∗. Let also ε > 0 be such that

ε <
√

exp (2πmEδ∗c∗) (2− exp (2πmEδ∗c∗)).

If K > 0 is large enough so that
RK(T ) ≤ ε,

Then the operator SN given by (3.6) is admissible and

C(ΩN ,T) ≤ exp (2πmEδ∗c
∗)√

1− ε2 + 1− exp (2πmEδ∗c∗)
. (3.10)

Proof. For the first part, note that

∀f ∈ H,

A− ∑
ω∈Ω\ΩN

µω|f̂(ω)|2/‖f‖2
 ‖f‖2 ≤ ∑

ω∈ΩN

µω|f̂(ω)|2 ≤ B‖f‖2,

where the existence of A,B > 0 is provided by Theorem 1.1. Hence C2(Ω) ≤ B and for C1(Ω,T)
we have

C1(Ω,T) ≥ A− R̃K(ΩN ,T)2 ≥ A− ε2 > 0.

Since C(Ω,T) =
√
C2/C1 the first result now follows immediately.

For the second part, we follow the proof of Theorem 1.2 and define

χ(ŷ) =
∑
ω∈ΩN

f̂(ω)1V ∗ω (ŷ), ŷ ∈ YK .

Hence
‖χ‖2YK =

∑
ω∈ΩN

µω|f̂(ω)|2.

Note that we have

‖f‖YK − ‖f̂ − χ‖YK ≤ ‖χ‖YK ≤ ‖f̂ − χ‖YK + ‖f‖,

and also, by the same reasoning as in the proof of Theorem 1.2, we get

‖f̂ − χ‖YK ≤ (exp(2πmEδ∗c
∗)− 1) ‖f‖.
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Therefore for all f ∈ H\{0}
√√√√

1−
‖f̂‖2

R̂d\YK
‖f‖2

+ 1− exp (2πmEδ∗c
∗)


2

‖f‖2 ≤
∑
ω∈ΩN

µω|f̂(ω)|2 ≤ exp(4πmEδ∗c
∗)‖f‖2.

Hence, we have
√
C2(Ω) ≤ exp(2πmEδ∗c

∗) and√
C1(Ω,T) ≥

√
1− ε2 + 1− exp (2πmEδ∗c

∗) > 0,

due to the definition of RK(T) and the assumption that

RK(T) ≤ ε <
√

exp (2πmEδ∗c∗) (2− exp (2πmEδ∗c∗)).

Now the statement follows by using the definition of the NUGS reconstruction constant (3.4).

By this theorem, for a fixed reconstruction space T, we are guaranteed a stable and quasi-
optimal reconstruction via NUGS, for large enough sampling bandwidth K provided the density
condition holds, even with a highly nonuniform sampling scheme. Namely, for a given nonuni-
form sampling scheme ΩN which is (K, δE◦)-dense with respect to Y and δE◦ < 1/4, the first
part of this theorem guarantees a stable and quasi-optimal reconstruction in any given recon-
struction space T such that its K-residual R̃K(ΩN ,T) is small enough. The downside, however,
is that neither A nor B are known, and also the term R̃K(ΩN ,T) depends on ΩN . Conversely, by
the second bound (3.10) – which is explicit – we are able to largely separate the geometric prop-
erties of the sampling scheme, i.e. the density, from intrinsic properties of the reconstruction
space T, i.e. the K-residual RK(T). The latter is determined solely by the decay of functions
f̂ , f ∈ T, outside the domain YK . In other words, in the second case, once RK(T) is estimated
for any given subspace T (see §6 for a discussion on this point), we can ensure a stable and
quasi-optimal reconstruction for any nonuniform sampling scheme which is (K, δ∗)-dense with
respect to Y with small enough δ∗.

