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Abstract

This paper presents a framework for compressed sensing that bridges a gap between existing theory
and the current use of compressed sensing in many real-world applications. In doing so, it also introduces
a new sampling method that yields substantially improved recovery over existing techniques. In many ap-
plications of compressed sensing, including medical imaging, the standard principles of incoherence and
sparsity are lacking. Whilst compressed sensing is often used successfully in such applications, it is done
largely without mathematical explanation. The framework introduced in this paper provides such a justi-
fication. It does so by replacing these standard principles with three more general concepts: asymptotic
sparsity, asymptotic incoherence and multilevel random subsampling. Moreover, not only does this work
provide such a theoretical justification, it explains several key phenomena witnessed in practice. In partic-
ular, and unlike the standard theory, this work demonstrates the dependence of optimal sampling strategies
on both the incoherence structure of the sampling operator and on the structure of the signal to be recov-
ered. Another key consequence of this framework is the introduction of a new structured sampling method
that exploits these phenomena to achieve significant improvements over current state-of-the-art techniques.
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1 Introduction
Introduced formally around a decade ago, compressed sensing (CS) [18, 32] has since become a popular
area of research in mathematics, computer science and engineering [14, 36, 35, 23, 29, 39, 40, 41]. In many
real-world problems one is limited by the amount of data that can be collected, making reconstruction via
classical techniques impossible. The theory and techniques of CS provide a means to reconstruct from fewer
measurements, giving it potential to significantly enhance the recovery step in such applications.

The theory of CS is based on three key concepts: sparsity, incoherence and random sampling. Whilst
there are applications where these apply, in many practical problems one or more of these principles may
be lacking. This includes most applications in medical imaging – Magnetic Resonance Imaging (MRI),
Computerized Tomography (CT) and other versions of tomography such as Thermoacoustic, Photoacoustic
or Electrical Impedance Tomography – electron microscopy, as well as seismic tomography, fluorescence
microscopy, Hadamard spectroscopy, Helium Atom Scattering (HAS) and radio interferometry. In many of
these problems, it is the principle of incoherence that is lacking, rendering the standard theory inapplicable.
Yet, despite this issue CS has been, and continues to be, used successfully in many of these areas. To do
so, however, it is typically implemented with sampling strategies that differ substantially from the uniform
random sampling strategies suggested by the theory. In fact, in many cases the sampling strategies suggested
by existing theory yield highly suboptimal numerical results.

The mathematical theory of CS has now reached a mature state. However, as this discussion suggests,
there is a substantial, and arguably widening gap between theory and its applications. New developments
and sampling strategies are increasingly based on empirical evidence lacking mathematical justification.
Furthermore, in the above applications one also witnesses a number of intriguing phenomena that are not
explained by the standard theory. For example, in such problems, the optimal sampling strategy depends not
just on the overall sparsity of the signal, but also on its structure; a fact that will be documented thoroughly
in this paper. This phenomenon is in contradiction with the usual sparsity-based theory of CS. Theorems that
explain this observation – i.e. that reflect how the optimal subsampling strategy depends on the structure of
the signal – do not currently exist.
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1.1 Contributions
The purpose of this paper is to provide a bridge across this divide. It does so by introducing a theoretical
framework for CS based on three more general principles: asymptotic sparsity, asymptotic incoherence and
multilevel random sampling. This new framework shows that CS is also possible under these substantially
more general conditions, and moreover, can convey some key advantages. Importantly, it also addresses the
issue raised above: namely, the dependence of the subsampling strategy on the structure of the signal.

The significance of this generalization is threefold. First, as will be explained, inverse problems arising
from the aforementioned applications are often not incoherent and sparse, but asymptotically incoherent and
asymptotically sparse. This paper provides the first comprehensive mathematical explanation for a range of
empirical usages of CS in applications such as those listed above. Second, in showing that incoherence is
not a requirement for CS, but instead that asymptotic incoherence suffices, the new theory offers markedly
greater flexibility in the design of sensing mechanisms. In the future, sensors need only satisfy this signifi-
cantly more relaxed condition. Third, by using asymptotic incoherence and multilevel sampling to exploit not
just sparsity, but also structure, i.e. asymptotic sparsity, this frameworks paves the way for improved sensing
paradigms in CS that achieve better reconstructions in practice than current state-of-the-art CS techniques.

A key aspect of many practical problems, including those listed above, is that they do not offer the
freedom to design or choose the sensing operator, but instead impose it (e.g. Fourier sampling in MRI).
As such, much existing CS work, which relies on random or custom-designed sensing matrices (typically
to provide universality), is not applicable. This paper shows that in many such applications the imposed
sensing operators are both non-universal and highly coherent with popular sparsifying bases. Yet they are
often asymptotically incoherent, and thus fall within the remit of the new framework. Spurred by this obser-
vation, this paper also raises the question of whether universality and incoherence are actually desirable in
practice, even in applications where there is flexibility to design sensing operators with this property (e.g. in
compressive imaging). Our theorems show that asymptotically incoherent sensing and multilevel sampling
allow one to exploit asymptotic, as opposed to just global sparsity. Doing so leads to notable advantages
over incoherent sensing, even for problems where the latter are applicable. Moreover, and crucially, this can
be done in a computationally efficient manner using fast Fourier or Hadamard transforms (see §6.1).

Our framework applies to any CS scenario where both the coherence and sparsity are nonuniform. Of the
many applications where this is the case, one of the most important corresponds to the problem of Fourier
sampling with multiresolution sparsifying transforms such as wavelets. This model arises in applications
such as MRI, CT, radio interferometry, Helium Atom Scattering and elsewhere. When applied to this spe-
cific problem, this framework yields new and near-optimal sampling strategies based on multilevel random
subsampling, and a new series of recovery guarantees. Specifically, a corollary of our abstract result in the
case of Fourier sampling with wavelets take the following form. If sk denotes the sparsity of the wavelet
coefficients of a given signal or image in the kth wavelet scale, then to recover those coefficients one requires

mk &

sk +

r∑
l=1
l 6=k

β−|k−l|sl

 , k = 1, . . . , r, (1.1)

Fourier measurements (up to log factors) taken uniformly at random from the corresponding kth sampling
level (a dyadic band in frequency space), where β > 1 is a constant depending on the type of wavelet used.
See §6 for further discussion. As we explain, this guarantee not only confirms the empirically-observed
recovery properties of CS for such problems, it also explains some of the key phenomena witnessed; for
example, the dependence of the optimal sampling strategy on the sparsity structure.

Another contribution of this paper is that the theorems proved apply in both the finite- and infinite-
dimensional settings. Many of the problems listed above are analog, i.e. modelled with continuous operators
such as the Fourier or Radon transforms. Conversely, the standard CS is based on a finite-dimensional
model. Such a mismatch between the computational and the physical model can lead to critical errors when
CS techniques are applied to real data arising from continuous models, or inverse crimes when the data
is inappropriately simulated [22, 46]. To overcome this issue, a theory of CS in infinite dimensions was
recently introduced in [3]. This paper extends [3] by presenting the new framework in both the finite- and
infinite-dimensional settings. We note in passing that the infinite-dimensional analysis is instrumental for
obtaining the Fourier sampling with wavelet sparsity estimate (1.1).

This aside, an additional outcome of this work is that the Restricted Isometry Property (RIP), although
a popular tool in CS theory, is of little relevance in many practical inverse problems. As confirmed later via
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the so-called flip test, the standard RIP cannot hold in these types of applications.
The fact that the RIP may be too strong an assumption in practice is well-known in the standard CS

literature. To overcome this, incoherence-based results, which avoid the RIP, have shown that CS is indeed
possible under weaker conditions (see [16, 17] and references therein). We remark that the reasons for the
absence of the RIP in the standard CS setting are fundamentally different and arguably less significant to
the reasons for its absence in this setting. In particular, as we demonstrate, in many applications only very
specific structured sparse vectors can be recovered. This is in stark contrast to the standard understanding
that all sparse vectors can be recovered equally well regardless of their structure. We refer to §2.3 for details.

Finally, we remark that this is primarily a mathematical paper. However, as one may expect in light
of the above discussion, there are a range of practical implications. We therefore encourage the reader to
consult [72] for further elaboration on the practical aspects and more extensive numerical experiments. We
also remark that the practical importance of the new concepts of asymptotic sparsity, asymptotic incoherence
and multilevel random subsampling has already been verified experimentally in a realistic MRI setting by
Siemens [83] (based on an earlier preprint of this paper). Siemens’ conclusion from their experiments is:
“[...] The image resolution has been greatly improved [...]. Current results practically demonstrated that
it is possible to break the coherence barrier by increasing the spatial resolution in MR acquisitions. This
likewise implies that the full potential of the compressed sensing is unleashed only if asymptotic sparsity
and asymptotic incoherence is achieved. Therefore, compressed sensing might better be used to increase
the spatial resolution rather than accelerating the data acquisition in the context of non-dynamic 3D MR
imaging.”

1.2 Relation to other works
Since the early days of CS, there have been numerous investigations into settings which go beyond classical
sparsity and incoherence. So-called structured sparsity has been studied extensively, and there are now
a range of generalized sparsity notions in the literature.1 These include group, block, weighted and tree
sparsity, amongst others (see [8, 11, 38, 71, 79] and references therein). In most of these works, structured
sparsity is exploited by the design of the recovery algorithm (e.g. by replacing the thresholding step in an
iterative algorithm or the regularization functional in an optimization approach), with the sensing being
carried out by a standard, incoherent operator (e.g. a Gaussian random matrix). Our framework differs
from these works in that it applies directly to the practical, and asymptotically incoherent, sensing operators
imposed by many applications and to the way in which CS is typically implemented in practice in these
applications. It demonstrates why good recovery is possible in these practical settings via the notion of
asymptotic sparsity, and lends crucial insight into the design of optimal sampling strategies.

The observation that many applications of CS result in non-uniform coherence patterns arguably dates
back to Lustig et al.’s seminal work in CS for MRI [57, 60, 61, 62]. For Fourier sampling, numerous
empirical sampling strategies have been proposed to overcome this problem [60, 84], and several other works
have followed more principled approaches based on designing sampling strategies to match the underlying
coherence pattern (see [10, 54, 70, 69] and references therein). However, these works do not explain the key
role played by asymptotic sparsity in the CS recovery. Our work does this, and provides sampling strategies
which are provably optimal with respect to both the sparsity and the coherence structures.

As mentioned, an important instance of our framework is that case of wavelet sparsifying transforms. The
idea of of sampling the low-order wavelet coefficients of an image differently goes back to the early days of
CS. In particular, Donoho considers a two-level approach for recovering wavelet coefficients in his seminal
paper [32], based on acquiring the coarse scales coefficients directly. This was later extended by Tsaig
& Donoho to so-called ‘multiscale CS’ in [81], where distinct subbands were sensed separately. See also
[17, 73]. Unlike in our framework, these works normally assume a separation of the wavelet coefficients into
distinct bands before sampling, which is largely infeasible in practice (in particular, any application based
on Fourier or Hadamard sensing). We note also that similar sampling strategies to those that we introduce
here are found in most implementations of CS in MRI [61, 62, 69, 70]. Additionally, a so-called “half-half”
scheme (an example of a two-level strategy in our terminology – see §3) was used by [76] in an application
of CS in fluorescence microscopy, albeit without theoretical recovery guarantees.

The proofs of the main results in this paper have their roots in some existing ideas from CS literature
[3, 16, 43], with the two key tools being dual certificates and the golfing scheme. However, in order to ac-

1Structured sparsity, especially multiscale-type sparsity, also predates CS by some years – see, for example, the work of Donoho &
Huo [33] – and finds use outside of CS – see, for example, the work of Donoho & Kutyniok on geometric separation [34].
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count for the sparsity structure and the different sampling patterns used the techniques have some significant
differences. In addition, as pointed out in [44, p.26], the original proofs using the golfing scheme assume
an independence of certain random variables that will never be satisfied in general. The techniques used
in this paper are different and overcome this issue yielding complete generality. Moreover, unlike almost
all existing works, our results address both the finite- and infinite-dimensional CS settings. This extends
(and improves) a line of work initiated in [3], and calls for a number of more sophisticated mathematical
techniques.

Remark 1.1 Since the initial preprint of this work, there have been several other applications and extensions
inspired by the first version which we now mention for the reader’s benefit. First, the multilevel sampling
strategies we introduced have been extended to block sampling strategies [10, 12, 20, 21], which are more
practical for applications such as MRI. A type of multilevel subsampling has also be considered in [49, 50]
in the context of practical compressive imaging architectures, with application to single-pixel [37, 77] and
lensless imaging [85]. Our main results in this paper provide a theoretical foundation for these implementa-
tions. There have also been several theoretical extensions. First, generalizations of the RIP for the setting of
asymptotic sparsity, asymptotic incoherence and multilevel random subsampling have been introduced and
analyzed in [9, 59, 79]. These complement the results proved in this paper by establishing uniform recovery
guarantees. Second, there have been extensions to redundant sparsifying transforms [68] (see also [56] for
the case of shearlets) and to total variation minimization [67] respectively.

2 Motivation
In this section, we discuss how the standard theory of CS falls short in explaining its empirical success in
many applications. Specifically, even in well-known applications such as MRI (note that MRI was one of the
first applications of CS [57, 60, 61, 62]), there is a significant gap between theory and practice.

2.1 Compressed sensing
We commence with a short review of aspects of finite-dimensional CS theory (infinite-dimensional CS will
be considered in §5). Since CS has been the subject of an body of research in the last decade we will not
attempt a full survey here, opting instead to focus on aspects most relevant to this paper. For much more
comprehensive reviews, including historical context and discussion, we refer to [14, 36, 35, 29, 39, 40, 41].

A typical setup in CS, and one which we shall follow in part of this paper, is as follows. Let {ψj}Nj=1

and {ϕj}Nj=1 be two orthonormal bases of CN , the sampling and sparsity bases respectively, and write
U = (uij)

N
i,j=1 ∈ CN×N , uij = 〈ϕj , ψi〉. Note that U is an isometry, i.e. U∗U = I .

Definition 2.1. Let U = (uij)
N
i,j=1 ∈ CN×N be an isometry. The coherence of U is precisely

µ(U) = max
i,j=1,...,N

|uij |2 ∈ [N−1, 1]. (2.1)

We say that U is perfectly incoherent if µ(U) = N−1.

A signal f ∈ CN is said to be s-sparse in the orthonormal basis {ϕj}Nj=1 if at most s of its coefficients
in this basis are nonzero. In other words, f =

∑N
j=1 xjϕj , and the vector x ∈ CN satisfies |supp(x)| ≤ s,

where supp(x) = {j : xj 6= 0}. Let f ∈ CN be s-sparse in {ϕj}Nj=1, and suppose we have access to the
samples f̂j = 〈f, ψj〉, j = 1, . . . , N. Let Ω ⊆ {1, . . . , N} be of cardinality m and chosen uniformly at
random. According to a result of Candès & Plan [16] and Adcock & Hansen [3], f can be recovered exactly
with probability exceeding 1− ε from the subset of measurements {f̂j : j ∈ Ω}, provided

m & µ(U) ·N · s ·
(
1 + log(ε−1)

)
· log(N), (2.2)

(here and elsewhere in this paper we shall use the notation a & b to mean that there exists a constant C > 0
independent of all relevant parameters such that a ≥ Cb). In practice, recovery can be achieved by solving
the following convex optimization problem:

min
η∈CN

‖η‖l1 subject to PΩUη = PΩf̂ , (2.3)
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Figure 1: Left to right: (i) 5% uniform random subsampling scheme, (ii) CS reconstruction from uniform
subsampling, (iii) 5% multilevel subsampling scheme, (iv) CS reconstruction from multilevel subsampling.

where f̂ = (f̂1, . . . , f̂N )> and PΩ ∈ CN×N is the diagonal projection matrix with jth entry 1 if j ∈ Ω
and zero otherwise. The key estimate (2.2) shows that the number of measurements m required is, up to a
log factor, on the order of the sparsity s, provided the coherence µ(U) = O

(
N−1

)
. This is the case, for

example, when U is the DFT matrix; a problem which was studied in some of the first papers on CS [18].

2.2 Incoherence is often lacking
As mentioned, in a number of important applications, not least MRI, the sampling is carried out in the
Fourier domain. Since images are approximately sparse in wavelets, the usual CS setup is to form the
matrix UN = UdfV

−1
dw ∈ CN×N , where Udf and Vdw represent the discrete Fourier and wavelet transforms

respectively.
Unfortunately, in the case the coherence satisfies µ(UN ) = O (1) as N → ∞, for any wavelet basis.

Thus, this problem has the worst possible coherence, and the standard CS estimate (2.2) states that m = N
samples are needed in this case (i.e. full sampling), even though the object to recover is typically highly
sparse. Note that this is not an insufficiency of the theory: as seen in Figure 1, uniform random subsampling
in this problem yields an extremely poor reconstruction.

Although the presence of high coherence has been well-documented in the MRI context [60, 61, 62], the
source of it has not been fully explained. As it transpires, the underlying reason for this lack of incoherence
can be traced to the fact that this finite-dimensional problem is a discretization of an infinite-dimensional
problem. Specifically,

WOT-lim
N→∞

UdfV
−1
dw = U, (2.4)

where U : l2(N)→ l2(N) is the operator represented as the infinite matrix

U = {〈ϕi, ψj〉}i,j∈N, (2.5)

and the functions ϕj are the wavelets used, the ψj’s are the standard complex exponentials and WOT denotes
the weak operator topology. Since the coherence of the infinite matrix U – i.e. the supremum of its entries
in absolute value – is a fixed number independent of the discretization N , we cannot expect incoherence of
the discretization UN (that is, UN = O

(
N−1

)
) for large N . In other words, at some point one will always

encounter the so-called coherence barrier. To mitigate this problem, one may naturally try to change {ϕj}
or {ψj}. However, this will deliver only marginal benefits: (2.4) demonstrates that the coherence barrier will
always occur for large enough N , regardless of the choice of the bases.

Note that this issue is not isolated to this particular example. Informally, any problem that arises as a
discretization of an infinite-dimensional problem will suffer from the same phenomenon. The list of appli-
cations of this type is long, and includes for example, MRI, CT, microscopy and seismology.

In view of the coherence barrier, one may wonder how it is possible that CS is applied so successfully
to many such problems. The key is so-called asymptotic incoherence (see §3.1) and the use of variable
density subsampling strategies. The success of such a subsampling is well known in the CS MRI community
[60, 61, 62, 70, 69] and is confirmed numerically in Figure 1. However, it is important to note that this is an
empirical solution to the problem. None of the usual CS theory discussed in §2.1 explains the effectiveness
of CS when implemented in this way.
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2.3 Sparsity, the flip test and the absence of RIP
The previous discussion demonstrates that we must dispense with the principles of incoherence and uniform
random subsampling in order to develop a new framework. We now claim that sparsity too must also be
replaced with a more general concept. This may come as a surprise to the reader, since sparsity is a central
pillar of not just CS, but much of modern signal processing. However, this can be confirmed by a simple
experiment we refer to as the flip test.

Sparsity asserts that an unknown vector x has s important coefficients, where the locations can be arbi-
trary, and classical CS theory states that such vectors can be recovered by sampling in a way that is indepen-
dent of the locations of these coefficients. The flip test, described next, allows one to evaluate the validity of
this statement for a given problem.

We proceed as follows. Let x ∈ CN and U ∈ CN×N . Take samples according to some appropriate
subset Ω ⊆ {1, . . . , N} with |Ω| = m, and solve:

min
z∈CN

‖z‖1 subject to PΩUz = PΩUx. (2.6)

This gives a reconstruction z = z1. Now we flip the entries of x through the operation x 7→ xfp ∈ CN ,
xfp

1 = xN , x
fp
2 = xN−1, . . . , x

fp
N = x1, giving a new vector xfp with reversed entries. We next apply the

same CS reconstruction to xfp, using the same matrix U and the same subset Ω. That is, we solve (2.6) with
x replaced by xfp and denote the solution by z. We perform the flipping operation once more and form the
final reconstruction z2 = zfp.

