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ABSTRACT
We present a new approach for the problem of reconstructing
an element of a Hilbert space in an arbitrary reconstruction basis
given its measurements with respect to certain sampling vectors.
This procedure differs from more standard techniques in that
it is not consistent: the samples of the reconstructed function
are not equal to those of the original function. However, by
dropping this requirement, we are able to obtain a method that
is both numerically stable and which provides a reconstruction
that is closer to optimal.
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1. INTRODUCTION

Modern sampling concerns the problem of reconstructing an el-
ement f ∈ H, where H is some separable Hilbert space, in
a particular space W , the reconstruction space, given its col-
lection of samples with respect to a so-called sampling space
S. More specifically, if s1, s2, . . . are linearly independent
sampling vectors with S = span{s1, s2, . . .}, the task is to
compute an approximation f̃ ∈ W from the measurements
cj = 〈f, sj〉, j = 1, 2, . . ., where 〈·, ·〉 is the inner prod-
uct on H. If w1, w2, . . . are also linearly independent, with
W = span{w1, w2, . . .}, then f̃ takes the form

∑∞
j=1 djwj for

some dj ∈ l2(N).
An approach to compute f̃ was developed in [12], and later

formalised by Eldar et al [4, 5]. Therein, the approximation f̃ is
specified by enforcing the consistency conditions

〈f̃ , sj〉 = 〈f, sj〉, j = 1, 2, . . . . (1)

The approximation f̃ is referred to as consistent reconstruction
of f . Under the additional assumptionH =W⊕S⊥ it is known
that f̃ is unique. Moreover, if ‖·‖ is the norm associated withH
and PW is the orthogonal projectionH →W , then

‖f − PWf‖ ≤ ‖f − f̃‖ ≤ (cos θWS)
−1‖f − PWf‖,

where θWS is the angle between the subspacesW and S:

cos(θWS) = inf
w∈W,‖w‖=1

‖PSw‖.

Naturally, to implement such a scheme numerically we are lim-
ited to taking only a finite number of such samples, and to seek-
ing a reconstruction in a finite dimensional subspace of W .

Hence, the finite dimensional version of this problem reads:
compute f̃m ∈ Wm = span{w1, . . . , wm} from the samples
cj = 〈f, sj〉, j = 1, 2, . . . ,m. Once more, a reconstruction
f̃m ∈ Wm can be specified by imposing consistency

〈f̃m, sj〉 = 〈f, sj〉, j = 1, 2, . . . ,m, (2)

leading to a linear system of equations Ad = c, where c =
(c1, . . . , cm)>, d = (d1, . . . , dm)>,

A =

 〈w1, s1〉 · · · 〈wm, s1〉
...

. . .
...

〈w1, sm〉 · · · 〈wm, sm〉

 , (3)

and

f̃m =

m∑
k=1

dkwk. (4)

Letting fm = PWm
f , we find that

‖f − fm‖ ≤ ‖f − f̃m‖ ≤ (cos θWmSm)−1‖f − fm‖. (5)

Naturally, by taking m sufficiently large, we hope to recover
an approximation arbitrarily close to the solution of the infinite
dimensional problem f̃ .

Whilst this approach has proved extremely popular since its
original development, there are several drawbacks that serve
to motivate the particular framework we develop in this paper.
More precisely, the method we present is designed to tackle the
following two issues:

1. What ifWm ∩ S>m 6= {0}, so that f̃m may not exist.

2. What if ‖A−1‖ is large? Even if A−1 exists, this may
make the method unsuitable in practice, due to likely
increased sensitivity to both round-off error and noise,
as well as the increased cost required to solve the ill-
conditioned system.

At first glance, it appears plausible that these issues may not
have impact, since the infinite-dimensional problem (1) is well-
posed. However, this intuition is incorrect; a fact that can be
explained quite easily with an operator-theoretic perspective.
Notice that the matrix A given by (3) is precisely an m × m
finite section of the infinite matrix A∞ = {〈wj , si〉}∞i,j=1 of



m 25 50 100 200
(i) 3.4e03 1.0e08 6.2e16 3.2e34
(ii) 2.6e00 3.6e01 1.8e02 2.8e06
(iii) 1.1e-03 2.9e-06 1.2e-11 4.4e-18

Table 1. The quantities (i) ‖A−1‖ , (ii) ‖f − f̃m‖ and (iii) ‖f − fm‖.

the infinite-dimensional problem (1). Finite sections of infi-
nite matrices have been extensively studied in the last several
decades (see, for example, [7] and the references therein). Un-
fortunately, the properties of the finite section may contrast
starkly with those of the infinite-dimensional operator. For ex-
ample, even if the infinite-dimensional problem is nonsingular,
an m × m finite section A may not be invertible for any m.
Moreover, even if A is nonsingular and ‖A−1∞ ‖ < ∞, it may
well be the case that ‖A−1‖ → ∞ as m → ∞. In addition,
if A∞c = d, where c = (c1, c2, . . .)