4 Examples of sufficiently dense sampling schemes

In the next section, we illustrate NUGS on several numerical examples, where we use a number
of sampling schemes commonly found in practice. Therein, we consider functions supported on
E = [−1, 1]2. According to Theorem 1.1 , a sampling scheme Ω must satisfy the condition

δE◦(Ω) <
1

4
, (4.1)

where E◦ is the unit ball in `1-norm, or, according to Theorem 1.2, a more strict density
condition

δB1(Ω) <
log(2)

2πmE
(4.2)

(we have chosen |·|∗ = |·| for simplicity). Recall that mE =
√

2 if E = [−1, 1]2. In this section,
we construct some sampling schemes which satisfy these conditions. Note that for E = [−1, 1]2

we have
δE◦(Ω) ≤

√
2δB1(Ω).

Hence, to have (4.1) it is enough to enforce δB1(Ω) < 1/(4
√

2). The condition

δB1(Ω) < D, (4.3)
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where D > 0 is a given constant, can be easily checked on a computer for an arbitrary nonuni-
form sampling scheme Ω. Moreover, as we shall show below, for special sampling schemes, e.g.
polar and spiral, it is always possible to construct them so that they satisfy the condition (4.3).
The advantage of considering density condition in the Euclidean norm lies in its symmetry.

We mention that in [11], one can find a construction of a spiral sampling scheme satisfying
condition (4.3). Here, we use a slightly different spiral scheme, one which has an accumulation
point at the origin and cannot be treated without weights. More precisely, we use the constant
angular velocity spiral, whereas Benedetto & Wu [11] use the constant linear velocity spiral (see
[16, Fig 2]). Also, beside giving a sufficient condition for a spiral sampling scheme in order to
satisfy (4.3), we provide both sufficient and necessary condition such that polar and jittered
sampling schemes are appropriately dense.

4.1 Jittered sampling scheme

This sampling scheme is a standard model for jitter error, which appears when the measurement
device is not scanning exactly on a uniform grid; see Figure 1. Due to its simplicity, we do not
necessarily need to use Euclidean norm in this case, therefore we consider directly the condition
(4.1), and then, for completeness, we also consider (4.2). For a given sampling bandwidth K > 0
and parameters ε > 0 and η ≥ 0, we define the jittered sampling scheme as

ΩK = {(n,m)ε+ ηn,m : n,m = −bK/εc, . . . , bK/εc} , (4.4)

where ηn,m = (ηxn,m, η
y
n,m) with ηxn,m and ηyn,m such that |ηxn,m|, |η

y
n,m| ≤ η. Note that ΩK ⊆

YK′ = K ′[−1, 1]2, where K ′ = εbK/εc+ η. Now, the following can easily be seen:

Proposition 4.1. Let E = [−1, 1]2. Let also K > 0, ε > 0 and η ≥ 0 be given. The sampling
scheme ΩK defined by (4.4) is

1. (δE◦ , εbK/εc+ η)-dense with respect to Y = [−1, 1]2 and with δE◦(ΩK) < 1/4 if and only
if ε+ 2η < 1/4.

2. (δB1 , εbK/εc+ η)-dense with respect to Y = [−1, 1]2 and with δB1(ΩK) < log(2)/(2π
√

2) if
and only if ε+ 2η < log(2)/(2π).

4.2 Polar sampling scheme

Here, we discuss an important type of sampling scheme used in MRI and also whenever the
Radon transform is involved in sampling process, see Figure 1. For a given sampling bandwidth
K > 0 and separation between consecutive concentric circles r > 0 we define a polar sampling
scheme as

ΩK =
{
mrein∆θ : m = −bK/rc, . . . , bK/rc, n = 0, . . . , N − 1

}
, (4.5)

where ∆θ = π/N ∈ (0, π) is the angle between neighbouring radial lines and N ∈ N is the
number of radial lines in the upper half-plane. Note that ΩK ⊆ BrbK/rc ⊆ R̂d. In what follows
we shall assume that K/r ∈ N for simplicity.