Suppose now that Ω is a good sampling pattern for recovering x using the solution z1 of (2.6). If sparsity
alone is the key structure that determines such reconstruction quality, then we expect roughly the same
quality in the approximation z2, since xfp is merely a permutation of x. To check whether or not this is
true, we consider examples arising from the following applications: fluorescence microscopy, compressive
imaging, MRI, CT, electron microscopy and radio interferometry. These examples are all based on either the
matrix U = UdftV

−1
dwt or the matrix U = UHadV

−1
dwt, where Udft is the discrete Fourier transform, UHad is a

Hadamard matrix and Vdwt is the discrete wavelet transform.
The results are shown in Figure 2. In all cases the flipped reconstructions z2 are substantially worse than

their unflipped counterparts z1. We therefore conclude that sparsity alone does not govern the reconstruction
quality, and that the successful recovery in the unflipped case must also be due in part to the structure of the
signal. Put another way: the best subsampling strategy depends on the signal structure.

The flip also test reveals another interesting phenomenon: the Restricted Isometry Property (RIP) does
not hold. Suppose the matrix PΩU satisfied an RIP for realistic parameter values (i.e. problem size N ,
subsampling percentage m, and sparsity s) found in applications. Then this would imply recovery of all
approximately sparse vectors with the same error, in contradiction with the results of the flip test. As was
mentioned in §1.1, the absence of RIP here is not related to uniform versus nonuniform recovery regimes,
but to the key role that the sparsity structure plays in the recovery quality. Indeed, the result of Figure 2 could
have been repeated with more measurements and similar disparities in the reconstruction quality would still
have been observed.

2.4 Signals and images are asymptotically sparse in -lets
Since structure plays a key role, we now address what the structure is that leads to good reconstructions in
the unflipped case. Consider a wavelet basis {ϕn}n∈N. There is a natural decomposition of N into finite
subsets according to the wavelet scales, N=

⋃
k∈N{Mk−1+1, . . . ,Mk}, where 0=M0<M1<M2<. . . and

{Mk−1 +1, . . . ,Mk} is the set of indices corresponding to the kth scale. Let x ∈ l2(N) be the coefficients
of a function f in this basis, ε ∈ (0, 1] and define the global sparsity, s, and the sparsity at the kth level, sk
as follows:

s = s(ε) = min
{
n :
∥∥∥ ∑
i∈Mn

xiϕi

∥∥∥ ≥ ε∥∥∥ ∞∑
j=1

xjϕj

∥∥∥},
sk = sk(ε) =

∣∣Ms(ε) ∩ {Mk−1 + 1, . . . ,Mk}
∣∣ , (2.7)

whereMn is the set of indices of the largest n coefficients in absolute value and |·| is the set cardinality. A
well-known result in nonlinear approximation, and one which significantly predates the development of CS,
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CS reconstruction CS reconstruction w/ flip Subsampling pattern used

512×512

10%

UHad·V −1
dwt

Fluorescence
Microscopy

512×512

15%

UHad·V −1
dwt

Compressive
Imaging,
Hadamard
Spectroscopy

1024×1024

20%

Udft·V −1
dwt

Magnetic
Resonance
Imaging

512×512

12%

Udft·V −1
dwt

Tomography,
Electron
Microscopy

512×512

15%

Udft·V −1
dwt

Radio
interferometry

Figure 2: Reconstructions via CS (left column) and the flipped wavelet coefficients (middle column). The
right column shows the subsampling map used. The percentage shown is the fraction of Fourier or Hadamard
coefficients that were sampled. The reconstruction basis was DB4 for the Fluorescence microscopy example,
and DB6 for the rest.
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Figure 3: Relative per-level sparsities of the Daubechies-4 wavelet coefficients of two images. Here the
levels correspond to wavelet scales and sk(ε) is given by (2.7). The decreasing nature of the curves for
increasing k confirms (2.8).

is that typical images and signals are sparse in wavelets [30, 63]. However, it is also well known that their
coefficients exhibit far more structure than sparsity alone. Indeed, the relative per-level sparsity

sk/(Mk −Mk−1) −→ 0, (2.8)

rapidly as k → ∞ for any fixed ε ∈ (0, 1]. Thus typical signals and images have a distinct asymptotic
sparsity structure: they are much sparser at fine scales (large k) than at coarse scales (small k). This is shown
numerically in Figure 3. Note that this holds for most related approximation systems, such as curvelets
[13, 15], contourlets [31, 65] or shearlets [25, 26, 55].

3 New principles
Having argued why they are needed, we now formally introduce the main concepts of the paper: namely,
asymptotic incoherence, asymptotic sparsity and multilevel sampling.

3.1 Asymptotic incoherence
Recall from §2.2 that Fourier sampling with wavelets as the sparsity basis is a standard example of a coherent
problem. Similarly, Fourier sampling with Legendre polynomials is also coherent, as is the case of Hadamard
sampling with wavelets. In Figure 4 we plot the absolute values of the entries of the matrix U for these three
examples. As is evident, whilst U does indeed have large entries in all three case (since it is coherent), these
are isolated to a leading submatrix (note that we enumerate over Z for the Fourier sampling basis and N
for the wavelet/Legendre sparsity bases). As one moves away from this region the values get progressively
smaller, i.e. more incoherent. This motivates the following definition:

Definition 3.1 (Asymptotic incoherence). Let be {UN} be a sequence of isometries withUN ∈ CN×N . Then
{UN} is asymptotically incoherent if µ(P⊥KUN ), µ(UNP

⊥
K )→ 0 when K →∞ with N/K = c, for all c ≥

1. Conversely, if U ∈ B(l2(N)) then we say that U is asymptotically incoherent if µ(P⊥KU), µ(UP⊥K ) → 0
when K →∞.
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Figure 4: The absolute values of the matrix U in (2.5): (left): Daubechies-4 wavelets with Fourier sampling.
(middle): Legendre polynomials with Fourier sampling. (right): Haar wavelets with Hadamard sampling.
Light regions correspond to large values and dark regions to small values.

Note that in this definition we use the notation PK for the projection onto span{ej : j = 1, ...,K},
where {ej} is the canonical basis of either CN or l2(N), and P⊥K is its orthogonal complement.

In other words, U (or UN ) is asymptotically incoherent if the coherences of the matrices formed by
replacing either the first K rows or columns of U are small. As it transpires, the Fourier-wavelets, Fourier-
Legendre and Hadamard-wavelets problems are all asymptotically incoherent. In particular, for wavelets one
has µ(P⊥KU), µ(UP⊥K ) = O

(
K−1

)
as K →∞ for the former (see §6, see also [53] for the Legendre case).

3.2 Multi-level sampling
Asymptotic incoherence suggests a different subsampling strategy should be used instead of uniform random
sampling. High coherence in the first few rows of U means that important information about the signal to
be recovered may well be contained in its corresponding measurements. Hence to ensure good recovery
we should fully sample these rows. Conversely, once outside of this region, when the coherence starts to
decrease, we can begin to subsample. Let N1, N,m ∈ N be given. This now leads us to consider an index
set Ω of the form Ω = Ω1 ∪Ω2, where Ω1 = {1, . . . , N1}, and Ω2 ⊆ {N1 + 1, . . . , N} is chosen uniformly
at random with |Ω2| = m. We refer to this as a two-level sampling scheme. As we shall prove later, the
amount of subsampling possible (i.e. the parameter m) in the region corresponding to Ω2 will depend solely
on the sparsity of the signal and coherence µ(P⊥N1

U).
A two-level scheme represents the simplest type of nonuniform density sampling. There is no reason,

however, to restrict our attention to just two levels, full and subsampled. In general, we shall consider
multilevel schemes, defined as follows:

Definition 3.2 (Multilevel random sampling). Let r ∈ N, N = (N1, . . . , Nr) ∈ Nr with 1 ≤ N1 <
. . . < Nr, m = (m1, . . . ,mr) ∈ Nr, with mk ≤ Nk − Nk−1, k = 1, . . . , r, and suppose that Ωk ⊆
{Nk−1 + 1, . . . , Nk}, |Ωk| = mk, k = 1, . . . , r, are chosen uniformly at random, where N0 = 0. We
refer to the set Ω = ΩN,m = Ω1 ∪ . . . ∪ Ωr. as an (N,m)-multilevel sampling scheme.

As discussed earlier, two-level [32, 62, 76, 73] and multilevel [81, 17] schemes have been considered
previously in the context of the recovery of wavelet coefficients, and often for specific applications (e.g.
MRI in [62] and fluorescence microscopy in [76]). We refer to §1.2 for further details. On the other hand,
although motivated by wavelets, this definition is completely general and allows for other types of structured
coefficients. Moreover, it is accompanied by full theoretical recovery guarantees (see §4 and §5).

3.3 Asymptotic sparsity in levels
The flip test, the discussion in §2.4 and Figure 3 suggest that we need a different concept to sparsity. Given
the structure of function systems such as wavelets and their generalizations, we now propose the following:

Definition 3.3 (Sparsity in levels). Let x be an element of either CN or l2(N). For r ∈ N let M =
(M1, . . . ,Mr) ∈ Nr with 1 ≤ M1 < . . . < Mr and s = (s1, . . . , sr) ∈ Nr, with sk ≤ Mk −Mk−1,
k = 1, . . . , r, where M0 = 0. We say that x is (s,M)-sparse if, for each k = 1, . . . , r, ∆k := supp(x) ∩
{Mk−1 + 1, . . . ,Mk}, satisfies |∆k| ≤ sk. We denote the set of (s,M)-sparse vectors by Σs,M.
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Definition 3.4 ((s,M)-term approximation). Let f =
∑
j xjϕj , where {ϕj} is some orthonormal basis of a

Hilbert space and x = (xj) is an element of either CN or l2(N). We define the (s,M)-term approximation

σs,M(f) = min
η∈Σs,M

‖x− η‖l1 . (3.1)

Typically, it is the case that sk/(Mk −Mk−1)→ 0 as k →∞, in which case we say that x is asymptot-
ically sparse in levels. However, our main results do not explicitly require such decay. As discussed in §1.2,
sparsity in levels is a type of structured sparsity. We note in passing that it is quite different to the notions
of block sparsity [8], weighted sparsity [71] or tree-structured sparsity [8], the latter of which has been used
previously in the context of model-based CS for the recovery of wavelet coefficients. For further discussion
on different structured sparsity models in CS, we refer to [11, 79].

4 Main theorems I: the finite-dimensional case
We now present our main theorems in the finite-dimensional setting. In §5 we address the infinite-dimensional
case. To avoid pathological examples we will assume throughout that the total sparsity s = s1 +. . .+sr ≥ 3.
This is simply to ensure that log(s) ≥ 1, which is convenient in the proofs.

4.1 Two-level sampling schemes
We commence with the case of two-level sampling schemes. Recall that in practice, signals are never exactly
sparse (or sparse in levels), and their measurements are always contaminated by noise. Let f =

∑
j xjϕj be

a fixed signal, and write y = PΩf̂ + z = PΩUx + z, for its noisy measurements, where z ∈ ran(PΩ) is a
noise vector satisfying ‖z‖ ≤ δ for some δ ≥ 0. If δ is known, we now consider the following problem:

min
η∈CN

‖η‖l1 subject to ‖PΩUη − y‖ ≤ δ. (4.1)

Our aim now is to recover x up to an error proportional to δ and the best approximation error σs,M(f).
Before stating our theorem, it is useful to make the following definition. For K ∈ N, we write µK =

µ(P⊥KU). We now have the following:

Theorem 4.1. LetU ∈ CN×N be an isometry and x ∈ CN . Suppose that Ω = ΩN,m is a two-level sampling
scheme, where N = (N1, N2), N2 = N , and m = (N1,m2). Let (s,M), where M = (M1,M2) ∈ N2,
M1 < M2, M2 = N , and s = (M1, s2) ∈ N2, s2 ≤M2 −M1, be any pair such that the following holds:

(i) we have
‖P⊥N1

UPM1‖ ≤
γ√
M1

(4.2)

and γ ≤ s2
√
µN1

for some γ ∈ (0, 2/5];

(ii) for ε ∈ (0, e−1], let
m2 & (N −N1) · log(ε−1) · µN1 · s2 · log (N) .

Suppose that ξ ∈ CN is a minimizer of (4.1) with δ = δ̃
√
K−1 and K = (N2 − N1)/m2. Then, with

probability exceeding 1− sε, we have

‖ξ − x‖ ≤ C ·
(
δ̃ ·
(
1 + L ·

√
s
)

+ σs,M(f)
)
, (4.3)

for some constant C, where σs,M(f) is as in (3.1), L = 1 +

√
log2(6ε−1)

log2(4KM
√
s)

. If m2 = N −N1 then this holds
with probability 1.

To interpret Theorem 4.1, and in particular, show how it overcomes the coherence barrier, we note the
following:

(i) The condition ‖P⊥N1
UPM1

‖ ≤ 2
5
√
M1

(which is always satisfied for some N1) implies that fully sam-
pling the first N1 measurements allows one to recover the first M1 coefficients of f .
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(ii) To recover the remaining s2 coefficients we require, up to log factors, an additional m2 & (N −N1) ·
µN1 ·s2,measurements, taken randomly from the rangeM1 +1, . . . ,M2. In particular, ifN1 is a fixed
fraction of N , and if µN1 = O

(
N−1

1

)
, such as for wavelets with Fourier measurements (Theorem

6.1), then one requires only m2 & s2 additional measurements to recover the sparse part of the signal.

Thus, in the case where x is asymptotically sparse, we require a fixed number N1 measurements to recover
the nonsparse part of x, and then a numberm2 depending on s2 and the asymptotic coherence µN1

to recover
the sparse part.

Remark 4.1 It is not necessary to know the sparsity structure, i.e. the values s and M, of the signal f
in order to implement the two-level sampling technique (the same also applies to the multilevel technique
discussed in the next section). Given a two-level scheme Ω = ΩN,m, Theorem 4.1 demonstrates that f will
be recovered exactly up to an error on the order of σs,M(f), where s and M are determined implicitly by
N, m and the conditions (i) and (ii) of the theorem. Of course, some a priori knowledge of s and M will
greatly assist in selecting the parameters N and m so as to get the best recovery results. However, this is not
strictly necessary for implementation.

4.2 Multilevel sampling schemes
We now consider the case of multilevel sampling schemes. Before presenting this case, we need several
definitions. The first is key concept in this paper: namely, the local coherence.

Definition 4.2 (Local coherence). Let U be an isometry of either CN or l2(N). If N = (N1, . . . , Nr) ∈ Nr
and M = (M1, . . . ,Mr) ∈ Nr with 1 ≤ N1 < . . .Nr and 1 ≤M1 < . . . < Mr the (k, l)th local coherence
of U with respect to N and M is given by

µN,M(k, l) =

√
µ(P

Nk−1

Nk
UP

Ml−1

Ml
) · µ(P

Nk−1

Nk
U), k, l = 1, . . . , r,

where N0 = M0 = 0 and P ab denotes the projection matrix corresponding to indices {a+ 1, . . . , b}. In the
case where U ∈ B(l2(N)) (i.e. U belongs to the space of bounded operators on l2(N)), we also define

µN,M(k,∞) =
√
µ(P

Nk−1

Nk
UP⊥Mr−1

) · µ(P
Nk−1

Nk
U), k = 1, . . . , r.

Besides the local sparsities sk, we shall also require the notion of a relative sparsity:

Definition 4.3 (Relative sparsity). Let U be an isometry of either CN or l2(N). For N = (N1, . . . , Nr) ∈
Nr, M = (M1, . . . ,Mr) ∈ Nr with 1 ≤ N1 < . . . < Nr and 1 ≤ M1 < . . . < Mr, s = (s1, . . . , sr) ∈ Nr

and 1 ≤ k ≤ r, the kth relative sparsity is given by Sk = Sk(N,M, s) = maxη∈Θ ‖P
Nk−1

Nk
Uη‖2, where

N0 = M0 = 0 and Θ is the set

Θ = {η : ‖η‖l∞ ≤ 1, |supp(P
Ml−1

Ml
η)| = sl, l = 1, . . . , r}.

We can now present our main theorem:

Theorem 4.4. Let U ∈ CN×N be an isometry and x ∈ CN . Suppose that Ω = ΩN,m is a multilevel
sampling scheme, where N = (N1, . . . , Nr) ∈ Nr, Nr = N , and m = (m1, . . . ,mr) ∈ Nr. Let (s,M),
where M = (M1, . . . ,Mr) ∈ Nr, Mr = N , and s = (s1, . . . , sr) ∈ Nr, be any pair such that the following
holds: for ε ∈ (0, e−1] and 1 ≤ k ≤ r,

1 &
Nk −Nk−1

mk
· log(ε−1) ·

(
r∑
l=1

µN,M(k, l) · sl

)
· log (N) , (4.4)

where mk & m̂k · log(ε−1) · log (N) , and m̂k is such that

1 &
r∑

k=1

(
Nk −Nk−1

m̂k
− 1

)
· µN,M(k, l) · s̃k, (4.5)

for all l = 1, . . . , r and all s̃1, . . . , s̃r ∈ (0,∞) satisfying

s̃1 + . . .+ s̃r ≤ s1 + . . .+ sr, s̃k ≤ Sk(N,M, s).
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Suppose that ξ ∈ CN is a minimizer of (4.1) with δ = δ̃
√
K−1 and K = max1≤k≤r{(Nk − Nk−1)/mk}.

Then, with probability exceeding 1− sε, where s = s1 + . . .+ sr, we have that

‖ξ − x‖ ≤ C ·
(
δ̃ ·
(
1 + L ·

√
s
)

+ σs,M(f)
)
,

for some constant C, where σs,M(f) is as in (3.1), L = 1 +

√
log2(6ε−1)

log2(4KM
√
s)

. If mk = Nk −Nk−1, 1 ≤ k ≤ r,
then this holds with probability 1.

The key component of this theorem is the bounds (4.4) and (4.5). Whereas the standard CS estimate
(2.2) relates the total number of samples m to the global coherence and the global sparsity, these bounds
now relate the local sampling mk to the local coherences µN,M(k, l) and local and relative sparsities sk and
Sk. In particular, by relating these local quantities this theorem conforms with the conclusions of the flip test
in §2.3: namely, that the optimal sampling strategy must depend on the signal structure. This is exactly what
is described in (4.4) and (4.5).

On the face of it, the bounds (4.4) and (4.5) may appear somewhat complicated, not least because they
involve the relative sparsities Sk. As we next show, however, they are indeed sharp in the sense that they
reduce to the correct information-theoretic limits in several important cases. Furthermore, in the important
case of wavelet sparsity with Fourier sampling, they can be used to provide near-optimal recovery guarantees.
We discuss this in §6. Note, however, that to do this it is first necessary to generalize Theorem 4.4 to the
infinite-dimensional setting, which we do in §5.

4.2.1 Sharpness of the estimates – the block-diagonal case

Suppose that Ω = ΩN,m is a multilevel sampling scheme, where N = (N1, . . . , Nr) ∈ Nr and m =
(m1, . . . ,mr) ∈ Nr. Let (s,M), where M = (M1, . . . ,Mr) ∈ Nr, and suppose for simplicity that M = N.
Consider the block-diagonal matrix

A = A1 ⊕ . . .⊕Ar ∈ CN×N , Ak ∈ C(Nk−Nk−1)×(Nk−Nk−1), A∗kAk = I,

where N0 = 0. Note that in this setting we have Sk = sk, µN,M(k, l) = 0, k 6= l. Also, since
µ(N,M)(k, k) = µ(Ak), equations (4.4) and (4.5) reduce to

1 &
Nk −Nk−1

mk
· log(ε−1) · µ(Ak) · sk · log(N), 1 &

(
Nk −Nk−1

m̂k
− 1

)
· µ(Ak) · sk.

In particular, it suffices to take

mk & (Nk −Nk−1) · log(ε−1) · µ(Ak) · sk · log(N), 1 ≤ k ≤ r. (4.6)

This is exactly as one expects: the number of measurements in the kth level depends on the size of the level
multiplied by the local coherence and the sparsity in that level. Note that this result recovers the standard
one-level results in finite dimensions [3, 16] up to a slight deterioration in the probability bound to 1 − sε.
Specifically, the usual bound would be 1− ε. The question as to whether or not this s can be removed in the
multilevel setting is open, although such a result would be more of a cosmetic improvement.

4.2.2 Sharpness of the estimates – the non-block diagonal case

The previous argument demonstrated that Theorem 4.4 is sharp, up to the probability term, in the sense that
it reduces to the usual estimate (4.6) for block-diagonal matrices, i.e. Sk = sk. This is not true in the general
setting. Clearly, Sk ≤ s = s1 + . . .+ sr. However in general there is usually interference between different
sparsity levels, which means that Sk need not have anything to do with sk, or can indeed be proportional
to the total sparsity s. This may seem an undesirable aspect of the theorems, since Sk may be significantly
larger than sk, and thus the estimate on the number of measurements mk required in the kth level may also
be much larger than the corresponding sparsity sk. Could it therefore be that the Sk’s are an unfortunate
artefact of the proof? As we now show by example, this is not the case.