>, d = (d1, d2, . . .)
>, and

Acm = dm, where dm = (c1, . . . , cm)>, then it is not guaran-
teed that cm → c as m→∞. Thus, in context of the sampling
problem (2), even if f̃m exists, it may not be computable in a
stable manner and may not converge to f̃ .

To avoid these issues, stringent restrictions are required on
the infinite matrix A∞, such as positive self-adjointness. How-
ever, in many circumstances of interest, the sampling problem
(1) for example, such conditions are not satisfied.

Let us illustrate these effects with an example. Suppose that
H = L2(−1, 1) and sj(x) = eijπx, so that S is the standard
Fourier basis. This sampling basis represents the most com-
monly occurring type of reconstruction problem: namely, the
recovery of a function from samples of its Fourier transform. In-
deed, the classical Shannon Sampling Theorem [11], the foun-
dation of modern information theory, deals precisely with this
scenario.

Naturally, if f has high smoothness, it makes sense to recon-
struct in a polynomial basis. To this end, suppose that wj is
the jth orthogonal polynomial on [−1, 1] (i.e. the jth Legen-
dre polynomial). With this to hand, we now compute f̃m as in
(4) via (2). In Table 1 we present the value ‖A−1‖ for various
m. As is evident, this quantity grows geometrically in m (i.e.
‖A−1‖ ∼ γm for some γ > 1), thus making the reconstruc-
tion procedure highly unstable even for moderate values of m.
Moreover, not only does this make the method hard to imple-
ment numerically, it can also prohibit the convergence of f̃m as
m → ∞. In Table 1 we also display the errors ‖f − f̃m‖ and
‖f − fm‖, where f(x) = 1

1+16x2 . Clearly, the reconstruction
f̃m does not converge to f . Note that this issue is not due to the
choice of reconstruction space W–indeed, the orthogonal pro-
jection fm = PWm

f converges geometrically fast to f–but is
caused solely by the particular method used to reconstruct.

Another key feature of (1) is so-called perfect reconstruction:
if f ∈ Wm, then f is reconstructed exactly by f̃m. Of course,
in the presence of noise this feature is lost. Having said this, it
would be highly desirable to have a recovery procedure which
gave perfect reconstruction up to an error determined by the am-
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Fig. 1. The quantity log10 ‖f − f̃m‖ against m = 1, . . . , 150, where
f(x) = x30 and f̃m was computed from (i) noise-free data (squares)
and (ii) noise at amplitude ε = 10−4 (circles), 10−6 (crosses) and
10−8 (diamonds). Noise was modelled by replacing f̂j by f̂j + εzj for
j = −75, . . . , 75, where zj is uniformly distributed in [−1, 1].

plitude of the noise in the input data. However, as shown in Fig-
ure 1, this is not the case for f̃m. The combination of noise and
ill-conditioning prohibits f̃m from being a good approximation
to f . Note also that in the noise-free case, the approximation f̃m
does initially obtain close to machine epsilon (i.e. it is numeri-
cally perfect), but once n is increased beyond m = 30, the error
also diverges. Thus, one may not witness perfect reconstruction
in practice, even in the absence of noise.

Whilst this example is predominantly for illustration, we
mention that the problem of reconstructing a smooth function
from its Fourier samples in a polynomial basis has been the
subject of intense study in the last several decades, mainly in
the field of spectral methods for PDEs [6]. Within this con-
text, the approach (2) is known as the inverse polynomial recon-
struction method (IPRM) [10], whose poor performance for the
aforementioned examples is well documented [9].

Returning to the general case, it is tempting to think that
there may be some way to avoid these pitfalls, and to obtain
a reconstruction f̃m, computable in a stable manner, that better
resembles the projection fm. Our method is designed to achieve
precisely these goals. Such an approach was first proposed by
the authors in [1], and later expanded upon in [2] (a similar idea,
within the context of the IPRM, also appears in [9]).

2. REDUCED CONSISTENCY SAMPLING

The idea to circumvent the aforementioned problems is to allow
the dimension m of the sampling basis Sm to differ from that of
the reconstruction basis, which we now label Wn, where n =
dimWn. Since n 6= m, we cannot enforce the consistency.
Instead, we specify the approximation f̃n,m by the conditions

〈Smf̃n,m, wj〉 = 〈Smf, wj〉, j = 1, . . . , n, (6)

where Smg =
∑m
j=1 〈g, sj〉 sj for g ∈ H. We refer

to (6) as a reduced consistency condition: rather than f
and its reconstruction being identical on the space Sm, they
agree on the space Sm(Wn) ⊆ Sm. Note that if c′ =
(〈Smf, w1〉 , . . . , 〈Smf, wn〉)> and d = (d1, . . . , dn)

>, then



(6) corresponds to the linear system Bd = c′, where

B =

 〈Smw1, w1〉 · · · 〈Smwn, w1〉
...