Proposition 4.2. Let D > 0, K > D, and r ∈ (0, 2D) be given such that K/r ∈ N. The
sampling scheme ΩK given by (4.5) is (K, δB1)-dense with respect to Y = B1 and with

δB1(ΩK) < D

if and only if

∆θ < 2 arctan

√
D2 − (r/2)2

K − r/2
. (4.6)

19



Proof. To prove this claim, we need to calculate

sup
ŷ∈BK

inf
ω∈ΩK

|ŷ − ω|B1 . (4.7)

Since B1 is symmetric with respect to any direction, and since the symmetry of polar sampling
scheme, in (4.7) without loss of generality we may assume:

1. ŷ ∈
{
seiθ : s ∈ [0,K], θ ∈ [0,∆θ/2]

}
,

2. ω ∈ {mr : m = 0, . . . ,K/r}.

Now it is easily seen that the supremum (4.7) is attained for ŷ0 = (m+d0)reiθ0 , where (m+1)r =
K, θ0 = ∆θ/2 and d0 ∈ (0, 1) is such that

|(m+ d0)reiθ0 −mr| = |(m+ d0)reiθ0 − (m+ 1)r|.

This equation gives

m+ d0 =
2m+ 1

2 cos θ0
,

and therefore

sup
ŷ∈BK

inf
ω∈ΩK

|ŷ − ω| = r

∣∣∣∣2m+ 1

2 cos θ0
eiθ0 −m

∣∣∣∣ =

√
(r/2)2 +

r2(2m+ 1)2

4
(tan θ0)2.

Hence, having δB1(ΩK) < D in the domain BK is equivalent to√
(r/2)2 + ((K − r/2) tan(∆θ/2))2 < D.

i.e.

∆θ < 2 arctan

√
D2 − (r/2)2

K − r/2
,

which proves our claim.

Also, note that in order ΩK to be (K, δB1)-dense with respect to Y = B1 and δB1(ΩK) < D,
it is enough to take the number of radial lines corresponding to the following formula

N ≥


π

2 arctan

√
D2−(r/2)2

K−r/2

+ 1.

This proposition asserts that δ-density of polar sampling scheme is satisfied if and only if
the angle ∆θ is sufficiently small and taken according to the formula (4.6). From (4.6), it is
evident that the angle ∆θ goes to zero linearly in 1/K when K →∞. Therefore, the condition
δB1(ΩK) < D implies that the points ΩK accumulate at the inner concentric circles as we
increase K. Thus, the unweighted frame bounds for the frame sequence corresponding to ΩK

clearly blow up as K →∞, which can be prevented by using the weights.

4.3 Spiral sampling scheme

For a given r > 0,
Sr(θ) = r θ

2π eiθ, θ ≥ 0, (4.8)

is a spiral trajectory in R̂2 with the constant separation r between the spiral turns. If θ ∈ [0, 2πk]
for k ∈ N, then the number of turns in the spiral is exactly k. For given r > 0 and k ∈ N, let
Yrk ⊆ R̂2 be defined as

Yrk = {Sρ(θ) : ρ ∈ [0, r], θ ∈ [0, 2πk]} . (4.9)
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Then Sr(θ) ⊆ Yrk ⊆ Brk, for θ ∈ [0, 2πk].
Now, let K > 0 and r > 0 be given, and for simplicity assume that they are such that

K/r = k ∈ N. We define a spiral sampling scheme as

ΩK =
{
rn∆θ

2π ein∆θ : n = 0, . . . , Nk
}
. (4.10)

where ∆θ = 2π/N ∈ (0, π), N ∈ N, is a discretization angle. Note that this ΩK represents a
discretization of the spiral trajectory (4.8), which consists of k turns with the constant separation
r between them and with a constant angular distance ∆θ. Also, note that ΩK ⊆ YK = KY ⊆
BK ⊆ R̂2, where Y is

Y =
{
ρ θ

2π eiθ : ρ ∈ [0, 1], θ ∈ [0, 2π]
}

(4.11)

i.e. Y is given by (4.9) for r = k = 1.