Let N = rn for some n ∈ N and N = M = (n, 2n, . . . , rn). Let W ∈ Cn×n and V ∈ Cr×r be
isometries and consider the matrix

A = V ⊗W,

12



where ⊗ is the usual Kronecker product. Note that A ∈ CN×N is also an isometry. Now suppose that
x = (x1, . . . , xr) ∈ CN is an (s,M)-sparse vector, where each xk ∈ Cn is sk-sparse. Then Ax = y, y =
(y1, . . . , yr), yk = Wzk, zk =

∑r
l=1 vklxl. Hence the problem of recovering x from measurements y with

an (N,m)-multilevel strategy decouples into r problems of recovering the vector zk from the measurements
yk = Wzk, k = 1, . . . , r. Let ŝk denote the sparsity of zk. Since the coherence provides an information-
theoretic limit [16], one requires at least

mk & n · µ(W ) · ŝk · log(n), 1 ≤ k ≤ r. (4.7)

measurements at level k in order to recover each zk, and therefore recover x, regardless of the reconstruction
method used. We now consider two examples of this setup:

Example 4.1 Let π : {1, . . . , r} → {1, . . . , r} be a permutation and let V be the matrix with entries vkl =
δl,π(k). Since zk = xπ(k) in this case, the lower bound (4.7) reads

mk & n · µ(W ) · sπ(k) · log(n), 1 ≤ k ≤ r. (4.8)

Now consider Theorem 4.4 for this matrix. First, we note that Sk = sπ(k). In particular, Sk is completely
unrelated to sk. Substituting this into Theorem 4.4 and noting that µN,M(k, l) = µ(W )δl,π(k) in this case,
we arrive at the condition mk & n · µ(W ) · sπ(k) ·

(
log(ε−1) + 1

)
· log(nr), which is equivalent to (4.8)

provided r . n.

Example 4.2 Now suppose that V is the r × r DFT matrix. Suppose also that s ≤ n/r and that the
xk’s have disjoint support sets, i.e. supp(xk) ∩ supp(xl) = ∅, k 6= l. Then by construction, each zk is
s-sparse, and therefore the lower bound (4.7) reads mk & n · µ(W ) · s · log n, for 1 ≤ k ≤ r. After a
short argument, one finds that s/r ≤ Sk ≤ s in this case. Hence, Sk is typically much larger than sk.
Moreover, after noting that µN,M(k, l) = 1

rµ(W ), we find that Theorem 4.4 gives the condition mk &
n · µ(W ) · s ·

(
log(ε−1) + 1

)
· log(nr). Thus, Theorem 4.4 obtains the lower bound in this case as well.

4.2.3 Sparsity leads to pessimistic reconstruction guarantees

The flip test demonstrates that any sparsity-based theory of CS cannot describe the quality of the reconstruc-
tions seen in practice. To conclude this section, we now use the block-diagonal case to further emphasize
the need for theorems that go beyond sparsity, such as Theorems 4.1 and 4.4. To see this, consider the
block-diagonal matrix

U = U1 ⊕ . . .⊕ Ur, Uk ∈ C(Nk−Nk−1)×(Nk−Nk−1),

where each Uk is perfectly incoherent, i.e. µ(Uk) = (Nk−Nk−1)−1, and suppose we takemk measurements
within each block Uk. Let x ∈ CN be the signal we wish to recover, where N = Nr. The question is, how
many samples m = m1 + . . .+mr do we require?

Suppose we assume that x is s-sparse, where s ≤ mink=1,...,r{Nk − Nk−1}. Given no further infor-
mation about the sparsity structure, it is necessary to take mk & s log(N) measurements in each block,
giving m & rs log(N) in total. However, suppose now that x is known to be sk-sparse within each level,
i.e. |supp(x) ∩ {Nk−1 + 1, . . . , Nk}| = sk. Then we now require only mk & sk log(N), and therefore
m & s log(N) total measurements. Thus, structured sparsity leads to a significant saving by a factor of r
in the total number of measurements required. Although a cosmetic example, we note in passing that the
Fourier-wavelets matrix is approximately block diagonal with incoherent blocks, and that the number of
levels r in this case is proportional to the log of the signal size.

5 Main theorems II: the infinite-dimensional case
Finite-dimensional CS is suitable in many cases. However, there are some important problems where it
can lead to significant problems, since the underlying problem is continuous/analog. Discretization of the
problem in order to produce a finite-dimensional, vector-space model can lead to substantial errors [3, 7, 22,
75], due to the phenomenon of model mismatch.

To address this issue, a theory of infinite-dimensional CS was introduced by two of the authors in [3],
based on a novel approach to classical sampling known as generalized sampling [1, 2, 4, 5, 6, 52]. We
describe this theory next. Note that this infinite-dimensional CS model has also been advocated for and
implemented in MRI by Guerquin–Kern, Häberlin, Pruessmann & Unser [45].
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5.1 Infinite-dimensional CS
Suppose that H is a separable Hilbert space over C, and let {ψj}j∈N be an orthonormal basis on H (the
sampling basis). Let {ϕj}j∈N be an orthonormal system inH (the sparsity system), and suppose that

U = (uij)i,j∈N, uij = 〈ϕj , ψi〉, (5.1)

is an infinite matrix. We may consider U as an element of B(l2(N)); the space of bounded operators on
l2(N). As in the finite-dimensional case, U is an isometry, and we may define its coherence µ(U) ∈ (0, 1]
analogously to (2.1). We want to recover f =

∑
j∈N xjϕj ∈ H from a small number of the measurements

f̂ = {f̂j}j∈N, where f̂j = 〈f, ψj〉. To do this, we introduce a second parameter N ∈ N, and let Ω be a
randomly-chosen subset of indices 1, . . . , N of size m. Unlike in finite dimensions, we now consider two
cases. Suppose first that P⊥Mx = 0, i.e. x has no tail. Then we solve

inf
η∈l1(N)

‖η‖l1 subject to ‖PΩUPMη − y‖ ≤ δ, (5.2)

where y = PΩf̂ + z and z ∈ ran(PΩ) is a noise vector satisfying ‖z‖ ≤ δ, and PΩ is the projection operator
corresponding to the index set Ω. In [3] it was proved that any solution to (5.2) recovers f exactly up to an
error determined by σs,M (f), provided N and m satisfy the so-called weak balancing property with respect
to M and s (see Definition 5.1, as well as Remark 5.1 for a discussion), and provided

m & µ(U) ·N · s ·
(
1 + log(ε−1)

)
· log

(
m−1MN

√
s
)
. (5.3)

As in the finite-dimensional case, which turns out to be a corollary of this result, we find that m is on the
order of the sparsity s whenever µ(U) is sufficiently small.

In practice, the condition P⊥Mx = 0 is unrealistic. In the more general case, P⊥Mx 6= 0, we solve the
following problem:

inf
η∈l1(N)

‖η‖l1 subject to ‖PΩUη − y‖ ≤ δ. (5.4)

In [3] it was shown that any solution of (5.4) recovers f exactly up to an error determined by σs,M (f),
provided N and m satisfy the so-called strong balancing property with respect to M and s (see Definition
5.1), and provided a bound similar to (5.3) holds, where the M is replaced by a slightly larger constant (we
give the details in the next section in the more general setting of multilevel sampling). Note that (5.4) cannot
be solved numerically, since it is infinite-dimensional. Therefore in practice we replace (5.4) by

inf
η∈l1(N)

‖η‖l1 subject to ‖PΩUPRη − y‖ ≤ δ, (5.5)

where R is taken sufficiently large. See [3] for more information.

5.2 Main theorems
We first require the definition of the so-called balancing property [3]:

Definition 5.1 (Balancing property). Let U ∈ B(l2(N)) be an isometry. Then N ∈ N and K ≥ 1 satisfy the
weak balancing property with respect to U, M ∈ N and s ∈ N if

‖PMU∗PNUPM − PM‖l∞→l∞ ≤
1

8

(
log

1/2
2

(
4
√
sKM

))−1

, (5.6)

where ‖·‖l∞→l∞ is the norm on B(l∞(N)). We say that N and K satisfy the strong balancing property with
respect to U, M and s if (5.6) holds, as well as

‖P⊥MU∗PNUPM‖l∞→l∞ ≤
1

8
. (5.7)

As in the previous section, we commence with the two-level case. Furthermore, to illustrate the differ-
ences between the weak/strong balancing property, we first consider the setting of (5.2):

Theorem 5.2. Let U ∈ B(l2(N)) be an isometry and x ∈ l1(N). Suppose that Ω = ΩN,m is a two-level
sampling scheme, where N = (N1, N2) and m = (N1,m2). Let (s,M), where M = (M1,M2) ∈ N2,
M1 < M2, and s = (M1, s2) ∈ N2, be any pair such that the following holds:
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(i) we have ‖P⊥N1
UPM1

‖ ≤ γ√
M1

and γ ≤ s2
√
µN1

for some γ ∈ (0, 2/5];

(ii) the parameters N = N2,K = (N2 −N1)/m2 satisfy the weak balancing property with respect to U ,
M := M2 and s := M1 + s2;

(iii) for ε ∈ (0, e−1], let

m2 & (N −N1) · log(ε−1) · µN1 · s2 · log
(
KM

√
s
)
.

Suppose that P⊥M2
x = 0 and let ξ ∈ l1(N) be a minimizer of (5.2) with δ = δ̃

√
K−1. Then, with probability

exceeding 1− sε, we have

‖ξ − x‖ ≤ C ·
(
δ̃ ·
(
1 + L ·

√
s
)

+ σs,M(f)
)
, (5.8)

for some constant C, where σs,M(f) is as in (3.1), and L = 1 +

√
log2(6ε−1)

log2(4KM
√
s)

. If m2 = N − N1 then this
holds with probability 1.

We next state a result for multilevel sampling in the more general setting of (5.4). For this, we require
the following notation: M̃ = min{i ∈ N : maxk≥i ‖PNUek‖ ≤ 1/(32K

√
s)}, where N , s and K are as

defined below.

Theorem 5.3. Let U ∈ B(l2(N)) be an isometry and x ∈ l1(N). Suppose that Ω = ΩN,m is a multilevel
sampling scheme, where N = (N1, . . . , Nr) ∈ Nr and m = (m1, . . . ,mr) ∈ Nr. Let (s,M), where
M = (M1, . . . ,Mr) ∈ Nr, M1 < . . . < Mr, and s = (s1, . . . , sr) ∈ Nr, be any pair such that the
following holds:

(i) the parameters N = Nr,K = maxk=1,...,r

{
Nk−Nk−1

mk

}
, satisfy the strong balancing property with

respect to U , M := Mr and s := s1 + . . .+ sr;

(ii) for ε ∈ (0, e−1] and 1 ≤ k ≤ r,

1 &
Nk −Nk−1

mk
· log(ε−1) ·

(
r∑
l=1

µN,M(k, l) · sl

)
· log

(
KM̃

√
s
)
,

(with µN,M(k, r) replaced by µN,M(k,∞)) and mk & m̂k · log(ε−1) · log
(
KM̃

√
s
)
, where m̂k

satisfies (4.5).

Suppose that ξ ∈ l1(N) is a minimizer of (5.4) with δ = δ̃
√
K−1. Then, with probability exceeding 1− sε,

‖ξ − x‖ ≤ C ·
(
δ̃ ·
(
1 + L ·

√
s
)

+ σs,M(f)
)
,

for some constant C, where σs,M(f) is as in (3.1), and L = C ·
(

1 +

√
log2(6ε−1)

log2(4KM
√
s)

)
. If mk = Nk −Nk−1

for 1 ≤ k ≤ r then this holds with probability 1.

This theorem removes the condition in Theorem 5.2 that x has zero tail. Note that the price to pay is
the M̃ in the logarithmic term rather than M (M̃ ≥ M because of the balancing property). Observe that
M̃ is finite, and in the case of Fourier sampling with wavelets, we have that M̃ = O (KN) (see §6). Note
that Theorem 5.2 has a strong form analogous to Theorem 5.3 which removes the tail condition. The only
difference is the requirement of the strong, as opposed to the weak, balancing property, and the replacement
of M by M̃ in the log factor. Similarly, Theorem 5.3 has a weak form involving a tail condition. For
succinctness we do not state these.

Remark 5.1 The balancing property is the main difference between the finite- and infinite-dimensional the-
orems. Its role is to ensure that the truncated matrix PNUPM is close to an isometry. In reconstruction
problems, the presence of an isometry ensures stability in the mapping between measurements and coeffi-
cients [1], which explains the need for a such a property in our theorems. As explained in [3], without the
balancing property the lack of stability in this mapping leads to numerically useless reconstructions. Note
that the balancing property is usually not satisfied for N = M , and in general one requires N > M for it to
hold. However, there is always a finite value of N for which it is satisfied, since the infinite matrix U is an
isometry. For details we refer to [3]. We will provide specific estimates in §6 for the required magnitude of
N in the case of Fourier sampling with wavelet sparsity.
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Original Original (zoomed) Infinite-dim. CS (zoomed) Finite-dim. CS (zoomed)
Err 0.6% Err 12.7%

Figure 5: Subsampling 6.15%. Both reconstructions are based on identical sampling information.

5.3 The need for infinite-dimensional CS
As mentioned, infinite-dimensional CS is needed to avoid artefacts that are introduced when one applies
finite-dimensional CS techniques to analog problems. To illustrate this, we consider the problem of recover-
ing a smooth phantom, i.e. a C∞ bivariate function, from its Fourier data. Note that this scenario arises in
both electron microscopy and spectroscopy. In Figure 5, we compare finite-dimensional CS, based on solv-
ing (4.1) with U = UdftV

−1
dwt (discrete Fourier and wavelet transform respectively) with infinite-dimensional

CS, which solves (5.5) with the Fourier basis {ψj}j∈N and boundary wavelet basis {ϕj}j∈N. The test func-
tion in this case is f(x, y) = cos2(17πx/2) cos2(17πy/2) exp(−x − y). The improvement one gets is due
to that fact that that the error in infinite-dimensional case is dominated by the wavelet approximation er-
ror, whereas in the finite-dimensional case (due mismatch between the continuous Fourier samples and the
discrete Fourier transform) the error is dominated by the Fourier approximation error. As is well known
[63], wavelet approximation is superior to Fourier approximation and depends on the number of vanishing
moments of the wavelet used (DB4 in this case).

6 Recovery of wavelet coefficients from Fourier samples
As noted, Fourier sampling with wavelet sparsity is a important reconstruction problem in CS, with numerous
applications ranging from medical imaging to seismology and interferometry. Here we consider the Fourier
sampling basis {ψj}j∈N and wavelet reconstruction basis {ϕj}j∈N (see §7.4.1 for a formal definition) with
the infinite matrix U as in (5.1). Its global incoherence properties are summarized as follows:

Theorem 6.1. Let U ∈ B(l2(N)) be the matrix from (7.107) corresponding to the Fourier-wavelets sys-
tem described in §7.4. Then µ(U) ≥ ω, where ω is the sampling density, whereas µ(P⊥NU), µ(UP⊥N ) =
O
(
N−1

)
.

Thus, Fourier sampling with wavelet sparsity is indeed globally coherent, yet asymptotically incoherent.
This result holds for essentially any wavelet basis in one dimension (see [53] for the multidimensional case).
To recover wavelet coefficients, we shall therefore seek to apply a multilevel sampling strategy, which raises
the questions: how do we design this strategy, and how many measurements are required? If the levels
M = (M1, . . . ,Mr) correspond to the wavelet scales, and s = (s1, . . . , sr) to the sparsities within them,
then the best one could hope to achieve is that the number of measurements mk in the kth sampling level
is proportional to the sparsity sk in the corresponding sparsity level. Our main theorem below shows that
multilevel sampling can achieve this, up to an exponentially-localized factor and the usual log terms.

Theorem 6.2. Consider an orthonormal basis of compactly supported wavelets with a multiresolution anal-
ysis (MRA). Let Φ and Ψ denote the scaling function and mother wavelet respectively satisfying (7.100)
with α ≥ 1. Suppose that Ψ has v ≥ 1 vanishing moments, that the Fourier sampling density ω satisfies
(7.105) and that the wavelets {ϕj} are ordered according to (7.102). Let f =

∑∞
j=1 xjϕj . Suppose that

M = (M1, . . . ,Mr) corresponds to wavelet scales with Mk = O
(
2Rk

)
with Rk ∈ N, Rk+1 = a + Rk,

a ≥ 1, k = 1, . . . , r and s = (s1, . . . , sr) corresponds to the sparsities within them. Let ε ∈ (0, e−1] and let
Ω = ΩN,m be a multilevel sampling scheme such that the following holds:
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(i) The parameters N = Nr, K = maxk=1,...,r, {(Nk − Nk−1)/mk}, M = Mr, s = s1 + . . . + sr

satisfy N & M1+1/(2α−1) · (log2(4MK
√
s))

1/(2α−1). Alternatively, if Φ and Ψ satisfy the slightly
stronger Fourier decay property (7.101), then N &M · (log2(4KM

√
s))

1/(4α−2).

(ii) For each k = 1, . . . , r − 1, Nk = 2Rkω−1 and for each k = 1, . . . , r,

mk & log(ε−1)· log(Ñ) · Nk −Nk−1

Nk−1
·

(
ŝk +

k−2∑
l=1

sl · 2−(α−1/2)Ak,l +

r∑
l=k+2

sl · 2−vBk,l
)
, (6.1)

where Ak,l = Rk−1 − Rl, Bk,l = Rl−1 − Rk, Ñ = (K
√
s)1+1/vN and ŝk = max{sk−1, sk, sk+1}

(see Remark 6.1).

Then, with probability exceeding 1− sε, any minimizer ξ ∈ l1(N) of (5.4) with δ = δ̃
√
K−1 satisfies

‖ξ − x‖ ≤ C ·
(
δ̃ ·
(
1 + L ·

√
s
)

+ σs,M(f)
)
, (6.2)

for some constant C, where σs,M(f) is as in (3.1), and L = C ·
(

1 +

√
log2(6ε−1)

log2(4KM
√
s)

)
. If mk = Nk −Nk−1

for 1 ≤ k ≤ r then this holds with probability 1.

Remark 6.1 To avoid cluttered notation we have abused notation slightly in (ii) of Theorem 6.2. In particu-
lar, we interpret s0 = 0, Nk−Nk−1

Nk−1
= N1 for k = 1, and

∑k−2
l=1 sl · 2−(α−1/2)Ak,l = 0 when k ≤ 2.

Given that one can never solve (5.4) exactly, but rather the truncated version (5.5), the following propo-
sition provides the guidance on how the truncation needs to be carried out in order to obtain the same error
bound as in Theorem 6.2.

Proposition 6.3. Given the setup in Theorem 6.2 with ξ ∈ l1(N) being a minimizer of (5.4), thus satisfying
the error bound (6.2). Let J be the number of wavelets up to dilation

R = log2

2πωN

(∥∥P⊥Kx∥∥2
· CΨ

δ

)1/v
 ,

where CΨ is a constant depending only on the underlying wavelet Ψ. If one instead solves

min
η∈∈CJ

‖η‖l1 subject to ‖PΩUPJη − y‖ ≤ 2δ, (6.3)

then any minimizer ξ̃ of (6.3) satisfies the same error bound (6.2) as ξ with a potentially different constant
C.

Theorem 6.2 provides the first comprehensive explanation for the observed success of CS in applications
based on the Fourier-wavelets model. The key estimate (6.1) shows that mk need only scale as a linear
combination of the local sparsities sl, 1 ≤ l ≤ r, and critically, the dependence of the sparsities sl for
l 6= k is exponentially diminishing in |k − l|. Note that the presence of the off-diagonal terms is due to
the previously-discussed phenomenon of interference, which occurs since the Fourier-wavelets system is
not exactly block diagonal. Nonetheless, the system is nearly block-diagonal, and this results in the near-
optimality seen in (6.1).