. . .
...

〈Smw1, wn〉 · · · 〈Smwn, wn〉

 ,

and f̃n =
∑n
k=1 dkwk. Additionally, B and c′ can be expressed

as A∗A and A∗c respectively, where c = (c1, . . . , cm)> and
A ∈ Cm×n has (i, j)th entry 〈wj , si〉.

To connect this with the previous narrative, note that A is
now an m × n finite section of the infinite matrix A∞ (as op-
posed to anm×m section). Moreover,B = A∗A can be viewed
as an approximation (in m) to the n × n section of the positive
self-adjoint matrix (A∞)∗A∞. For this reason, we expect, and
it turns out to be the case, that the procedure (6) is both nonsin-
gular and stable, provided m is sufficiently large in comparison
to n. Note that if m = n then this approach coincides with (1).

The simplest framework in which to study this procedure is
when {sj}∞j=1 and {wj}∞j=1 are Riesz bases. The method (1)
has also been studied within the more general setting of frames
[5]. However, whilst it is probable that (6) could be extended
to this case (a topic we intend to address in future work), for
simplicity we shall remain within the Riesz basis setting. To
this end, suppose that a1, a2 > 0 are constants such that

a1

∞∑
j=1

|cj |2 ≤
∥∥∥ ∞∑
j=1

cjsj

∥∥∥2 ≤ a2 ∞∑
j=1

|cj |2,

for all c = {c1, c2, . . .} ∈ l2(N). Observe that (see [3], for
example) there also exist constants a′1, a

′
2 > 0 such that

a′1‖g‖2 ≤
∞∑
j=1

| 〈g, sj〉 |2 ≤ a′2‖g‖2, ∀g ∈ S.

Write b1, b2, b′1, b
′
2 > 0 for the corresponding constants for the

basis {wj}∞j=1.
We also introduce the continuous linear operator S : H →

H, given by Sg =
∑∞
j=1〈g, sj〉sj . Note that the operators

Sm → S strongly on H. Moreover, the form 〈f, g〉S = 〈Sf, g〉
yields an equivalent inner product onW . With this to hand, we
now state the following two theorems (see [1, 2] for proofs):

Theorem 1 For each n, there exists and m0 such that, for all
m ≥ m0, the solution f̃n,m to (6) exists and is unique. Specifi-
cally, if en,m is defined by

en,m = sup
w∈Wn,‖w‖S=1

〈Sw − Smw,w〉 ≤ 1,

then en,m → 0 as m → ∞ and m0 is the least m such that
en,m < 1.

Theorem 2 For m ≥ m0 the reconstruction f̃n,m satisfies

‖f − fn‖ ≤ ‖f − f̃n,m‖ ≤ kn,m‖f − fn‖,

where fn = PWn
f is the orthogonal projection of f onto Wn

and the constant kn,m is given by

kn,m =
√

1 + (a′2)
2(a′1)

−2(1− en,m)−2.

Theorems 1 and 2 confirm the existence of f̃n,m and provide
an estimate for the error. Note the following important point:
for fixed m, we must choose n suitable small (conversely, for
fixed n, we choose m suitably large) to ensure existence of of
the reconstruction. For this reason, it is vital to be able to es-
timate en,m. Whilst analytical estimates may be available in
some circumstances, in general this must be done numerically.
Fortunately, this task is aided by the following lemma, which
gives a computable expression for en,m (for a proof, see [2]):

Lemma 1 Let B̃ ∈ Cn×n be the Hermitian matrix with (j, k)th

entry 〈wj , wk〉S . Then en,m = 1− λmin(B̃
−1B).

Another important feature of this approach is its stability. To
quantify this, we consider the condition number κ(B) =
‖B‖‖B−1‖. The following lemma is also found in [2]:

Lemma 2 We have κ(B) ≤ 1+en,m

1−en,m
κ(B̃) ≤ a′2b2(1+en,m)

a′1b1(1−en,m) .

Thus this framework is stable for sufficiently large m. More-
over, the condition required for stability is identical to that
which guarantees existence and uniqueness of f̃n,m.

As shown in Theorem 2, this framework also possesses
so-called quasi-optimality: provided m is such that en,m is
bounded away from 1, the error in reconstructing f with f̃n,m
is of the same order as ‖f − fn‖ (fn being the best, i.e. energy-
minimising approximation to f fromWn). This is in stark con-
trast to the consistent reconstruction (2), as shown numerically
in Table 1.