Proposition 4.3. Let D > 0, K > 4/5D and let r ∈ (0, 2D) be given such that K/r = k ∈ N.
The sampling scheme ΩK defined as (4.10) is (δB1 ,K)-dense with respect to Y given by (4.11)
and with

δB1(ΩK) < D

if the angle ∆θ is chosen small enough depending on K.

Proof. To prove this claim, we want to estimate δB1(ΩK). Similarly as in [11], note that, by the
triangle inequality

δB1(ΩK) ≤ r

2
+ |Sr(2πk)− Sr(2πk −∆θ/2)|

where Sr(·) is given by (4.8). Therefore, the density condition is satisfied if ∆θ is such that

dr,k(∆θ) = |Sr(2πk)− Sr(2πk −∆θ/2)| < D − r

2
.

Hence, it is enough to choose ∆θ as
∆θ < θ̃,

where θ̃ is such that dr,k(θ̃) = D − r/2. This θ̃ exists and it is unique on the interval (0, π),
since the function dr,k(·) is continuous and strictly increasing on (0, π) and also

lim
∆θ→0

dr,k(∆θ) = 0 < D − r

2
, lim

∆θ→π
dr,k(∆θ) = r

√
k2 +

(
k − 1

4

)2

≥ 5

4
K > D − r

2
.

Let us mention here that in a similar manner an interleaving spiral sampling scheme can
be annalyzed. An interleaving spiral consists of multiple single spirals. Both of these spiral
sampling schemes are shown in Figure 1.

5 Numerical results

Finally, in this section, we present some numerical experiments illustrating the developed theory.
Some of the advantages of using weights have been already reported earlier in the literature,

see for example [21, 22, 28] and also [31, 46]. In a different setting, in Figure 2, we provide further
insight on the necessity of using weights. To this end, we test a spiral sampling scheme, which
gains an accumulation point as we increase the sampling bandwidth and which is constructed as
in §4.3 so that it satisfies the density condition provided by Theorem 1.1. For this experiment,
we perform function recovery using NUGS with boundary corrected Daubechies wavelets of
order 3 (DB3).
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Original No weights Weights

Figure 2: Analytic phantom and a high resolution image of earth are reconstructed by NUGS with
256×256 DB3 wavelets. Left: original rasterized images; middle: NUGS reconstruction without weights
and 40 iterations; right: NUGS with weights and 20 iterations. In all cases, samples are taken according
to spiral sampling scheme with K = 128 and δ1 < 0.25.

As discussed in [1], the condition number of the least-squares system (3.7) of the NUGS ap-
proximation determines the number of iterations required in an iterative solver such as conjugate
gradients. As shown in Figure 2, even with the doubled number of iterations, the reconstruc-
tion obtained without weights is distinctly inferior. The fact that the reconstruction is bad even
with a large number of iterations is due to two effects. First, many iterations are required for
convergence of the iterative solver. Second, even if iterated to convergence, the reconstruction
constant C(Ω,T), which determines the reconstruction error and depends on the ratio B/A, is
also large in the unweighted case. On the other hand, if weights are used, we obtain a good
approximation which is guaranteed by controllable weighted Fourier frame bounds.

In Figure 3, we illustrate NUGS method when applied to a two-dimensional continuous
function. We also compare it with the earlier mentioned common heuristic approach known as
gridding [31]. The NUGS is used with Haar wavelets and with boundary corrected DB2 wavelets.
As noted earlier, the NUGS with Haar wavelets is equivalent to the iterative algorithms such as
the one found in [46]. In all cases, the same set of samples acquired on a polar sampling scheme
is used. Moreover, we present the results when noise is added to the samples (SNR = 40dB). As
demonstrated in Figure 3 for the two-dimensional setting (see [1] for univariate examples), the
major advantage of NUGS is the possibility to change the approximation space T and achieve
better reconstructions.