Observe that (6.1) is in agreement with the flip test: if the local sparsities sk change, then the subsampling
factorsmk must also change to ensure the same quality reconstruction. Having said that, it is straightforward
to deduce from (6.1) the following global sparsity bound:

m & s · log(ε−1) · log(Ñ),

where m = m1 + . . .+mr is the total number of measurements and s = s1 + . . .+ sr is the total sparsity.
Note in particular the optimal exponent in the log factor.
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Original image Random Bernoulli Multilevel Hadamard Multilevel Fourier
Err = 15.7% Err = 9.6% Err 8.7%

Figure 6: 12.5% subsampling at 256×256 resolution using DB4 wavelets and various different measurements.

Remark 6.2 The Fourier/wavelets recovery problem was studied by Candès & Romberg in [17]. Their
result shows that if, in an ideal setting, an image can be first separated into separate wavelet subbands before
sampling, then it can be recovered using approximately sk measurements (up to a log factor) in each sampling
band. Unfortunately, such separation into separate wavelet subbands before sampling is infeasible in most
practical situations. Theorem 6.2 improves on this result by removing this substantial restriction, with the
sole penalty being the slightly worse bound (6.1).

Note also that a recovery result for bivariate Haar wavelets, as well as the related technique of TV
minimization, was given in [54]. Similarly [10] analyzes block sampling strategies with application to MRI.
However, these results are based on sparsity, and therefore they do not explain the conclusions of the flip test
regarding how the sampling strategy will depend on the signal structure.

6.1 Universality and RIP or structure?
Theorem 6.2 explains the success of CS when one is constrained to acquire Fourier measurements. Yet,
due primarily to the their high global coherence with wavelets, Fourier measurements are often viewed as
suboptimal for CS. If one had complete freedom to choose the measurements, and no physical constraints
(such as are always present in MRI, for example), then standard CS intuition would suggest random Gaussian
or Bernoulli measurements, since they are universal and satisfy the RIP.

However, in reality such measurements are actually highly suboptimal in the presence of structured
sparsity. This is demonstrated in Figure 6, where an image is recovered from m = 8192 measurements
taken either as random Bernoulli or multilevel Hadamard or Fourier type. As is evident, the latter gives
an error that is almost 50% smaller. The reason for this improvement is that whilst Fourier or Hadamard
measurements are highly coherent with wavelets, they are asymptotically incoherent, and, as explained in
our theoretical results, this can be exploited through multilevel random subsampling to recover the structured
(i.e. asymptotica) sparsity of wavelet coefficients. Random Gaussian/Bernoulli measurements on the other
hand do take advantage of this structure since, in satisfying an RIP, they are guaranteed to recover all sparse
vectors equally well.

This observation is an important consequence of our framework. Specifically, whenever structured spar-
sity is present (such is the case in the majority of imaging applications, for example) there are substantial
improvements to be gained by designing the measurements according to not just the sparsity, but also the
additional structure. For a more comprehensive discussion see [72], as well as [19, 82].

7 Proofs
The proofs rely on some key propositions from which one can deduce the main theorems. The main work is
to prove these proposition, and that will be done subsequently.
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7.1 Key results
Proposition 7.1. Let U ∈ B(l2(N)) and suppose that ∆ and Ω = Ω1∪ . . .∪Ωr (where the union is disjoint)
are subsets of N. Let x0 ∈ H and z ∈ ran(PΩU) be such that ‖z‖ ≤ δ for δ ≥ 0. Let M ∈ N and
y = PΩUx0 + z and yM = PΩUPMx0 + z. Suppose that ξ ∈ H and ξM ∈ H satisfiy

‖ξ‖l1 = inf
η∈H
{‖η‖l1 : ‖PΩUη − y‖ ≤ δ}. (7.1)

‖ξM‖l1 = inf
η∈CM

{‖η‖l1 : ‖PΩUPMη − yM‖ ≤ δ}. (7.2)

If there exists a vector ρ = U∗PΩw such that

(i) ‖P∆U
∗ (q−1

1 PΩ1 ⊕ . . .⊕ q−1
r PΩr

)
UP∆ − I∆‖ ≤ 1

4

(ii) maxi∈∆c ‖
(
q
−1/2
1 PΩ1

⊕ . . .⊕ q−1/2
r PΩr

)
Uei‖ ≤

√
5
4

(iii) ‖P∆ρ− sgn(P∆x0)‖ ≤ q
8 .

(iv) ‖P⊥∆ ρ‖l∞ ≤ 1
2

(v) ‖w‖ ≤ L ·
√
|∆|

for some L > 0 and 0 < qk ≤ 1, k = 1, . . . , r, then we have that

‖ξ − x0‖ ≤ C ·
(
δ ·
(

1
√
q

+ L
√
s

)
+ ‖P⊥∆x0‖l1

)
,

for some constant C, where s = |∆| and q = min{qk}rk=1. Also, if (ii) is replaced by

max
i∈{1,...,M}∩∆c

‖
(
q
−1/2
1 PΩ1 ⊕ . . .⊕ q−1/2

r PΩr

)
Uei‖ ≤

√
5

4

and (iv) is replaced by ‖PMP⊥∆ ρ‖l∞ ≤ 1
2 then

‖ξM − x0‖ ≤ C ·
(
δ ·
(

1
√
q

+ L
√
s

)
+ ‖PMP⊥∆x0‖l1

)
. (7.3)

Proof. First observe that (i) implies that (P∆U
∗ (q−1

1 PΩ1 ⊕ . . .⊕ q−1
r PΩr

)
UP∆|P∆(H))

−1 exists and

‖(P∆U
∗ (q−1

1 PΩ1
⊕ . . .⊕ q−1

r PΩr

)
UP∆|P∆(H))

−1‖ ≤ 4

3
. (7.4)

Also, (i) implies that

‖
(
q
−1/2
1 PΩ1

⊕ . . .⊕ q−1/2
r PΩr

)
UP∆‖2 = ‖P∆U

∗ (q−1
1 PΩ1

⊕ . . .⊕ q−1
r PΩr

)
UP∆‖ ≤

5

4
, (7.5)

and

‖P∆U
∗ (q−1

1 PΩ1 ⊕ . . .⊕ q−1
r PΩr

)
‖2 = ‖

(
q−1
1 PΩ1 ⊕ . . .⊕ q−1

r PΩr

)
UP∆‖2

= sup
‖η‖=1

‖
(
q−1
1 PΩ1 ⊕ . . .⊕ q−1

r PΩr

)
UP∆η‖2

= sup
‖η‖=1

r∑
k=1

‖q−1
k PΩkUP∆η‖2 ≤

1

q
sup
‖η‖=1

r∑
k=1

q−1
k ‖PΩkUP∆η‖2,

1

q
= max

1≤k≤r
{ 1

qk
}

=
1

q
sup
‖η‖=1

〈P∆U
∗

(
r∑

k=1

q−1
k PΩk

)
UP∆η, η〉 ≤

1

q
‖P∆U

∗ (q−1
1 PΩ1

⊕ . . .⊕ q−1
r PΩr

)
UP∆‖.

(7.6)

Thus, (7.5) and (7.6) imply

‖P∆U
∗ (q−1

1 PΩ1 ⊕ . . .⊕ q−1
r PΩr

)
‖ ≤

√
5

4q
. (7.7)
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Suppose that there exists a vector ρ, constructed with y0 = P∆x0, satisfying (iii)-(v). Let ξ be a solution to
(7.1) and let h = ξ − x0. Let A∆ = P∆U

∗ (q−1
1 PΩ1 ⊕ . . .⊕ q−1

r PΩr

)
UP∆|P∆(H). Then, it follows from

(ii) and observations (7.4), (7.5), (7.7) that

‖P∆h‖ = ‖A−1
∆ A∆P∆h‖

≤ ‖A−1
∆ ‖‖P∆U

∗ (q−1
1 PΩ1 ⊕ . . .⊕ q−1

r PΩr

)
U(I − P⊥∆ )h‖

≤ 4

3
‖P∆U

∗ (q−1
1 PΩ1

⊕ . . .⊕ q−1
r PΩr

)
‖‖PΩUh‖

+
4

3
max
i∈∆c

‖P∆U
∗ (q−1

1 PΩ1
⊕ . . .⊕ q−1

r PΩr

)
Uei‖‖P⊥∆h‖l1

≤ 4

3
‖P∆U

∗ (q−1
1 PΩ1 ⊕ . . .⊕ q−1

r PΩr

)
‖‖PΩUh‖

+
4

3

∥∥∥P∆U
∗
(
q
−1/2
1 PΩ1 ⊕ . . .⊕ q−1/2

r

)∥∥∥max
i∈∆c

∥∥∥(q−1/2
1 PΩ1 ⊕ . . .⊕ q−1/2

r PΩr

)
Uei

∥∥∥‖P⊥∆h‖l1
≤ 4
√

5

3
√
q
δ +

5

3
‖P⊥∆h‖l1 ,

(7.8)

where in the final step we use ‖PΩUh‖ ≤ ‖PΩUζ − y‖ + ‖z‖ ≤ 2δ. We will now obtain a bound for
‖P⊥∆h‖l1 . First note that

‖h+ x0‖l1 = ‖P∆h+ P∆x0‖l1 + ‖P⊥∆ (h+ x0)‖l1
≥ Re 〈P∆h, sgn(P∆x0)〉+ ‖P∆x0‖l1 + ‖P⊥∆h‖l1 − ‖P⊥∆x0‖l1
≥ Re 〈P∆h, sgn(P∆x0)〉+ ‖x0‖l1 + ‖P⊥∆h‖l1 − 2‖P⊥∆x0‖l1 .

(7.9)

Since ‖x0‖l1 ≥ ‖h+ x0‖l1 , we have that

‖P⊥∆h‖l1 ≤ |〈P∆h, sgn(P∆x0)〉|+ 2‖P⊥∆x0‖l1 . (7.10)

We will use this equation later on in the proof, but before we do that observe that some basic adding and
subtracting yields

|〈P∆h, sgn(x0)〉| ≤ |〈P∆h, sgn(P∆x0)− P∆ρ〉|+ |〈h, ρ〉|+
∣∣〈P⊥∆h, P⊥∆ ρ〉∣∣

≤ ‖P∆h‖‖sgn(P∆x0)− P∆ρ‖+ |〈PΩUh,w〉|+ ‖P⊥∆h‖l1‖P⊥∆ ρ‖l∞

≤ q

8
‖P∆h‖+ 2Lδ

√
s+

1

2
‖P⊥∆h‖l1

≤
√

5q

6
δ +

5q

24
‖P⊥∆h‖l1 + 2Lδ

√
s+

1

2
‖P⊥∆h‖l1

(7.11)

where the last inequality utilises (7.8) and the penultimate inequality follows from properties (iii), (iv) and
(v) of the dual vector ρ. Combining this with (7.10) and the fact that q ≤ 1 gives that

‖P⊥∆h‖l1 ≤ δ
(

4
√

5q

3
+ 8L

√
s

)
+ 8‖P⊥∆x0‖l1 . (7.12)

Thus, (7.8) and (7.12) yields:

‖h‖ ≤ ‖P∆h‖+
∥∥P⊥∆h∥∥ ≤ 8

3
‖P⊥∆h‖l1 +

4
√

5

3
√
q
δ ≤

(
8
√
q + 22L

√
s+

3
√
q

)
· δ + 22

∥∥P⊥∆x0

∥∥
l1
. (7.13)

The proof of the second part of this proposition follows the proof as outlined above and we omit the details.

The next two propositions give sufficient conditions for Proposition 7.1 to be true. But before we state
them we need to define the following.

Definition 7.2. Let U be an isometry of either CN×N or B(l2(N)). For N = (N1, . . . , Nr) ∈ Nr, M =
(M1, . . . ,Mr) ∈ Nr with 1 ≤ N1 < . . . < Nr and 1 ≤ M1 < . . . < Mr, s = (s1, . . . , sr) ∈ Nr and
1 ≤ k ≤ r, let

κN,M(k, l) = max
η∈Θ
‖PNk−1

Nk
UP

Ml−1

Ml
η‖l∞ ·

√
µ(P

Nk−1

Nk
U).
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where

Θ = {η : ‖η‖l∞ ≤ 1, |supp(P
Ml−1

Ml
η)| = sl, l = 1, . . . , r − 1, |supp(P⊥Mr−1

η)| = sr, },

and N0 = M0 = 0. We also define

κN,M(k,∞) = max
η∈Θ
‖PNk−1

Nk
UP⊥Mr−1

η‖l∞ ·
√
µ(P

Nk−1

Nk
U).

Proposition 7.3. Let U ∈ B(l2(N)) be an isometry and x ∈ l1(N). Suppose that Ω = ΩN,m is a multilevel
sampling scheme, where N = (N1, . . . , Nr) ∈ Nr and m = (m1, . . . ,mr) ∈ Nr. Let (s,M), where
M = (M1, . . . ,Mr) ∈ Nr, M1 < . . . < Mr, and s = (s1, . . . , sr) ∈ Nr, be any pair such that the
following holds:

(i) The parameters N := Nr, and K := maxk=1,...,r(Nk − Nk−1)/mk, satisfy the weak balancing
property with respect to U , M := Mr and s := s1 + . . .+ sr;

(ii) for ε > 0 and 1 ≤ k ≤ r,

1 & (log(sε−1) + 1) · Nk −Nk−1

mk
·

(
r∑
l=1

κN,M(k, l)

)
· log

(
KM
√
s
)
, (7.14)

(iii)
mk & (log(sε−1) + 1) · m̂k · log

(
KM
√
s
)
, (7.15)

where m̂k satisfies

1 &
r∑

k=1

(
Nk −Nk−1

m̂k
− 1

)
· µN,M(k, l) · s̃k, ∀ l = 1, . . . , r,

where s̃1 + . . .+ s̃r ≤ s1 + . . .+ sr, s̃k ≤ Sk(s1, . . . , sr) and Sk is defined in (4.3).

Then (i)-(v) in Proposition 7.1 follow with probability exceeding 1− ε, with (ii) replaced by

max
i∈{1,...,M}∩∆c

‖
(
q
−1/2
1 PΩ1 ⊕ . . .⊕ q−1/2

r PΩr

)
Uei‖ ≤

√
5

4
, (7.16)

(iv) replaced by ‖PMP⊥∆ ρ‖l∞ ≤ 1
2 and L in (v) is given by

L = C ·
√
K ·

(
1 +

√
log2 (6ε−1)

log2(4KM
√
s)

)
. (7.17)

Ifmk = Nk−Nk−1 for all 1 ≤ k ≤ r then (i)-(v) follow with probability one (with the alterations suggested
above).

Proposition 7.4. Let U ∈ B(l2(N)) be an isometry and x ∈ l1(N). Suppose that Ω = ΩN,m is a multilevel
sampling scheme, where N = (N1, . . . , Nr) ∈ Nr and m = (m1, . . . ,mr) ∈ Nr. Let (s,M), where
M = (M1, . . . ,Mr) ∈ Nr, M1 < . . . < Mr, and s = (s1, . . . , sr) ∈ Nr, be any pair such that the
following holds:

(i) The parameters N and K (as in Proposition 7.3) satisfy the strong balancing property with respect to
U , M = Mr and s := s1 + . . .+ sr;

(ii) for ε > 0 and 1 ≤ k ≤ r,

1 & (log(sε−1) + 1) · Nk −Nk−1

mk
·

(
κN,M(k,∞) +

r−1∑
l=1

κN,M(k, l)

)
· log

(
KM̃

√
s
)
, (7.18)

(iii)
mk & (log(sε−1) + 1) · m̂k · log

(
KM̃

√
s
)
, (7.19)

where M̃ = min{i ∈ N : ‖maxj≥i PNUP{j}‖ ≤ 1/(K32
√
s)}, and m̂k is as in Proposition 7.3.
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Then (i)-(v) in Proposition 7.1 follow with probability exceeding 1−εwithL as in (7.17). Ifmk = Nk−Nk−1

for all 1 ≤ k ≤ r then (i)-(v) follow with probability one.

Lemma 7.5 (Bounds for κN,M(k, l)). For k, l = 1, . . . , r

κN,M(k, l) ≤ min

{
µN,M(k, l) · sl,

√
sl · µ(P

Nk−1

Nk
U) ·

∥∥∥PNk−1

Nk
UP

Ml−1

Ml

∥∥∥} . (7.20)

Also, for k = 1, . . . , r

κN,M(k,∞) ≤ min

{
µN,M(k,∞) · sr,

√
sr · µ(P

Nk−1

Nk
U) ·

∥∥∥PNk−1

Nk
UP⊥Mr−1

∥∥∥} . (7.21)

Proof. For k, l = 1, . . . , r

κN,M(k, l) = max
η∈Θ
‖PNk−1

Nk
UP

Ml−1

Ml
η‖l∞ ·

√
µ(P

Nk−1

Nk
U)

= max
η∈Θ

max
Nk−1<i≤Nk

∣∣∣∣∣∣
∑

Ml−1<j≤Ml

ηjuij

∣∣∣∣∣∣ ·
√
µ(P

Nk−1

Nk
U)

≤ sl ·
√
µ(P

Nk−1

Nk
UP

Ml−1

Ml
) ·
√
µ(P

Nk−1

Nk
U) ≤ sl · µN,M(k, l)

since |uij | ≤ 1, and similarly,

κN,M(k,∞) = max
η∈Θ
‖PNk−1

Nk
UP⊥Mr−1

η‖l∞ ·
√
µ(P

Nk−1

Nk
U)

= max
η∈Θ

max
Nk−1<i≤Nk

∣∣∣∣∣∣
∑

Mr−1<j

ηjuij

∣∣∣∣∣∣ ·
√
µ(P

Nk−1

Nk
U) ≤ sr · µN,M(k,∞).

Finally, it is straightforward to show that for k, l = 1, . . . , r,

κN,M(k, l) ≤
√
sl ·
∥∥∥PNk−1

Nk
UP

Ml−1

Ml

∥∥∥√µ(P
Nk−1

Nk
U)

and
κN,M(k,∞) ≤

√
sr ·

∥∥∥PNk−1

Nk
UP⊥Mr−1

∥∥∥√µ(P
Nk−1

Nk
U).

We are now ready to prove the main theorems.

Proof of Theorems 4.1 and 5.2. It is clear that Theorem 4.1 follows from Theorem 5.2, thus it remains to
prove the latter. We will apply Proposition 7.3 to a two-level sampling scheme Ω = ΩN,m, where N =
(N1, N2) and m = (m1,m2) with m1 = N1 and m2 = m. Also, consider (s,M), where s = (M1, s2),
M = (M1,M2). Thus, if N1, N2,m1,m2 ∈ N are such that

N = N2, K = max

{
N2 −N1

m2
,
N1

m1

}
satisfy the weak balancing property with respect to U , M = M2 and s = M1 + s2, we have that (i) - (v) in
Proposition 7.1 follow with probability exceeding 1− sε, with (ii) replaced by

max
i∈{1,...,M}∩∆c

‖
(
PN1
⊕ N2 −N1

m2
PΩ2

)
Uei‖ ≤

√
5

4
,

(iv) replaced by ‖PMP⊥∆ ρ‖l∞ ≤ 1
2 and L in (v) is given by (7.17), if

1 & (log(sε−1) + 1) · N −N1

m2
· (κN,M(2, 1) + κN,M(2, 2)) · log

(
KM

√
s
)
, (7.22)
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m2 & (log(sε−1) + 1) · m̂2 · log
(
KM
√
s
)
, (7.23)

where m̂2 satisfies 1 & ((N2 −N1)/m̂2 − 1) · µN1
· s̃2, and s̃2 ≤ S2 (recall S2 from Definition 4.3). Recall

from (7.20) that

κN,M(2, 1) ≤ √s1 · µN1
·
∥∥P⊥N1

UPM1

∥∥, κN,M(2, 2) ≤ s2 · µN1
.

Also, it follows directly from Definition 4.3 that

S2 ≤
(∥∥P⊥N1

UPM1

∥∥ ·√M1 +
√
s2

)2

.

Thus, provided that
∥∥P⊥N1

UPM1

∥∥ ≤ γ/
√
M1 where γ is as in (i) of Theorem 5.2, we observe that (iii) of

Theorem 5.2 implies (7.22) and (7.23). Thus, the theorem now follows from Proposition 7.1.

Proof of Theorem 4.4 and Theorem 5.3. It is straightforward that Theorem 4.4 follows from Theorem 5.3.
Now, recall from Lemma 7.20 that

κN,M(k, l) ≤ sl · µN,M(k, l), κN,M(k,∞) ≤ sr · µN,M(k,∞), k, l = 1, . . . , r.

Thus, a direct application of Proposition 7.4 and Proposition 7.1 completes the proof.