2.1. Oblique asymptotic optimality

This framework relies on allowing m to vary independently of
n. A natural question to ask is what happens if m → ∞ for
fixed n? Intuitively, since Sm → S strongly, it appears that
f̃n,m should converge to the element f̃n ∈ Wn defined by

〈Sf̃n, wj〉 = 〈Sf,wj〉, j = 1, . . . , n, (7)

(these equations being the ‘limit’ of the equations (6) defining
f̃n,m). The following theorem confirms this intuition:

Theorem 3 Suppose that f̃n,m and f̃n are defined by (6) and
(7) respectively. Then f̃n,m → f̃n as m→∞ and we have

‖f̃n − f̃n,m‖2 ≤
a2en,m

a′1(1− en,m)2
‖f − f̃n‖2.

Further insight is gained by noting that the mapping H → Wn,
f 7→ f̃n is the oblique projection onto Wn along (S(Wn))

⊥.
Thus, we refer to the property that f̃n,m ≈ f̃n for large m as
oblique asymptotic optimality. Additionally, whenever f ∈ W ,
the quantity f̃n is precisely the orthogonal projection of f onto
Wn with respect to the inner product 〈·, ·〉S . Thus, whilst f̃n
may not be the energy-minimising approximation to f fromWn

in the canonical norm ‖·‖, it is energy-minimising with respect
to the equivalent norm defined by S.

Such a property is clearly highly desirable. Moreover, in
many circumstances of interest (such as the reconstruction of a



m 25 50 100 200 400
(i) 4.1e00 3.5e00 3.5e00 3.3e00 3.3e00

(iii) 5.6e-02 2.1e-02 4.9e-03 6.7e-04 3.5e-05

Table 2. The quantities (i) ‖B−1‖ and (ii) ‖f − f̃b2√mc,m‖.

function from its Fourier samples), f̃n actually coincides with
the orthogonal projection PWn

f = fn. Most notably, this oc-
curs whenever S = I is the identity operator onH. In this case,
we say that f̃n,m possesses asymptotic optimality.

2.2. Orthogonal sampling bases and subspace angles

Suppose that {sj}∞j=1 is an orthonormal basis. It follows that
S = I and Sm = PSm is the orthogonal projection. In particu-
lar, f̃n,m possesses asymptotic optimality. Thus, by choosingm
sufficiently large, we can make f̃n,m arbitrary close to the best
approximation to f fromWn.

This aside, we may actually give a geometric interpretation
of the quantity en,m in this case. Specifically,

en,m = sup
w∈Wn,‖w‖=1

‖w − Smw‖2 = 1− cos2 θ = sin2 θ,

where θ is the subspace angle θWnSm . Furthermore, we also
find that the constant kn,m of Theorem 2 can be expressed in
terms of θ: kn,m =

√
1 + tan2 θ sec2 θ.

2.3. Numerical examples

To illustrate this approach, consider the example of Section 1
once more: namely, recovery from Fourier samples using Leg-
endre polynomials. In all cases the ratio n = b2

√
mc was used

(this has shown to be a sufficient condition for quasi-optimal
recovery [2]). In Table 2.3 we consider the error incurred by
the approximation f̃m,b2√mc for the example f(x) = 1

1+16x2 .
Upon comparison with Table 1, the improvement by offered the
reduced consistency framework is evident. Moreover, as also
illustrated, this approach is completely numerically stable.

This method also performs well in the presence of noise. In
Figure 2 we consider the approximation of f(x) = x30 with
random noise once more. Upon comparison with Figure 1, we
conclude that the stability of this procedure leads to a significant
improvement over the consistent sampling scheme (2).

3. EXTENSIONS

There are a number of generalisations of this work. First, there
are several important types of sampling problem not covered
by the current framework. Specifically, suppose that, instead
of the inner products cj = 〈f, sj〉, we had more general forms
of measurements ζj(f), where ζj are linear functionals on H.
Moreover, suppose that f ∈ H1 is defined as the solution to the
problem, Lf = g, where L : H1 → H2 is linear and g ∈ H2.
If we can only access fixed measurements of g, can we still
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Fig. 2. The quantity log10 ‖f − f̃b2√mc,m‖ against m = 1, . . . , 400,
for noise-free data and noise at amplitudes ε = 10−4, 10−6, 10−8.

reconstruct f in an arbitrary basis? As we shall demonstrate in
a future paper, both these problems can be solved by suitably
generalising the reduced consistency framework.

Secondly, it transpires that a combination of the reduced con-
sistency framework with techniques from compressed sensing
allows one to stably and accurately reconstruct sparse signals
with significant undersampling. This topic has recently been
developed in [8].
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