6 Conclusions

In the paper, we provide new theoretical insight of when a given countable set of sampling points
yields a weighted Fourier frame, and therefore permits a multidimensional function recovery.
To have a weighted Fourier frame for the space of L2 functions supported on a compact convex
and symmetric set E, it is enough to take pointwise measurements of its Fourier transform at
points with density δE◦ < 1/4. Separation of sampling points is not required. Moreover, the
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Gridding: ‖f − f̃‖ ∼ 10−1 NUGS Haar: ‖f − f̃‖ ∼ 10−2 NUGS DB2: ‖f − f̃‖ ∼ 10−3
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Figure 3: The function f(x, y) = (sin(3π(y + 1/2)) + (x+ 1/4) cos(2πx(y + 1/2))))
2
, supported on E =

[−1, 1]2, is reconstructed by gridding, NUGS with 64× 64 Haar wavelets and NUGS with 64× 64 DB2
wavelets. On the lower set of pictures, white Gaussian noise is added to the samples with the signal-to-
noise ratio (SNR) of 40dB. Next to each reconstruction f̃ the order of the L2-error ‖f − f̃‖ is written.
The polar sampling scheme is used with K = 32 and δ1 < 0.25.
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weighted Fourier frame bounds are explicitly estimated in the case of smaller densities than
previously known, and in particular, their dimension dependence is removed for the space of
functions supported on spheres. However, it remains an open problem to explicitly estimate
frame bounds for even smaller densities (larger δ), closer to the condition δE◦ < 1/4.

By exploiting these novel results on weighted Fourier frames, the method for recovering
a function in any given finite dimensional space, known as NUGS, is analysed in multivariate
setting. Its stability and accuracy are guaranteed provided that finitely many samples are taken
with both density and bandwidth large enough. The density required is the same as the one
that guarantees weighted Fourier frames.

It remains an open question how to choose the sampling bandwidth K depending on the
specific reconstruction space. In [1], the authors considered important case of reconstruction
spaces T consisting of compactly supporting wavelets in the one-dimensional setting. For any
ε > 0, it was shown that RK(T) < ε, provided K ≥ c(ε)M , where M = dim(T) and c(ε) > 0 is a
constant depending on ε only (see [1, Thm. 5.3 and Thm. 5.4]). This means that a linear scaling
of the sampling bandwidth K with the wavelet dimension M is sufficient for stable recovery
(necessity was also shown – see [1, Thm. 6.1]). For this reason, wavelets subspaces are up to
constant factors optimal spaces for reconstruction. We expect these results to extend to the
multivariate case, but this is left for further investigations.

Having developed the NUGS framework in multivariate setting, it is possible to consider re-
coveries from nonuniform samples in any finite dimensional space one desires. Besides wavelets,
one can consider spaces consisting of algebraic or trigonometric polynomials as well as important
generalizations of wavelets, such as curvelets and shearlets. This is also left for future work.
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Birkhäuser Boston Inc., Boston, MA, 1989. Harmonic analysis, Edited by L. Carleson, P. Malliavin,
J. Neuberger and J. Wermer.

[15] O. Christensen. Frames, Riesz bases, and discrete Gabor/wavelet expansions. Bull. Amer. Math.
Soc, 38(3):273–291, 2001.

[16] B. M. A. Delattre, R. M. Heidemann, L. A. Crowe, J.-P. Vallée, and J.-N. Hyacinthe. Spiral
demystified. Magn. Reson. Imaging, 28(6):862–881, 2010.

[17] R. J. Duffin and A. C. Schaeffer. A class of nonharmonic Fourier series. Trans. Amer. Math. Soc.,
72:341–366, 1952.

[18] Y. C. Eldar. Sampling without input constraints: Consistent reconstruction in arbitrary spaces. In
A. I. Zayed and J. J. Benedetto, editors, Sampling, Wavelets and Tomography, pages 33–60. Boston,
MA: Birkhäuser, 2004.

[19] Y. C. Eldar and T. Werther. General framework for consistent sampling in Hilbert spaces. Int. J.
Wavelets Multiresolut. Inf. Process., 3(3):347, 2005.

[20] C. L. Epstein. Introduction to the mathematics of medical imaging. Society for Industrial and
Applied Mathematics (SIAM), Philadelphia, PA, second edition, 2008.
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