It remains now to prove Propositions 7.3 and 7.4. This is the content of the next sections.

7.2 Preliminaries
Before we commence on the rather length proof of these propositions, let us recall one of the monumental
results in probability theory that will be of greater use later on.

Theorem 7.6. (Talagrand [78, 58]) There exists a number K with the following property. Consider n
independent random variables Xi valued in a measurable space Ω and let F be a (countable) class of
measurable functions on Ω. Let Z be the random variable Z = supf∈F

∑
i≤n f(Xi) and define

S = sup
f∈F
‖f‖∞, V = sup

f∈F
E

∑
i≤n

f(Xi)
2

 .

If E(f(Xi)) = 0 for all f ∈ F and i ≤ n, then, for each t > 0, we have

P(|Z − E(Z)| ≥ t) ≤ 3 exp

(
− 1

K

t

S
log

(
1 +

tS

V + SE(Z)

))
,

where Z = supf∈F |
∑
i≤n f(Xi)|.

Note that this version of Talagrand’s theorem is found in [58, Cor. 7.8]. We next present a theorem and
several technical propositions that will serve as the main tools in our proofs of Propositions 7.3 and 7.4. A
crucial tool herein is the Bernoulli sampling model. We will use the notation {a, . . . , b} ⊃ Ω ∼ Ber(q),
where a < b a, b ∈ N, when Ω is given by Ω = {k : δk = 1} and {δk}Nk=1 is a sequence of Bernoulli
variables with P(δk = 1) = q.

Definition 7.7. Let r ∈ N, N = (N1, . . . , Nr) ∈ Nr with 1 ≤ N1 < . . . < Nr, m = (m1, . . . ,mr) ∈ Nr,
with mk ≤ Nk −Nk−1, k = 1, . . . , r, and suppose that

Ωk ⊆ {Nk−1 + 1, . . . , Nk}, Ωk ∼ Ber

(
mk

Nk −Nk−1

)
, k = 1, . . . , r,

whereN0 = 0. We refer to the set Ω = ΩN,m := Ω1∪ . . .∪Ωr. as an (N,m)-multilevel Bernoulli sampling
scheme.
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Theorem 7.8. Let U ∈ B(l2(N)) be an isometry. Suppose that Ω = ΩN,m is a multilevel Bernoulli
sampling scheme, where N = (N1, . . . , Nr) ∈ Nr and m = (m1, . . . ,mr) ∈ Nr. Consider (s,M),
where M = (M1, . . . ,Mr) ∈ Nr, M1 < . . . < Mr, and s = (s1, . . . , sr) ∈ Nr, and let

∆ = ∆1 ∪ . . . ∪∆r, ∆k ⊂ {Mk−1 + 1, . . . ,Mk}, |∆k| = sk

where M0 = 0. If ‖PMr
U∗PNrUPMr

− PMr
‖ ≤ 1/8 then, for γ ∈ (0, 1),

P(‖P∆U
∗(q−1

1 PΩ1
⊕ . . .⊕ q−1

r PΩr )UP∆ − P∆‖ ≥ 1/4) ≤ γ, (7.24)

where qk = mk/(Nk −Nk−1), provided that

1 &
Nk −Nk−1

mk
·

(
r∑
l=1

κN,M(k, l)

)
·
(
log
(
γ−1 s

)
+ 1
)
. (7.25)

In addition, if q = min{qk}rk=1 = 1 then

P(‖P∆U
∗(q−1

1 PΩ1
⊕ . . .⊕ q−1

r PΩr )UP∆ − P∆‖ ≥ 1/4) = 0.

In proving this theorem we deliberately avoid the use of the Matrix Bernstein inequality [43], as Tala-
grand’s theorem is more convenient for our infinite-dimensional setting. Before we can prove this theorem,
we need the following technical lemma.

Lemma 7.9. Let U ∈ B(l2(N)) with ‖U‖ ≤ 1, and consider the setup in Theorem 7.8. Let N = Nr and
let {δj}Nj=1 be independent random Bernoulli variables with P(δj = 1) = q̃j , q̃j = mk/(Nk −Nk−1) and
j ∈ {Nk−1 + 1, . . . , Nk}, and define Z =

∑N
j=1 Zj , Zj =

(
q̃−1
j δj − 1

)
ηj ⊗ η̄j and ηj = P∆U

∗ej . Then

E (‖Z‖)2 ≤ 48 max{log(|∆|), 1} max
1≤j≤N

{
q̃−1
j ‖ηj‖

2
}
,

when (max{log(|∆|), 1})−1 ≥ 18 max1≤j≤N
{
q̃−1
j ‖ηj‖2

}
.

The proof of this lemma involves essentially reworking an argument due to Rudelson [74], and is similar
to arguments given previously in [3] (see also [17]). We include it here for completeness as the setup deviates
slightly. We shall also require the following result:

Lemma 7.10. (Rudelson) Let η1, . . . , ηM ∈ Cn and let ε1, . . . εM be independent Bernoulli variables taking
values 1,−1 with probability 1/2. Then

E

(∥∥∥∥∥
M∑
i=1

εiη̄i ⊗ ηi

∥∥∥∥∥
)
≤ 3

2

√
pmax
i≤M
‖ηi‖

√√√√∥∥∥∥∥
M∑
i=1

η̄i ⊗ ηi

∥∥∥∥∥,
where p = max{2, 2 log(n)}.

Lemma 7.10 is often referred to as Rudelson’s Lemma [74]. However, we use the above complex version
that was proven by Tropp [80, Lem. 22].

Proof of Lemma 7.9. We commence by letting δ̃ = {δ̃j}Nj=1 be independent copies of δ = {δj}Nj=1. Then,
since E(Z) = 0,

Eδ (‖Z‖) = Eδ

∥∥∥∥∥∥Z − Eδ̃

 N∑
j=1

(
q̃−1
j δ̃j − 1

)
ηj ⊗ η̄j

∥∥∥∥∥∥


≤ Eδ

Eδ̃

∥∥∥∥∥∥Z −
N∑
j=1

(
q̃−1
j δ̃j − 1

)
ηj ⊗ η̄j

∥∥∥∥∥∥
 ,

(7.26)
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by Jensen’s inequality. Let ε = {εj}Nj=1 be a sequence of Bernoulli variables taking values ±1 with proba-
bility 1/2. Then, by (7.26), symmetry, Fubini’s Theorem and the triangle inequality, it follows that

Eδ (‖Z‖) ≤ Eε

Eδ

Eδ̃

∥∥∥∥∥∥
N∑
j=1

εj

(
q̃−1
j δj − q̃−1

j δ̃j

)
ηj ⊗ η̄j

∥∥∥∥∥∥


≤ 2Eδ

Eε

∥∥∥∥∥∥
N∑
j=1

εj q̃
−1
j δjηj ⊗ η̄j

∥∥∥∥∥∥
 .

(7.27)

We are now able to apply Rudelson’s Lemma (Lemma 7.10). However, as specified before, it is the complex
version that is crucial here. By Lemma 7.10 we get that

Eε

∥∥∥∥∥∥
N∑
j=1

εj q̃
−1
j δjηj ⊗ η̄j

∥∥∥∥∥∥
 ≤ 3

2

√
max{2 log(s), 2} max

1≤j≤N
q̃
−1/2
j ‖ηj‖

√√√√√
∥∥∥∥∥∥
N∑
j=1

q−1
j q̃−1

j δjηj ⊗ η̄j

∥∥∥∥∥∥,
(7.28)

where s = |∆|. And hence, by using (7.27) and (7.28), it follows that

Eδ (‖Z‖) ≤ 3
√

max{2 log(s), 2} max
1≤j≤N

q̃
−1/2
j ‖ηj‖

√√√√√Eδ

∥∥∥∥∥∥Z +
N∑
j=1

ηj ⊗ η̄j

∥∥∥∥∥∥
.

Note that ‖
∑N
j=1 ηj ⊗ η̄j‖ ≤ 1, since U is an isometry. The result now follows from the straightforward

calculus fact that if r > 0, c ≤ 1 and r ≤ c
√
r + 1 then we have that r ≤ c(1 +

√
5)/2.

Proof of Theorem 7.8. Let N = Nr just to be clear here. Let {δj}Nj=1 be random Bernoulli variables as
defined in Lemma 7.9 and define Z =

∑N
j=1 Zj , Zj =

(
q̃−1
j δj − 1

)
ηj ⊗ η̄j with ηj = P∆U

∗ej . Now
observe that

P∆U
∗(q−1

1 PΩ1 ⊕ . . .⊕ q−1
r PΩr )UP∆ =

N∑
j=1

q̃−1
j δjηj ⊗ η̄j , P∆U

∗PNUP∆ =

N∑
j=1

ηj ⊗ η̄j . (7.29)

Thus, it follows that

‖P∆U
∗(q−1

1 PΩ1
⊕ . . .⊕ q−1

r PΩr )UP∆ − P∆‖ ≤ ‖Z‖+ ‖(P∆U
∗PNUP∆ − P∆)‖ ≤ ‖Z‖+

1

8
, (7.30)

by the assumption that ‖PMr
U∗PNrUPMr

−PMr
‖ ≤ 1/8. Thus, to prove the assertion we need to estimate

‖Z‖, and Talagrand’s Theorem (Theorem 7.6) will be our main tool. Note that clearly, since Z is self-adjoint,
we have that ‖Z‖ = supζ∈G |〈Zζ, ζ〉|, where G is a countable set of vectors in the unit ball of P∆(H) . For
ζ ∈ G define the mappings

ζ̂1(T ) = 〈Tζ, ζ〉, ζ̂2(T ) = −〈Tζ, ζ〉, T ∈ B(H).

In order to use Talagrand’s Theorem 7.6 we restrict the domain D of the mappings ζi to

D = {T ∈ B(H) : ‖T‖ ≤ max
1≤j≤N

{q̃−1
j ‖ηj‖

2}}.

Let F denote the family of mappings ζ̂1, ζ̂2 for ζ ∈ G. Then ‖Z‖ = supζ̂∈F ζ̂(Z), and for i = 1, 2 we have

|ζ̂i(Zj)| =
∣∣(q̃−1

j δj − 1
)∣∣ |〈(ηj ⊗ η̄j) ζ, ζ〉| ≤ max

1≤j≤N
{q̃−1
j ‖ηj‖

2}.

Thus, Zj ∈ D for 1 ≤ j ≤ N and S := supζ∈F ‖ζ̂‖∞ = max1≤j≤N{q̃−1
j ‖ηj‖2}. Note that

‖ηj‖2 = 〈P∆U
∗ej , P∆U

∗ej〉 =

r∑
k=1

〈P∆k
U∗ej , P∆k

U∗ej〉.
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Also, note that an easy application of Holder’s inequality gives the following (note that the l1 and l∞ bounds
are finite because all the projections have finite rank),

|〈P∆k
U∗ej , P∆k

U∗ej〉| ≤ ‖P∆k
U∗ej‖l1‖P∆k

U∗ej‖l∞

≤ ‖P∆k
U∗P

Nl−1

Nl
‖l1→l1‖P∆k

U∗ej‖l∞ ≤ ‖P
Nl−1

Nl
UP∆k

‖l∞→l∞ ·
√
µ(P

Nl−1

Nl
U) ≤ κN,M(l, k),

for j ∈ {Nl−1 + 1, . . . , Nl} and l ∈ {1, . . . , r}. Hence, it follows that

‖ηj‖2 ≤ max
1≤k≤r

(κN,M(k, 1) + . . .+ κN,M(k, r)), (7.31)

and therefore S ≤ max1≤k≤r

(
q−1
k

∑r
j=1 κN,M(k, j)

)
. Finally, note that by (7.31) and the reasoning

above, it follows that

V := sup
ζ̂i∈F

E

 N∑
j=1

ζ̂i(Zj)
2

 = sup
ζ∈G

E

 N∑
j=1

(
q̃−1
j δj − 1

)2 |〈P∆U
∗ej , ζ〉|4


≤ max

1≤k≤r
‖ηk‖2

(
Nk −Nk−1

mk
− 1

)
sup
ζ∈G

N∑
j=1

|〈ej , UP∆ζ〉|2,

≤ max
1≤k≤r

Nk −Nk−1

mk

(
r∑
l=1

κN,M(k, l)

)
sup
ζ∈G
‖Uζ‖2 = max

1≤k≤r

Nk −Nk−1

mk

(
r∑
l=1

κN,M(k, l)

)
,

(7.32)

where we used the fact that U is an isometry to deduce that ‖U‖ = 1. Also, by Lemma 7.9 and (7.31) , it
follows that

E (‖Z‖)2 ≤ 48 max
1≤k≤r

Nk −Nk−1

mk

(
r∑
l=1

κN,M(k, l)

)
· log(s) (7.33)

when

1 ≥ 18 max
1≤k≤r

Nk −Nk−1

mk

(
r∑
l=1

κN,M(k, l)

)
· log(s), (7.34)

(recall that we have assumed s ≥ 3). Thus, by (7.30) and Talagrand’s Theorem 7.6, it follows that

P
(
‖P∆U

∗(q−1
1 PΩ1

⊕ . . .⊕ q−1
r PΩr )UP∆ − P∆‖ ≥ 1/4

)
≤ P

‖Z‖ ≥ 1

16
+

√√√√24 max
1≤k≤r

Nk −Nk−1

mk

(
r∑
l=1

κN,M(k, l)

)
· log(s)


≤ 3 exp

− 1

16K

(
max

1≤k≤r

Nk −Nk−1

mk

(
r∑
l=1

κN,M(k, l)

))−1

log (1 + 1/32)

 , (7.35)

when mk’s are chosen such that the right hand side of (7.33) is less than or equal to 1. Thus, by (7.30) and
Talagrand’s Theorem 7.6, it follows that

P
(
‖P∆U

∗(q−1
1 PΩ1

⊕ . . .⊕ q−1
r PΩr )UP∆ − P∆‖ ≥ 1/4

)
≤ P (‖Z‖ ≥ 1/8) ≤ P

(
‖Z‖ ≥ 1

16
+ E‖Z‖

)
≤ P

(
|‖Z‖ − E‖Z‖| ≥ 1

16

)

≤ 3 exp

− 1

16K

(
max

1≤k≤r

Nk −Nk−1

mk

(
r∑
l=1

κN,M(k, l)

))−1

log (1 + 1/32)

 , (7.36)

when mk’s are chosen such that the right hand side of (7.33) is less than or equal to 1/162. Note that this
condition is implied by the assumptions of the theorem as is (7.34). This yields the first part of the theorem.
The second claim of this theorem follows from the assumption that ‖PMr

U∗PNrUPMr
−PMr

‖ ≤ 1/8.
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Proposition 7.11. Let U ∈ B(l2(N)) be an isometry. Suppose that Ω = ΩN,m is a multilevel Bernoulli
sampling scheme, where N = (N1, . . . , Nr) ∈ Nr and m = (m1, . . . ,mr) ∈ Nr. Consider (s,M), where
M = (M1, . . . ,Mr) ∈ Nr, M1 < . . . < Mr, and s = (s1, . . . , sr) ∈ Nr, and let ∆ = ∆1 ∪ . . . ∪ ∆r,
∆k ⊂ {Mk−1, . . . ,Mk}, |∆k| = sk, where M0 = 0. Let β ≥ 1/4.

(i) If

N := Nr, K := max
k=1,...,r

{
Nk −Nk−1

mk

}
,

satisfy the weak balancing property with respect to U , M := Mr and s := s1 + . . . + sr, then, for
ξ ∈ H and β, γ > 0, we have that

P
(
‖PMP⊥∆U∗(q−1

1 PΩ1
⊕ . . .⊕ q−1

r PΩr )UP∆ξ‖l∞ > β‖ξ‖l∞
)
≤ γ, (7.37)

provided that
β

log
(

4
γ (M − s)

) ≥ C Λ,
β2

log
(

4
γ (M − s)

) ≥ C Υ, (7.38)

for some constant C > 0, where qk = mk/(Nk −Nk−1) for k = 1, . . . , r,

Λ = max
1≤k≤r

{
Nk −Nk−1

mk
·

(
r∑
l=1

κN,M(k, l)

)}
, (7.39)

Υ = max
1≤l≤r

r∑
k=1

(
Nk −Nk−1

mk
− 1

)
· µN,M(k, l) · s̃k, (7.40)

for all {s̃k}rk=1 such that s̃1 + . . .+ s̃r ≤ s1 + . . .+ sr and s̃k ≤ Sk(s1, . . . , sr). Moreover, if qk = 1
for all k = 1, . . . , r, then (7.38) is trivially satisfied for any γ > 0 and the left-hand side of (7.37) is
equal to zero.

(ii) IfN satisfies the strong Balancing Property with respect to U, M and s, then, for ξ ∈ H and β, γ > 0,
we have that

P
(
‖P⊥∆U∗(q−1

1 PΩ1 ⊕ . . .⊕ q−1
r PΩr )UP∆ξ‖l∞ > β‖ξ‖l∞

)
≤ γ, (7.41)

provided that
β

log
(

4
γ (θ̃ − s)

) ≥ C Λ,
β2

log
(

4
γ (θ̃ − s)

) ≥ C Υ, (7.42)

for some constant C > 0, θ̃ = θ̃({qk}rk=1, 1/8, {Nk}rk=1, s,M) and Υ, Λ as defined in (i) and

θ̃({qk}rk=1, t, {Nk}rk=1, s,M)

=

∣∣∣∣∣∣∣
i ∈ N : max

Γ1⊂{1,...,M}, |Γ1|=s
Γ2,j⊂{Nj−1+1,...,Nj}, j=1,...,r

‖PΓ1
U∗(q−1

1 PΓ2,1
⊕ . . .⊕ q−1

r PΓ2,r
)Uei‖ >

t√
s


∣∣∣∣∣∣∣ .

Moreover, if qk = 1 for all k = 1, . . . , r, then (7.42) is trivially satisfied for any γ > 0 and the
left-hand side of (7.41) is equal to zero.

Proof. To prove (i) we note that, without loss of generality, we can assume that ‖ξ‖l∞ = 1. Let {δj}Nj=1 be
random Bernoulli variables with P(δj = 1) = q̃j = qk, for j ∈ {Nk−1 + 1, . . . , Nk} and 1 ≤ k ≤ r. A key
observation that will be crucial below is that

P⊥∆U
∗(q−1

1 PΩ1
⊕ . . .⊕ q−1

r PΩr )UP∆ξ =

N∑
j=1

P⊥∆U
∗q̃−1
j δj(ej ⊗ ej)UP∆ξ

=

N∑
j=1

P⊥∆U
∗(q̃−1

j δj − 1)(ej ⊗ ej)UP∆ξ + P⊥∆U
∗PNUP∆ξ.

(7.43)
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We will use this equation at the end of the argument, but first we will estimate the size of the individual
components of

∑N
j=1 P

⊥
∆U

∗(q̃−1
j δj − 1)(ej ⊗ ej)UP∆ξ. To do that define, for 1 ≤ j ≤ N , the random

variables
Xi
j = 〈U∗(q̃−1

j δj − 1)(ej ⊗ ej)UP∆ξ, ei〉, i ∈ ∆c.

We will show using Bernstein’s inequality that, for each i ∈ ∆c and t > 0,

P

∣∣∣∣∣∣
N∑
j=1

Xi
j

∣∣∣∣∣∣ > t

 ≤ 4 exp

(
− t2/4

Υ + Λt/3

)
. (7.44)

To prove the claim, we need to estimate E
(
|Xi

j |2
)

and |Xi
j |. First note that,

E
(
|Xi

j |2
)

= (q̃−1
j − 1)|〈ej , UP∆ξ〉|2|〈ej , Uei〉|2,

and note that |〈ej , Uei〉|2 ≤ µN,M(k, l) for j ∈ {Nk−1 + 1, . . . , Nk} and i ∈ {Ml−1 + 1, . . . ,Ml}. Hence

N∑
j=1

E
(
|Xi

j |2
)
≤

r∑
k=1

(q−1
k − 1)µN,M(k, l)‖PNk−1

Nk
UP∆ξ‖2

≤ sup
ζ∈Θ

{
r∑

k=1

(q−1
k − 1)µN,M(k, l)‖PNk−1

Nk
Uζ‖2

}
,

where
Θ = {η : ‖η‖l∞ ≤ 1, |supp(P

Ml−1

Ml
η)| = sl, l = 1, . . . , r}.

The supremum in the above bound is attained for some ζ̃ ∈ Θ. If s̃k = ‖PNk−1

Nk
Uζ̃‖2, then we have

N∑
j=1

E
(
|Xi

j |2
)
≤

r∑
k=1

(q−1
k − 1)µN,M(k, l)s̃k. (7.45)

Note that it is clear from the definition that sk ≤ Sk(s1, . . . , sr) for 1 ≤ k ≤ r. Also, using the fact that
‖U‖ ≤ 1 and the definition of Θ, we note that

s̃1 + . . .+ s̃r =

r∑
k=1

‖PNk−1

Nk
UP∆ζ‖2 ≤ ‖UP∆ζ‖2 = ‖ζ‖2 ≤ s1 + . . .+ sr.

To estimate |Xi
j | we start by observing that, by the triangle inequality, the fact that ‖ξ‖l∞ = 1 and Holder’s

inequality, it follows that |〈ξ, P∆U
∗ej〉| ≤

∑r
k=1 |〈P

Mk−1

Mk
ξ, P∆U

∗ej〉|, and

|〈PMk−1

Mk
ξ, P∆U

∗ej〉| ≤ ‖P
Nl−1

Nl
UP∆k

‖l∞→l∞ , j ∈ {Nl−1 + 1, . . . , Nl}, l ∈ {1, . . . , r}.

Hence, it follows that for 1 ≤ j ≤ N and i ∈ ∆c,

|Xi
j | = q̃−1

j |(δj − q̃j)||〈ξ, P∆U
∗ej〉||〈ej , Uei〉|,

≤ max
1≤k≤r

{
Nk −Nk−1

mk
· (κN,M(k, 1) + . . .+ κN,M(k, r))

}
.

(7.46)

Now, clearly E(Xi
j) = 0 for 1 ≤ j ≤ N and i ∈ ∆c. Thus, by applying Bernstein’s inequality to Re(Xi

j)

and Im(Xi
j) for j = 1, . . . , N , via (7.45) and (7.46), the claim (7.44) follows.

Now, by (7.44), (7.43) and the assumed weak Balancing property (wBP), it follows that

P
(
‖PMP⊥∆U∗(q−1

1 PΩ1
⊕ . . .⊕ q−1

r PΩr )UP∆ξ‖l∞ > β
)

≤
∑

i∈∆c∩{1,...,M}

P

∣∣∣∣∣∣
N∑
j=1

Xi
j + 〈PMP⊥∆U∗P⊥NUP∆ξ, ei〉

∣∣∣∣∣∣ > β


≤

∑
i∈∆c∩{1,...,M}

P

∣∣∣∣∣∣
N∑
j=1

Xi
j

∣∣∣∣∣∣ > β − ‖PMP⊥∆U∗PNUP∆‖l∞


≤ 4(M − s) exp

(
− t2/4

Υ + Λt/3

)
, t =

1

2
β, by (7.44), (wBP),
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Also,

4(M − s) exp

(
− t2/4

Υ + Λt/3

)
≤ γ

when

log

(
4

γ
(M − s)

)−1

≥
(

4Υ

t2
+

4Λ

3t

)
.

And this concludes the proof of (i). To prove (ii), for t > 0, suppose that there is a set Λt ⊂ N such that

P
(

sup
i∈Λt

|〈P⊥∆U∗(q−1
1 PΩ1 ⊕ . . .⊕ q−1

r PΩr )UP∆η, ei〉| > t

)
= 0, |Λct | <∞.

Then, as before, by (7.44), (7.43) and the assumed strong Balancing property (sBP), it follows that

P
(
‖P⊥∆U∗(q−1

1 PΩ1
⊕ . . .⊕ q−1

r PΩr )UP∆ξ‖l∞ > β
)

≤
∑

i∈∆c∩Λct

P

∣∣∣∣∣∣
N∑
j=1

Xi
j + 〈P⊥∆U∗P⊥NUP∆ξ, ei〉

∣∣∣∣∣∣ > β

 ,

yielding

P
(
‖P⊥∆U∗(q−1

1 PΩ1 ⊕ . . .⊕ q−1
r PΩr )UP∆ξ‖l∞ > β

)
≤

∑
i∈∆c∩Λct

P

∣∣∣∣∣∣
N∑
j=1

Xi
j

∣∣∣∣∣∣ > β − ‖P⊥∆U∗PNUP∆‖l∞


≤ 4(|Λct | − s) exp

(
− t2/4

Υ + Λt/3

)
< γ, t =

1

2
β, by (7.44), (sBP),

whenever

log

(
4

γ
(|Λct | − s)

)−1

≥
(

4Υ

t2
+

4Λ

3t

)
.

Hence, it remains to obtain a bound on |Λct |. Let

θ(q1, . . . , qr, t, s) =

i ∈ N : max
Γ1⊂{1,...,M}, |Γ1|=s

Γ2,j⊂{Nj−1+1,...,Nj}, j=1,...,r

‖PΓ1
U∗(q−1

1 PΓ2,1
⊕ . . .⊕ q−1

r PΓ2,r
)Uei‖ >

t√
s

 .

Clearly, ∆c
t ⊂ θ(q1, . . . , qr, t, s) and

‖PΓ1
U∗(q−1

1 PΓ2,1
⊕ . . .⊕ q−1

r PΓ2,r
)Uei‖ ≤ max

1≤j≤r
q−1
j ‖PNUP

⊥
i−1‖ → 0

as i → ∞. So, |θ(q1, . . . , qr, t, s)| < ∞. Furthermore, since θ̃({qk}rk=1, t, {Nk}rk=1, s,M) is a decreasing
function in t, for all t ≥ 1

8 ,

|θ(q1, . . . , qr, t, s)| < θ̃({qk}rk=1, 1/8, {Nk}rk=1, s,M)

thus, we have proved (ii). The statements at the end of (i) and (ii) are clear from the reasoning above.

Proposition 7.12. Consider the same setup as in Proposition 7.11. If N and K satisfy the weak Balancing
Property with respect to U, M and s, then, for ξ ∈ H and γ > 0, we have

P(‖P∆U
∗(q−1

1 PΩ1
⊕ . . .⊕ q−1

r PΩr )UP∆ − P∆)ξ‖l∞ > α̃‖ξ‖l∞) ≤ γ, (7.47)

with α̃ = (2 log
1/2
2 (4

√
sKM))−1, provided that

1 & Λ ·
(
log
(
sγ−1

)
+ 1
)
· log

(√
sKM

)
,

1 & Υ ·
(
log
(
sγ−1

)
+ 1
)
· log

(√
sKM

)
,
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where Λ and Υ are defined in (7.39) and (7.40). Also,

P(‖P∆U
∗(q−1

1 PΩ1 ⊕ . . .⊕ q−1
r PΩr )UP∆ − P∆)ξ‖l∞ >

1

2
‖ξ‖l∞) ≤ γ (7.48)

provided that
1 & Λ ·

(
log
(
sγ−1

)
+ 1
)
, 1 & Υ ·

(
log
(
sγ−1

)
+ 1
)
.

Moreover, if qk = 1 for all k = 1, . . . , r, then the left-hand sides of (7.47) and (7.48) are equal to zero.

Proof. Without loss of generality we may assume that ‖ξ‖l∞ = 1. Let {δj}Nj=1 be random Bernoulli vari-
ables with P(δj = 1) = q̃j := qk, with j ∈ {Nk−1 + 1, . . . , Nk} and 1 ≤ k ≤ r. Let also, for j ∈ N,
ηj = (UP∆)∗ej . Then, after observing that

P∆U
∗(q−1

1 PΩ1
⊕ . . .⊕ q−1

r PΩr )UP∆ =

N∑
j=1

q−1
j δjηj ⊗ η̄j , P∆U

∗PNUP∆ =

N∑
j=1

ηj ⊗ η̄j ,

it follows immediately that

P∆U
∗(q−1

1 PΩ1 ⊕ . . .⊕ q−1
r PΩr )UP∆ − P∆ =

N∑
j=1

(q̃−1
j δj − 1)ηj ⊗ η̄j − (P∆U

∗PNUP∆ − P∆). (7.49)

As in the proof of Proposition 7.11 our goal is to eventually use Bernstein’s inequality and the following is
therefore a setup for that. Define, for 1 ≤ j ≤ N , the random variables Zij = 〈(q̃−1

j δj − 1)(ηj ⊗ η̄j)ξ, ei〉,
for i ∈ ∆. We claim that, for t > 0,

P

∣∣∣∣∣∣
N∑
j=1

Zij

∣∣∣∣∣∣ > t

 ≤ 4 exp

(
− t2/4

Υ + Λt/3

)
, i ∈ ∆. (7.50)

Now, clearly E(Zij) = 0, so we may use Bernstein’s inequality. Thus, we need to estimate E
(
|Zij |2

)
and

|Zij |. We will start with E
(
|Zij |2

)
. Note that

E
(
|Zij |2

)
= (q̃−1

j − 1)|〈ej , UP∆ξ〉|2|〈ej , Uei〉|2. (7.51)

Thus, we can argue exactly as in the proof of Proposition 7.11 and deduce that

N∑
j=1

E
(
|Zij |2

)
≤

r∑
k=1

(q−1
k − 1)µNk−1

s̃k, (7.52)

where sk ≤ Sk(s1, . . . , sr) for 1 ≤ k ≤ r and s̃1 + . . .+ s̃r ≤ s1 + . . .+ sr. To estimate |Zij | we argue as
in the proof of Proposition 7.11 and obtain

|Zij | ≤ max
1≤k≤r

{
Nk −Nk−1

mk
· (κN,M(k, 1) + . . .+ κN,M(k, r))

}
. (7.53)

Thus, by applying Bernstein’s inequality to Re(Zi1), . . . ,Re(ZiN ) and Im(Zi1), . . . , Im(ZiN ) we obtain, via
(7.52) and (7.53) the estimate (7.50), and we have proved the claim.

Now armed with (7.50) we can deduce that , by (7.43) and the assumed weak Balancing property (wBP),
it follows that

P
(
‖P∆U

∗(q−1
1 PΩ1

⊕ . . .⊕ q−1
r PΩr )UP∆ − P∆)ξ‖l∞ > α̃

)
≤
∑
i∈∆

P

∣∣∣∣∣∣
N∑
j=1

Zij + 〈(P∆U
∗PNUP∆ − P∆)ξ, ei〉

∣∣∣∣∣∣ > α̃


≤
∑
i∈∆

P

∣∣∣∣∣∣
N∑
j=1

Zij

∣∣∣∣∣∣ > α̃− ‖PMU∗PNUPM − PM‖l1

 ,

≤ 4 s exp

(
− t2/4

Υ + Λt/3

)
, t = α̃, by (7.50), (wBP).

(7.54)
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Also,

4s exp

(
− t2/4

Υ + Λt/3

)
≤ γ, (7.55)

when

1 ≥
(

4Υ

t2
+

4

3t
Λ

)
· log

(
4s

γ

)
.

And this gives the first part of the proposition. Also, the fact that the left hand side of (7.47) is zero when
qk = 1 for 1 ≤ k ≤ r is clear from (7.55). Note that (ii) follows by arguing exactly as above and replacing
α̃ by 1

4 .

Proposition 7.13. Let U ∈ B(l2(N)) such that ‖U‖ ≤ 1. Suppose that Ω = ΩN,m is a multilevel Bernoulli
sampling scheme, where N = (N1, . . . , Nr) ∈ Nr and m = (m1, . . . ,mr) ∈ Nr. Consider (s,M), where
M = (M1, . . . ,Mr) ∈ Nr, M1 < . . . < Mr, and s = (s1, . . . , sr) ∈ Nr, and let ∆ = ∆1∪ . . .∪∆r, where
∆k ⊂ {Mk−1 + 1, . . . ,Mk}, |∆k| = sk, and M0 = 0. Then, for any t ∈ (0, 1) and γ ∈ (0, 1),

P
(

max
i∈{1,...,M}∩∆c

‖P{i}U∗(q−1
1 PΩ1

⊕ . . .⊕ q−1
r PΩr )UP{i}‖ ≥ 1 + t

)
≤ γ

provided that
t2

4
≥ log

(
2M

γ

)
· max

1≤k≤r

{(
Nk −Nk−1

mk
− 1

)
· µN,M(k, l)

}
(7.56)

for all l = 1, . . . , r when M = Mr and for all l = 1, . . . , r − 1,∞ when M > Mr. In addition, if
mk = Nk −Nk−1 for each k = 1, . . . r, then

P(‖P{i}U∗(q−1
1 PΩ1 ⊕ . . .⊕ q−1

r PΩr )UP{i}‖ ≥ 1 + t) = 0, ∀i ∈ N. (7.57)

Proof. Fix i ∈ {1, . . . ,M}. Let {δj}Nj=1 be random independent Bernoulli variables with P(δj = 1) =

q̃j := qk for j ∈ {Nk−1 + 1, . . . , Nk}. Define Z =
∑N
j=1 Zj and Zj =

(
q̃−1
j δj − 1

)
|uji|2 . Now observe

that

P{i}U
∗(q−1

1 PΩ1
⊕ . . .⊕ q−1

r PΩr )UP{i} =

N∑
j=1

q̃−1
j δj |uji|2 =

N∑
j=1

Zj +

N∑
j=1

|uji|2 ,

where we interpret U as the infinite matrix U = {uij}i,j∈N. Thus, since ‖U‖ ≤ 1,

‖P{i}U∗(q−1
1 PΩ1 ⊕ . . .⊕ q−1

r PΩr )UP{i}‖ ≤

∣∣∣∣∣∣
N∑
j=1

Zj

∣∣∣∣∣∣+ 1 (7.58)

and it is clear that (7.57) is true. For the case where qk < 1 for some k ∈ {1, . . . , r}, observe that for
i ∈ {Ml−1 + 1, . . . ,Ml} (recall that Zj depend on i), we have that E(Zj) = 0. Also,

|Zj | ≤

{
max1≤k≤r{max{q−1

k − 1, 1} · µN,M(k, l)} := Bi i ∈ {Ml−1 + 1, . . . ,Ml}
max1≤k≤r{max{q−1

k − 1, 1} · µN,M(k,∞)} := B∞ i > Mr,

and, by again using the assumption that ‖U‖ ≤ 1,

N∑
j=1

E(|Zj |2) =

N∑
j=1

(q̃−1
j − 1) |uji|4

≤

{
max1≤k≤r{(q−1

k − 1)µN,M(k, l)} =: σ2
i i ∈ {Ml−1 + 1, . . . ,Ml}

max1≤k≤r{(q−1
k − 1)µN,M(k,∞)} =: σ2

∞ i > Mr.
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Thus, by Bernstein’s inequality and (7.58),

P(‖P{i}U∗(q−1
1 PΩ1

⊕ . . .⊕ q−1
r PΩr )UP{i}‖ ≥ 1 + t)

≤ P

∣∣∣∣∣∣
N∑
j=1

Zj

∣∣∣∣∣∣ ≥ t
 ≤ 2 exp

(
− t2/2

σ2 +Bt/3

)
,

B =

{
max1≤i≤r Bi M = Mr,

maxi∈{1,...,r−1,∞}Bi M > Mr

, σ2 =

{
max1≤i≤r σ

2
i M = Mr,

maxi∈{1,...,r−1,∞} σ
2
1 M > Mr.

Applying the union bound yields

P
(

max
i∈{1,...,M}

‖P{i}U∗(q−1
1 PΩ1

⊕ . . .⊕ q−1
r PΩr )UP{i}‖ ≥ 1 + t

)
≤ γ

whenever (7.56) holds.

7.3 Proofs of Propositions 7.3 and 7.4
The proof of the propositions relies on an idea that originated in a paper by D. Gross [43], namely, the golfing
scheme. The variant we are using here is based on an idea from [3] as well as uneven section techniques from
[48, 47], see also [42]. However, the informed reader will recognise that the setup here differs substantially
from both [43] and [3]. See also [16] for other examples of the use of the golfing scheme. Before we embark
on the proof, we will state and prove a useful lemma.

Lemma 7.14. Let X̃k be independent binary variables taking values 0 and 1, such that X̃k = 1 with
probability P . Then,

P

(
N∑
i=1

X̃i ≥ k

)
≥
(
N · e
k

)−k (
N

k

)
P k. (7.59)

Proof. First observe that

P

(
N∑
i=1

X̃i ≥ k

)
=

N∑
i=k

(
N

i

)
P i(1− P )N−i =

N−k∑
i=0

(
N

i+ k

)
P i+k(1− P )N−k−i

=

(
N

k

)
P k

N−k∑
i=0

(N − k)!k!

(N − i− k)!(i+ k)!
P i(1− P )N−k−i

=

(
N

k

)
P k

N−k∑
i=0

(
N − k
i

)
P i(1− P )N−k−i

[(
i+ k

k

)]−1

.

The result now follows because
∑N−k
i=0

(
N−k
i

)
P i(1−P )N−k−i = 1 and for i = 0, . . . , N − k, we have that(

i+ k

k

)
≤
(

(i+ k) · e
k

)k
≤
(
N · e
k

)k
,

where the first inequality follows from Stirling’s approximation (see [24], p. 1186).

Proof of Proposition 7.3. We start by mentioning that converting from the Bernoulli sampling model and
uniform sampling model has become standard in the literature. In particular, one can do this by showing
that the Bernoulli model implies (up to a constant) the uniform sampling model in each of the conditions in
Proposition 7.1. This is straightforward and the reader may consult [18, 17, 41] for details. We will therefore
consider (without loss of generality) only the multilevel Bernoulli sampling scheme.

Recall that we are using the following Bernoulli sampling model: Given N0 = 0, N1, . . . , Nr ∈ N we
let

{Nk−1 + 1, . . . , Nk} ⊃ Ωk ∼ Ber (qk) , qk =
mk

Nk −Nk−1
.
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Note that we may replace this Bernoulli sampling model with the following equivalent sampling model (see
[3]):

Ωk = Ω1
k ∪ Ω2

k ∪ · · · ∪ Ωuk , Ωjk ∼ Ber(qjk), 1 ≤ k ≤ r,
for some u ∈ N with

(1− q1
k)(1− q2

k) · · · (1− quk ) = (1− qk). (7.60)

The latter model is the one we will use throughout the proof and the specific value of u will be chosen later.
Note also that because of overlaps we will have

q1
k + q2

k + . . .+ quk ≥ qk, 1 ≤ k ≤ r. (7.61)

The strategy of the proof is to show the validity of (i) and (ii), and the existence of a ρ ∈ ran(U∗(PΩ1
⊕

. . .⊕ PΩr )) that satisfies (iii)-(v) in Proposition 7.1 with probability exceeding 1− ε, where (iii) is replaced
by (7.16), (iv) is replaced by ‖PMP⊥∆ ρ‖l∞ ≤ 1

2 and L in (v) is given by (7.17).
Step I: The construction of ρ: We start by defining γ = ε/6 (the reason for this particular choice will

become clear later). We also define a number of quantities (and the reason for these choices will become
clear later in the proof):

u = 8d3v + log(γ−1)e, v = dlog2(8KM
√
s)e, (7.62)

as well as
{qik : 1 ≤ k ≤ r, 1 ≤ i ≤ u}, {αi}ui=1, {βi}ui=1

by

q1
k = q2

k =
1

4
qk, q̃k = q3

k = . . . = quk , qk = (Nk −Nk−1)m−1
k , 1 ≤ k ≤ r, (7.63)

with
(1− q1

k)(1− q2
k) · · · (1− quk ) = (1− qk)

and
α1 = α2 = (2 log

1/2
2 (4KM

√
s))−1, αi = 1/2, 3 ≤ i ≤ u, (7.64)

as well as
β1 = β2 =

1

4
, βi =

1

4
log2(4KM

√
s), 3 ≤ i ≤ u. (7.65)

Consider now the following construction of ρ. We will define recursively the sequences {Zi}ui=0 ⊂ H,
{Yi}ui=1 ⊂ H and {ωi}ui=0 ⊂ N as follows: first let ω0 = {0}, ω1 = {0, 1} and ω2 = {0, 1, 2}. Then define
recursively, for i ≥ 3, the following:

ωi =


ωi−1 ∪ {i} if ‖(P∆ − P∆U

∗( 1
qi1
PΩi1
⊕ . . .⊕ 1

qir
PΩir

)UP∆)Zi−1‖l∞ ≤ αi‖P∆k
Zi−1‖l∞ ,

and ‖PMP⊥∆U∗( 1
qi1
PΩi1
⊕ . . .⊕ 1

qir
PΩir

)UP∆Zi−1‖l∞ ≤ βi‖Zi−1‖l∞ ,
ωi−1 otherwise,

(7.66)

Yi =

{∑
j∈ωi U

∗( 1

qj1
PΩj1
⊕ . . .⊕ 1

qjr
PΩjr

)UZj−1 if i ∈ ωi,
Yi−1 otherwise,

i ≥ 1,

Zi =

{
sgn(x0)− P∆Yi if i ∈ ωi,
Zi−1 otherwise,

i ≥ 1, Z0 = sgn(x0).

Now, let {Ai}2i=1 and {Bi}5i=1 denote the following events

Ai : ‖(P∆ − U∗(
1

qi1
PΩi1
⊕ . . .⊕ 1

qir
PΩir

)UP∆)Zi−1‖l∞ ≤ αi ‖Zi−1‖l∞ , i = 1, 2,

Bi : ‖PMP⊥∆U∗(
1

qi1
PΩi1
⊕ . . .⊕ 1

qir
PΩir

)UP∆Zi−1‖l∞ ≤ βi‖Zi−1‖l∞ , i = 1, 2,

B3 : ‖P∆U
∗(

1

q1
PΩ1
⊕ . . .⊕ 1

qr
PΩr )UP∆ − P∆‖ ≤ 1/4,

max
i∈∆c∩{1,...,M}

‖
(
q
−1/2
1 PΩ1 ⊕ . . .⊕ q−1/2

r PΩr

)
Uei‖ ≤

√
5/4

B4 : |ωu| ≥ v,
B5 : (∩2

i=1Ai) ∩ (∩4
i=1Bi).

(7.67)
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Also, let τ(j) denote the jth element in ωu (e.g. τ(0) = 0, τ(1) = 1, τ(2) = 2 etc.) and finally define ρ by

ρ =

{
Yτ(v) if B5 occurs,
0 otherwise.

Note that, clearly, ρ ∈ ran(U∗PΩ), and we just need to show that when the event B5 occurs, then (i)-(v) in
Proposition 7.1 will follow.

Step II: B5 ⇒ (i), (ii). To see that the assertion is true, note that if B5 occurs then B3 occurs, which
immediately (i) and (ii).

Step III: B5 ⇒ (iii), (iv). To show the assertion, we start by making the following observations: By the
construction of Zτ(i) and the fact that Z0 = sgn(x0), it follows that

Zτ(i) = Z0 − (P∆U
∗(

1

q
τ(1)
1

P
Ω
τ(1)
1
⊕ . . .⊕ 1

q
τ(1)
r

P
Ω
τ(i)
r

)UP∆)Z0

+ . . .+ P∆U
∗(

1

q
τ(i)
1

P
Ω
τ(i)
1
⊕ . . .⊕ 1

q
τ(i)
r

P
Ω
τ(i)
r

)UP∆)Zτ(i−1))

= Zτ(i−1) − P∆U
∗(

1

q
τ(i)
1

P
Ω
τ(i)
1
⊕ . . .⊕ 1

q
τ(i)
r

P
Ω
τ(i)
r

)UP∆)Zτ(i−1) i ≤ |ωu|,

so we immediately get that

Zτ(i) = (P∆ − P∆U
∗(

1

q
τ(i)
1

P
Ω
τ(i)
1
⊕ . . .⊕ 1

q
τ(i)
r

P
Ω
τ(i)
r

)UP∆)Zτ(i−1), i ≤ |ωu|.

Hence, if the event B5 occurs, we have, by the choices in (7.64) and (7.65)

‖ρ− sgn(x0)‖ = ‖Zτ(v)‖ ≤
√
s‖Zτ(v)‖l∞ ≤

√
s

v∏
i=1

ατ(i) ≤
√
s

2v
≤ 1

8K
, (7.68)

since we have chosen v = dlog2(8KM
√
s)e. Also,

‖PMP⊥∆ ρ‖l∞ ≤
v∑
i=1

‖PMP⊥∆U∗(
1

q
τ(i)
1

P
Ω
τ(i)
1
⊕ . . .⊕ 1

q
τ(i)
r

P
Ω
τ(i)
r

)UP∆Zτ(i−1)‖l∞

≤
v∑
i=1

βτ(i)‖Zτ(i−1)‖l∞ ≤
v∑
i=1

βτ(i)

i−1∏
j=1

ατ(j)

≤ 1

4
(1 +

1

2 log
1/2
2 (a)

+
log2(a)

23 log2(a)
+ . . .+

1

2v−1
) ≤ 1

2
, a = 4KM

√
s.

(7.69)

In particular, (7.68) and (7.69) imply (iii) and (iv) in Proposition 7.1.
Step IV: B5 ⇒ (v). To show that, note that we may write the already constructed ρ as ρ = U∗PΩw

where

w =

v∑
i=1

wi, wi =

(
1

q
τ(i)
1

PΩ1
⊕ . . .⊕ 1

q
τ(i)
r

PΩr

)
UP∆Zτ(i−1).

To estimate ‖w‖ we simply compute

‖wi‖2 =

〈(
1

q
τ(i)
1

P
Ω
τ(i)
1
⊕ . . .⊕ 1

q
τ(i)
r

P
Ω
τ(i)
r

)
UP∆Zτ(i−1),

(
1

q
τ(i)
1

P
Ω
τ(i)
1
⊕ . . .⊕ 1

q
τ(i)
r

P
Ω
τ(i)
r

)
UP∆Zτ(i−1)

〉

=

r∑
k=1

(
1

q
τ(i)
k

)2

‖P
Ω
τ(i)
k

UZτ(i−1)‖2,
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and then use the assumption that the event B5 holds to deduce that

r∑
k=1

(
1

q
τ(i)
k

)2

‖P
Ω
τ(i)
k

UZτ(i−1)‖2 ≤ max
1≤k≤r

{
1

q
τ(i)
k

}
〈
r∑

k=1

1

q
τ(i)
k

P∆U
∗P

Ω
τ(i)
k

UZτ(i−1), Zτ(i−1)〉

= max
1≤k≤r

{
1

q
τ(i)
k

}
〈

(
r∑

k=1

1

q
τ(i)
k

P∆U
∗P

Ω
τ(i)
k

U − P∆

)
Zτ(i−1), Zτ(i−1)〉+ ‖Zτ(i−1)‖2

≤ max
1≤k≤r

{
1

q
τ(i)
k

}(
‖Zτ(i−1)‖‖Zτ(i)‖+ ‖Zτ(i−1)‖2

)

≤ max
1≤k≤r

{
1

q
τ(i)
k

}
s
(
‖Zτ(i−1)‖l∞‖Zτ(i)‖l∞ + ‖Zτ(i−1)‖2l∞

)
≤ max

1≤k≤r

{
1

q
τ(i)
k

}
s(αi + 1)

i−1∏
j=1

αj

2

,

where the last inequality follows from the assumption that the event B5 holds. Hence

‖w‖ ≤
√
s

v∑
i=1

 max
1≤k≤r

 1√
q
τ(i)
k

√αi + 1

i−1∏
j=1

αj

 (7.70)

Note that, due to the fact that q1
k + . . .+ quk ≥ qk, we have that

q̃k ≥
mk

2(Nk −Nk−1)

1

8 dlog(γ−1) + 3dlog2(8KM
√
s)ee − 2

.

This gives, in combination with the chosen values of {αj} and (7.70) that

‖w‖ ≤ 2
√
s max

1≤k≤r

√
Nk −Nk−1

mk

(
1 +

1

2 log
1/2
2 (4KM

√
s)

)3/2

+
√
s max

1≤k≤r

√
Nk −Nk−1

mk
·
√

3

2
·
√

8 dlog(γ−1) + 3dlog2(8KM
√
s)ee − 2

log2 (4KM
√
s)

·
v∑
i=3

1

2i−3

≤ 2
√
s max

1≤k≤r

√
Nk −Nk−1

mk

((
3

2

)3/2

+

√
6

log2(4KM
√
s)

√
1 +

log2 (γ−1) + 6

log2(4KM
√
s)

)

≤
√
s max

1≤k≤r

√
Nk −Nk−1

mk

(
3
√

3√
2

+
2
√

6√
log2(4KM

√
s)

√
1 +

log2 (γ−1) + 6

log2(4KM
√
s)

)
.

(7.71)

Step V: The weak balancing property, (7.14) and (7.15)⇒ P(Ac1 ∪Ac2 ∪Bc1 ∪Bc2 ∪Bc3) ≤ 5γ.
To see this, note that by Proposition 7.12 we immediately get (recall that q1

k = q2
k = 1/4qk) that P(Ac1) ≤

γ and P(Ac2) ≤ γ as long as the weak balancing property and

1 & Λ ·
(
log
(
sγ−1

)
+ 1
)
· log

(√
sKM

)
, 1 & Υ ·

(
log
(
sγ−1

)
+ 1
)
· log

(√
sKM

)
, (7.72)

are satisfied, where K = max1≤k≤r(Nk −Nk−1)/mk,

Λ = max
1≤k≤r

{
Nk −Nk−1

mk
·

(
r∑
l=1

κN,M(k, l)

)}
, (7.73)

Υ = max
1≤l≤r

r∑
k=1

(
Nk −Nk−1

mk
− 1

)
· µN,M(k, l) · s̃k, (7.74)

and where s̃1 + . . .+ s̃r ≤ s1 + . . .+ sr and s̃k ≤ Sk(s1, . . . , sr). However, clearly, (7.14) and (7.15) imply
(7.72). Also, Proposition 7.11 yields that P(Bc1) ≤ γ and P(Bc2) ≤ γ as long as the weak balancing property
and

1 & Λ · log

(
4

γ
(M − s)

)
, 1 & Υ · log

(
4

γ
(M − s)

)
, (7.75)
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are satisfied. However, again, (7.14) and (7.15) imply (7.75). Finally, it remains to bound P(Bc3). First note
that by Theorem 7.8, we may deduce that

P
(
‖P∆U

∗(
1

q1
PΩ1
⊕ . . .⊕ 1

qr
PΩr )UP∆ − P∆‖ > 1/4,

)
≤ γ/2,

when the weak balancing property and

1 & Λ ·
(
log
(
γ−1 s

)
+ 1
)

(7.76)

holds and (7.14) implies (7.76).
For the second part of B3, we may deduce from Proposition 7.13 that

P
(

max
i∈∆c∩{1,...,M}

‖
(
q
−1/2
1 PΩ1

⊕ . . .⊕ q−1/2
r PΩr

)
Uei‖ >

√
5/4

)
≤ γ

2
,

whenever

1 & log

(
2M

γ

)
· max

1≤k≤r

{(
Nk −Nk−1

mk
− 1

)
· µN,M(k, l)

}
, l = 1, . . . , r. (7.77)

which is true whenever (7.14) holds. Indeed, recalling the definition of κN,M(k, j) and Θ in Definition 7.2,
observe that

max
η∈Θ,‖η‖∞=1

r∑
l=1

∥∥∥PNk−1

Nk
UP

Ml−1

Ml
η
∥∥∥
∞
≥ max
η∈Θ,‖η‖∞=1

∥∥∥PNk−1

Nk
Uη
∥∥∥
∞
≥
√
µ(P

Nk−1

Nk
UP

Ml−1

Ml
) (7.78)

for each l = 1, . . . , r which implies that
∑r
j=1 κN,M(k, j) ≥ µN,M(k, l), for l = 1, . . . , r. Consequently,

(7.77) follows from (7.14). Thus, P(Bc3) ≤ γ.
Step VI: The weak balancing property, (7.14) and (7.15) ⇒ P(Bc4) ≤ γ. To see this, define the

random variables X1, . . . Xu−2 by

Xj =

{
0 ωj+2 6= ωj+1,

1 ωj+2 = ωj+1.
(7.79)

We immediately observe that

P(Bc4) = P(|ωu| < v) = P(X1 + . . .+Xu−2 > u− v). (7.80)

However, the random variables X1, . . . Xu−2 are not independent, and we therefore cannot directly apply
the standard Chernoff bound. In particular, we must adapt the setup slightly. Note that

P(X1 + . . .+Xu−2 > u− v)

≤
(u−2
u−v)∑
l=1

P(Xπ(l)1
= 1, Xπ(l)2

= 1, . . . , Xπ(l)u−v = 1)

=

(u−2
u−v)∑
l=1

P(Xπ(l)u−v = 1 |Xπ(l)1
= 1, . . . , Xπ(l)u−v−1

= 1)P(Xπ(l)1
= 1, . . . , Xπ(l)u−v−1

= 1)

=

(u−2
u−v)∑
l=1

P(Xπ(l)u−v = 1 |Xπ(l)1
= 1, . . . , Xπ(l)u−v−1

= 1)

× P(Xπ(l)u−v−1
= 1 |Xπ(l)1

= 1, . . . , Xπ(l)u−v−2
= 1) · · ·P(Xπ(l)1

= 1)

(7.81)

where π : {1, . . . ,
(
u−2
u−v
)
} → Nu−v ranges over all

(
u−2
u−v
)

ordered subsets of {1, . . . , u − 2} of size u − v.
Thus, if we can provide a bound P such that

P ≥ P(Xπ(l)u−v−j = 1 |Xπ(l)1
= 1, . . . , Xπ(l)u−v−(j+1)

= 1),

P ≥ P(Xπ(l)1
= 1)

(7.82)
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l = 1, . . . ,

(
u− 2

u− v

)
, j = 0, . . . , u− v − 2,

then, by (7.81),

P(X1 + . . .+Xu−2 > u− v) ≤
(
u− 2

u− v

)
Pu−v. (7.83)

We will continue assuming that (7.82) is true, and then return to this inequality below.
Let {X̃k}u−2

k=1 be independent binary variables taking values 0 and 1, such that X̃k = 1 with probability
P . Then, by Lemma 7.14, (7.83) and (7.80) it follows that

P(Bc4) ≤ P
(
X̃1 + . . .+ X̃u−2 ≥ u− v

)( (u− 2) · e
u− v

)u−v
. (7.84)

Then, by the standard Chernoff bound ([64, Theorem 2.1, equation 2]), it follows that, for t > 0,

P
(
X̃1 + . . .+ X̃u−2 ≥ (u− 2)(t+ P )

)
≤ e−2(u−2)t2 . (7.85)

Hence, if we let t = (u− v)/(u− 2)− P , it follows from (7.84) and (7.85) that

P(Bc4) ≤ e−2(u−2)t2+(u−v)(log( u−2
u−v )+1) ≤ e−2(u−2)t2+u−2.

Thus, by choosing P = 1/4 we get that P(Bc4) ≤ γ whenever u ≥ x and x is the largest root satisfying

(x− u)

(
x− v
u− 2

− 1

4

)
− log(γ−1/2)− x− 2

2
= 0,

and this yields u ≥ 8d3v+ log(γ−1/2)e which is satisfied by the choice of u in (7.62). Thus, we would have
been done with Step VI if we could verify (7.82) with P = 1/4, and this is the theme in the following claim.

Claim: The weak balancing property, (7.14) and (7.15)⇒ (7.82) with P = 1/4. To prove the claim
we first observe that Xj = 0 when

‖(P∆ − P∆U
∗(

1

qi1
PΩi1
⊕ . . .⊕ 1

qir
PΩir

)UP∆)Zi−1‖l∞ ≤
1

2
‖Zi−1‖l∞

‖PMP⊥∆U∗(
1

qi1
PΩi1
⊕ . . .⊕ 1

qir
PΩir

)UP∆Zi−1‖l∞ ≤
1

4
log2(4KM

√
s)‖Zi−1‖l∞ , i = j + 2,

where we recall from (7.63) that

q3
k = q4

k = . . . = quk = q̃k, 1 ≤ k ≤ r.

Thus, by choosing γ = 1/8 in (7.48) in Proposition 7.12 and γ = 1/8 in (i) in Proposition 7.11, it follows
that 1

4 ≥ P(Xj = 1), for j = 1, . . . , u− 2, when the weak balancing property is satisfied and

(log (8s) + 1)
−1 & q̃−1

k ·
r∑
l=1

κN,M(k, l), 1 ≤ k ≤ r (7.86)

(log (8s) + 1)
−1 &

(
r∑

k=1

(
q̃−1
k − 1

)
· µN,M(k, l) · s̃k

)
, 1 ≤ l ≤ r, (7.87)

as well as

log2(4KM
√
s)

log (32(M − s))
& q̃−1

k ·
r∑
l=1

κN,M(k, l), 1 ≤ k ≤ r (7.88)

log2(4KM
√
s)

log (32(M − s))
&

(
r∑

k=1

(
q̃−1
k − 1

)
· µN,M(k, l) · s̃k

)
, 1 ≤ l ≤ r, (7.89)

withK = max1≤k≤r(Nk−Nk−1)/mk. Thus, to prove the claim we must demonstrate that (7.14) and (7.15)
⇒ (7.86), (7.87), (7.88) and (7.89). We split this into two stages:
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Stage 1: (7.15)⇒ (7.89) and (7.87). To show the assertion we must demonstrate that if, for 1 ≤ k ≤ r,

mk & (log(sε−1) + 1) · m̂k · log
(
KM

√
s
)
, (7.90)

where m̂k satisfies

1 &
r∑

k=1

(
Nk −Nk−1

m̂k
− 1

)
· µN,M(k, l) · s̃k, l = 1, . . . , r, (7.91)

we get (7.89) and (7.87). To see this, note that by (7.61) we have that

q1
k + q2

k + (u− 2)q̃k ≥ qk, 1 ≤ k ≤ r, (7.92)

so since q1
k = q2

k = 1
4qk, and by (7.92), (7.90) and the choice of u in (7.62), it follows that

2(8(dlog(γ−1)+3dlog2(8KM
√
s)ee)− 2)q̃k ≥ qk =

mk

Nk −Nk−1

≥ C m̂k

Nk −Nk−1
(log(sε−1) + 1) log

(
KM
√
s
)

≥ C m̂k

Nk −Nk−1
(log(s) + 1)(log

(
KM
√
s
)

+ log(ε−1)),

for some constantC (recall that we have assumed that log(s) ≥ 1). And this gives (by recalling that γ = ε/6)
that q̃k ≥ Ĉ m̂k

Nk−Nk−1
(log(s) + 1), for some constant Ĉ. Thus, (7.15) implies that for 1 ≤ l ≤ r,

1 & (log (s) + 1)

(
r∑

k=1

(
Nk −Nk−1

mk(log(s) + 1)
− 1

log(s) + 1

)
· µN,M(k, l) · s̃k

)

& (log (s) + 1)

(
r∑

k=1

(
q̃−1
k − 1

)
· µN,M(k, l) · s̃k

)
,

and this implies (7.89) and (7.87), given an appropriate choice of the constant C.
Stage 2: (7.14)⇒ (7.88) and (7.86). To show the assertion we must demonstrate that if, for 1 ≤ k ≤ r,

1 & (log(sε−1) + 1) · Nk −Nk−1

mk
· (

r∑
l=1

κN,M(k, l)) · log
(
KM
√
s
)
, (7.93)

we obtain (7.88) and (7.86). To see this, note that by arguing as above via the fact that q1
k = q2

k = 1
4qk, and

by (7.92), (7.93) and the choice of u in (7.62) we have that

2(8(dlog(γ−1)+3dlog2(8KM
√
s)ee)− 2)q̃k ≥ qk =

mk

Nk −Nk−1

≥ C · (
r∑
l=1

κN,M(k, l)) · (log(sε−1) + 1) · log
(
KM

√
s
)

≥ C · (
r∑
l=1

κN,M(k, l)) · (log(s) + 1)
(
log(ε−1) + log

(
KM
√
s
))
,

for some constant C. Thus, we have that for some appropriately chosen constant Ĉ, q̃k ≥ Ĉ · (log(s) + 1) ·∑r
l=1 κN,M(k, l). So, (7.88) and (7.86) holds given an appropriately chosen C. This yields the last puzzle

of the proof, and we are done.

Proof of Proposition 7.4. The proof is very close to the proof of Proposition 7.3 and we will simply point
out the differences. The strategy of the proof is to show the validity of (i) and (ii), and the existence of a
ρ ∈ ran(U∗(PΩ1

⊕ . . .⊕ PΩr )) that satisfies (iii)-(v) in Proposition 7.1 with probability exceeding 1− ε.
Step I: The construction of ρ: The construction is almost identical to the construction in the proof of

Proposition 7.3, except that

u = 8dlog(γ−1) + 3ve, v = dlog2(8KM̃
√
s)e, (7.94)
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α1 = α2 = (2 log
1/2
2 (4KM̃

√
s))−1, αi = 1/2, 3 ≤ i ≤ u,

as well as
β1 = β2 =

1

4
, βi =

1

4
log2(4KM̃

√
s), 3 ≤ i ≤ u,

and (7.66) gets changed to

ωi =


ωi−1 ∪ {i} if ‖(P∆ − P∆U

∗( 1
qi1
PΩi1
⊕ . . .⊕ 1

qir
PΩir

)UP∆)Zi−1‖l∞ ≤ αi‖P∆k
Zi−1‖l∞ ,

and ‖P⊥∆U∗( 1
qi1
PΩi1
⊕ . . .⊕ 1

qir
PΩir

)UP∆Zi−1‖l∞ ≤ βi‖Zi−1‖l∞ ,
ωi−1 otherwise,

the events Bi, i = 1, 2 in (7.67) get replaced by

B̃i : ‖P⊥∆U∗(
1

qi1
PΩi1
⊕ . . .⊕ 1

qir
PΩir

)UP∆Zi−1‖l∞ ≤ βi‖Zi−1‖l∞ , i = 1, 2.

and the second part of B3 becomes

max
i∈∆c

‖
(
q
−1/2
1 PΩ1 ⊕ . . .⊕ q−1/2

r PΩr

)
Uei‖ ≤

√
5/4.

Step II: B5 ⇒ (i), (ii). This step is identical to Step II in the proof of Proposition 7.3.
Step III: B5 ⇒ (iii), (iv). Equation (7.69) gets changed to

‖P⊥∆ ρ‖l∞ ≤
v∑
i=1

‖P⊥∆U∗(
1

q
τ(i)
1

P
Ω
τ(i)
1
⊕ . . .⊕ 1

q
τ(i)
r

P
Ω
τ(i)
r

)UP∆Zτ(i−1)‖l∞

≤
v∑
i=1

βτ(i)‖Zτ(i−1)‖l∞ ≤
v∑
i=1

βτ(i)

i−1∏
j=1

ατ(j)

≤ 1

4
(1 +

1

2 log
1/2
2 (a)

+
log2(a)

23 log2(a)
+ . . .+

1

2v−1
) ≤ 1

2
, a = 4M̃K

√
s.

Step IV: B5 ⇒ (v). This step is identical to Step IV in the proof of Proposition 7.3.
Step V: The strong balancing property, (7.18) and (7.19)⇒ P(Ac1 ∪ Ac2 ∪ B̃c1 ∪ B̃c2 ∪Bc3) ≤ 5γ. We

will start by bounding P(B̃c1) and P(B̃c2). Note that by Proposition 7.11 (ii) it follows that P(B̃c1) ≤ γ and
P(B̃c2) ≤ γ as long as the strong balancing property is satisfied and

1 & Λ · log

(
4

γ
(θ̃ − s)

)
, 1 & Υ · log

(
4

γ
(θ̃ − s)

)
(7.95)

where θ̃ = θ̃({qik}rk=1, 1/8, {Nk}rk=1, s,M) for i = 1, 2 and where θ̃ is defined in Proposition 7.11 (ii) and
Λ and Υ are defined in (7.73) and (7.74). Note that it is easy to see that we have∣∣∣∣∣∣∣
j ∈ N : max

Γ1⊂{1,...,M}, |Γ1|=s
Γ2,j⊂{Nj−1+1,...,Nj}, j=1,...,r

‖PΓ1
U∗((qi1)−1PΓ2,1

⊕ . . .⊕ (qir)
−1PΓ2,r

)Uej‖ >
1

8
√
s


∣∣∣∣∣∣∣ ≤ M̃,

where
M̃ = min{i ∈ N : max

j≥i
‖PNUP{j}‖ ≤ 1/(K32

√
s)},

and this follows from the choice in (7.63) where q1
k = q2

k = 1
4qk for 1 ≤ k ≤ r. Thus, it immediately follows

that (7.18) and (7.19) imply (7.95). To bound P(Bc3), we first deduce as in Step V of the proof of Proposition
7.3 that

P
(
‖P∆U

∗(
1

q1
PΩ1 ⊕ . . .⊕

1

qr
PΩr )UP∆ − P∆‖ > 1/4,

)
≤ γ/2

when the strong balancing property and (7.18) holds. For the second part of B3, we know from the choice of
M̃ that

max
i≥M̃
‖
(
q
−1/2
1 PΩ1

⊕ . . .⊕ q−1/2
r PΩr

)
Uei‖ ≤

√
5

4
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and we may deduce from Proposition 7.13 that

P

(
max

i∈∆c∩{1,...,M̃}
‖
(
q
−1/2
1 PΩ1 ⊕ . . .⊕ q−1/2

r PΩr

)
Uei‖ >

√
5/4

)
≤ γ

2
,

whenever

1 & log

(
2M̃

γ

)
· max

1≤k≤r

{(
Nk −Nk−1

mk
− 1

)
µN,M(k, l)

}
, l = 1, . . . , r − 1,∞,

which is true whenever (7.18) holds, since by a similar argument to (7.78),

κN,M(k,∞) +

r−1∑
j=1

κN,M(k, j) ≥ µN,M(k, l), l = 1, . . . , r − 1,∞.

Thus, P(Bc3) ≤ γ. As for bounding P(Ac1) and P(Ac2), observe that by the strong balancing property
M̃ ≥M , thus this is done exactly as in Step V of the proof of Proposition 7.3.

Step VI: The strong balancing property, (7.18) and (7.19) ⇒ P(Bc4) ≤ γ. To see this, define the
random variables X1, . . . Xu−2 as in (7.79). Let π be defined as in Step VI of the proof of Proposition 7.3.
Then it suffices to show that (7.18) and (7.19) imply that for l = 1, . . .

(
u−2
u−v
)

and j = 0, . . . , u− v − 2, we
have

1

4
≥ P(Xπ(l)u−v−j = 1 |Xπ(l)1

= 1, . . . , Xπ(l)u−v−(j+1)
= 1),

1

4
≥ P(Xπ(l)1

= 1).

(7.96)

Claim: The strong balancing property, (7.18) and (7.19)⇒ (7.96). To prove the claim we first observe
that Xj = 0 when

‖(P∆ − P∆U
∗(

1

qi1
PΩi1
⊕ . . .⊕ 1

qir
PΩir

)UP∆)Zi−1‖l∞ ≤
1

2
‖Zi−1‖l∞

‖P⊥∆U∗(
1

qi1
PΩi1
⊕ . . .⊕ 1

qir
PΩir

)UP∆Zi−1‖l∞ ≤
1

4
log2(4KM̃

√
s)‖Zi−1‖l∞ , i = j + 2.

Thus, by again recalling from (7.63) that q3
k = q4

k = . . . = quk = q̃k, 1 ≤ k ≤ r, and by choosing γ̃ = 1/4
in (7.48) in Proposition 7.12 and γ̃ = 1/4 in (ii) in Proposition 7.11, we conclude that (7.96) follows when
the strong balancing property is satisfied as well as (7.86) and (7.87). and

log2(4KM̃
√
s)

log
(

16(M̃ − s)
) ≥ C2 · q̃−1

k ·

(
r−1∑
l=1

κN,M(k, l) + κN,M(k,∞)

)
, k = 1, . . . , r (7.97)

log2(4KM̃
√
s)

log
(

16(M̃ − s)
) ≥ C2 ·

(
r∑
l=1

(
q̃−1
k − 1

)
· µN,M(k, l) · s̃k

)
, l = 1, . . . , r − 1,∞ (7.98)

for K = max1≤k≤r(Nk − Nk−1)/mk. for some constants C1 and C2. Thus, to prove the claim we must
demonstrate that (7.18) and (7.19)⇒ (7.86), (7.87), (7.97) and (7.98). This is done by repeating Stage 1 and
Stage 2 in Step VI of the proof of Proposition 7.3 almost verbatim, except replacing M by M̃ .

7.4 Proofs of Theorem 6.2 and Proposition 6.3
Throughout this section, we use the notation

f̂(ξ) =

∫
R
f(x)e−ixξdx, (7.99)

to denote the Fourier transform of a function f ∈ L1(R).
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7.4.1 Setup

We first introduce the wavelet sparsity and Fourier sampling bases that we consider, and in particular, their
orderings. Consider an orthonormal basis of compactly supported wavelets with an MRA [27, 28]. For
simplicity, suppose that supp(Ψ) = supp(Φ) = [0, a] for some a ≥ 1, where Ψ and Φ are the mother
wavelet and scaling function respectively. For later use, we recall the following three properties of any such
wavelet basis:

1. There exist α ≥ 1, CΨ and CΦ > 0, such that∣∣∣Φ̂(ξ)
∣∣∣ ≤ CΦ

(1 + |ξ|)α
,
∣∣∣Ψ̂(ξ)

∣∣∣ ≤ CΨ

(1 + |ξ|)α
. (7.100)

See [28, Eqn. (7.1.4)]. We will denote max{CΨ, CΦ} by CΦ,Ψ.

2. Ψ has v ≥ 1 vanishing moments and Ψ̂(z) = (−iz)vθΨ(z) for some bounded function θΨ (see [63,
p.208 & p.284]).

3. ‖Φ̂‖L∞ , ‖Ψ̂‖L∞ ≤ 1.

Remark 7.1 The three properties above are based on the standard setup for an MRA, however, we also
consider a stronger assumption on the decay of the Fourier transform of derivatives of the scaling function
and the mother wavelet. In particular, in addition, we sometimes assume that for C > 0 and α ≥ 1.5,∣∣∣Φ̂(k)(ξ)

∣∣∣ ≤ C

(1 + |ξ|)α
,
∣∣∣Ψ̂(k)(ξ)

∣∣∣ ≤ C

(1 + |ξ|)α
, ξ ∈ R, k = 0, 1, 2, (7.101)

where Φ̂(k) and Ψ̂(k) denotes the kth derivative of the Fourier transform of Φ and Ψ respectively. As is
evident from Theorem 6.2, the faster decay, the closer the relationship between N and M in the balancing
property gets to linear. Also, faster decay and more vanishing moments yield a closer to block-diagonal
structure of the matrix U .

We now wish to construct a wavelet basis for the compact interval [0, a]. The most standard approach is
to consider the following collection of functions

Λa = {Φk,Ψj,k : supp(Φk)o ∩ [0, a] 6= ∅, supp(Ψj,k)o ∩ [0, a] 6= ∅, j ∈ Z+, k ∈ Z, },

where Φk = Φ(· − k), and Ψj,k = 2
j
2 Ψ(2j · −k). (the notation Ko denotes the interior of a set K ⊆ R).

This gives{
f ∈ L2(R) : supp(f) ⊆ [0, a]

}
⊆ span{ϕ : ϕ ∈ Λa} ⊆

{
f ∈ L2(R) : supp(f) ⊆ [−T1, T2]

}
,

where T1, T2 > 0 are such that [−T1, T2] contains the support of all functions in Λa. Note that the inclusions
may be proper (but not always, as is the case with the Haar wavelet). It is easy to see that

Ψj,k /∈ Λa ⇐⇒
a+ k

2j
≤ 0, a ≤ k

2j
,

Φk /∈ Λa ⇐⇒ a+ k ≤ 0, a ≤ k,

and therefore

Λa ={Φk : |k| = 0, . . . , dae − 1} ∪ {Ψj,k : j ∈ Z+, k ∈ Z,−dae < k < 2jdae}.

We order Λa in increasing order of wavelet resolution as follows:

{Φ−dae+1, . . . ,Φ−1,Φ0,Φ1, . . . ,Φdae−1,

Ψ0,−dae+1, . . . ,Ψ0,−1,Ψ0,0,Ψ0,1, . . . ,Ψ0,dae−1,Ψ1,−dae+1, . . .},
(7.102)

and then we finally denote the functions according to this ordering by {ϕj}j∈N. By the definition of Λa, we
let T1 = dae − 1 and T2 = 2dae − 1. Finally, for R ∈ N, let ΛR,a contain all wavelets in Λa with resolution
less than R, so that

ΛR,a = {ϕ ∈ Λa : ϕ = Ψj,k, 0 ≤ j < R, or ϕ = Φk}. (7.103)
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We also denote the size of ΛR,a by WR. It is easy to verify that

WR = 2Rdae+ (R+ 1)(dae − 1). (7.104)

Having constructed an orthonormal wavelet system for [0, a], we now introduce the appropriate Fourier
sampling basis. We must sample at a rate that is at least that of the Nyquist rate. Hence we let ω ≤
1/(T1 + T2) be the sampling density (note that 1/(T1 + T2) is the Nyquist criterion for functions supported
on [−T1, T2]). For simplicity, we assume throughout that

ω ∈ (0, 1/(T1 + T2)), ω−1 ∈ N, (7.105)

and remark that this assumption is an artefact of our proofs and is not necessary in practice. The Fourier
sampling vectors are now defined as follows.

ψj(x) =
√
ωe−2πijωxχ[−T1/(ω(T1+T2)),T2/(ω(T1+T2))](x), j ∈ Z. (7.106)

This gives an orthonormal sampling basis for the space {f ∈ L2(R) : supp(f) ⊆ [−T1, T2]}. Since Λa is
an orthonormal system for this space, it follows that the infinite matrix

U =


u11 u12 u13 . . .
u21 u22 u23 . . .
u31 u32 u33 . . .

...
...

...
. . .

 , uij = 〈ϕj , ψ̃i〉, (7.107)

is an isometry, where {ϕj}j∈N represents the wavelets ordered according to (7.102) and {ψ̃j}j∈N is the
standard ordering of the Fourier basis (7.106) over N (ψ̃1 = ψ0, ψ̃2n = ψn and ψ̃2n+1 = ψ−n). With slight
abuse of notation it is this ordering that we are using in Theorem 6.2.

7.4.2 Some preliminary estimates

Throughout this section, we assume the setup and notation introduced above.

Theorem 7.15. Let U be the matrix of the Fourier/wavelets pair introduced in (7.107) with sampling density
ω as in (7.105) . Suppose that Φ and Ψ satisfy the decay estimate (7.100) with α ≥ 1 and that Ψ has v ≥ 1
vanishing moments. Then the following holds.

(i) We have µ(U) ≥ ω.

(ii) We have that

µ(P⊥NU) ≤
C2

Φ,Ψ

πN(2α− 1)(1 + 1/(2α− 1))2α
, N ∈ N,

µ(UP⊥N ) ≤ ‖Ψ‖2L∞
4ωdae
N

, N ≥ 2dae+ 2(dae − 1),

and consequently µ(P⊥NU), µ(UP⊥N ) = O
(
N−1

)
.

(iii) If the wavelet and scaling function satisfy the decay estimate (7.100) with α > 1/2, then, for R and
N such that ω−12R ≤ N and M = |ΛR,a| (recall the definition of ΛR,a from (7.103)),

µ(P⊥NUPM ) ≤
C2

Φ,Ψ

π2αω2α−1
(2R−1N−1)2α−1N−1.

(iv) If the wavelet has v ≥ 1 vanishing moments, ω−12R ≥ N and M = |ΛR,a| with R ≥ 1, then

µ(PNUP
⊥
M ) ≤ ω

2R
·
(
πωN

2R

)2v

· ‖θΨ‖2L∞ ,

where θΨ is the function such that Ψ̂(z) = (−iz)vθΨ(z) (see above).
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Proof. Note that µ(U) ≥ |〈Φ, ψ0〉|2 = ω
∣∣∣Φ̂(0)

∣∣∣2, moreover, it is known that Φ̂(0) = 1 [51, Ch. 2, Thm.
1.7]. Thus, (i) follows.

To show (ii), let R ∈ N, −dae < j < 2Rdae and k ∈ Z. Then, by the choice of j, we have that ΨR,j

is supported on [−T1, T2]. Also, ψk(x) =
√
ωe−2πikωxχ[−T1/(ω(T1+T2)),T2/(ω(T1+T2))](x). Thus, since by

(7.105) we have ω ∈ (0, 1/(T1 + T2)), it follows that

〈ΨR,j , ψk〉 =
√
ω

∫ T2
ω(T1+T2)

− T1
ω(T1+T2)

ΨR,j(x)e2πiωkxdx

=
√
ωΨ̂R,j(−2πωk) =

√
ω

2R
Ψ̂

(
−2πkω

2R

)
e2πiωkj/2R .

(7.108)

Also, similarly, it follows that

〈Φj , ψk〉 =
√
ω

∫ T2
ω(T1+T2)

− T1
ω(T1+T2)

Φj(x)e2πiωkxdx =
√
ωΦ̂j (−2πkω) =

√
ωΦ̂ (−2πkω) e2πiωkj . (7.109)

Thus, the decay estimate in (7.100) yields

µ(P⊥NU) ≤ sup
|k|≥N2

max
ϕ∈Λa

|〈ϕ,ψk〉|2

= max

{
sup
|k|≥N2

max
R∈Z+

ω

2R

∣∣∣∣Ψ̂(−2πωk

2R

)∣∣∣∣2 , ω sup
|k|≥N2

∣∣∣Φ̂ (−2πωk)
∣∣∣2}

≤ max
|k|≥N2

max
R∈Z+

ω

2R
C2

Φ,Ψ

(1 + |2πωk2−R|)2α ≤ max
R∈Z+

ω

2R
C2

Φ,Ψ

(1 + |πωN2−R|)2α .

The function f(x) = x−1(1 + πωN/x)−2α on [1,∞) satisfies f ′(πωN(2α− 1)) = 0. Hence

µ(P⊥NU) ≤
C2

Φ,Ψ

πN(2α− 1)(1 + 1/(2α− 1))2α
,

which gives the first part of (ii). For the second part, we first recall the definition of WR for R ∈ N
from (7.104). Then, given any N ∈ N such that N ≥ W1 = 2dae + 2(dae − 1), let R be such that
WR ≤ N < WR+1. Then, for each n ≥ N , there exists some j ≥ R and l ∈ Z such that the nth element via
the ordering (7.102) is ϕn = Ψj,l (note that we only need Ψj,l here and not Φj as we have chosenN ≥W1).
Hence, by using (7.108),

µ(UP⊥N ) = max
n≥N

max
k∈Z
|〈ϕn, ψk〉|2 = max

j≥R
max
k∈Z

ω

2j

∣∣∣∣Ψ̂(−2πωk

2j

)∣∣∣∣2
≤ ‖Ψ̂‖2L∞

ω

2R
≤ 4‖Ψ̂‖2L∞

ωdae
N

,

where the last line follows because N < WR+1 = 2R+1dae+ (R+ 2)(dae − 1) implies that

2−R <
1

N

(
2dae+ (R+ 2)(dae − 1)2−R

)
≤ 4dae

N
.

This concludes the proof of (ii).
To show (iii), let R and N be such that ω−12R ≤ N and M = |ΛR,a|. Observe that (7.108) and (7.109)

together with the decay estimate in (7.100) yield

µ(P⊥NUPWR
) ≤ max

|k|≥N2
max
ϕ∈ΛR,a

|〈ϕ,ψk〉|2

= max

{
max
|k|≥N2

max
j<R

ω

2j

∣∣∣∣Ψ̂(−2πωk

2j

)∣∣∣∣2 , max
|k|≥N2

∣∣∣Φ̂ (−2πωk)
∣∣∣2}

≤ max
|k|≥N2

max
j<R

ω

2j
C2

Φ,Ψ

(1 + |2πωk2−j |)2α ≤ max
k≥N2

max
j<R

C2
Φ,Ψ

π2αω2α−1

2j(2α−1)

(2k)2α

=
C2

Φ,Ψ

π2αω2α−1
(2R−1N−1)2α−1N−1,
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and this colludes the proof of (iii).
To show (iv), first note that because R ≥ 1, for all n > WR , ϕn = Ψj,k for some j ≥ 0 and k ∈ Z.

Then, recalling the properties of Daubechies wavelets with v vanishing moments, and by using (7.108) we
get that

µ(PNUP
⊥
WR

) = max
n>WR

max
|k|≤N2

|〈ϕn, ψk〉|2 = max
j≥R

max
|k|≤N2

ω

2j

∣∣∣∣Ψ̂(−2πωk

2j

)∣∣∣∣2
≤ ω

2R
·
(
πωN

2R

)2v

· ‖θΨ‖2L∞ ,

as required.

Corollary 7.16. Let N and M be as in Theorem 6.2 and recall the definition of µN,M(k, j) in (4.2). Suppose
that Φ and Ψ satisfy the decay estimate (7.100) with α ≥ 1 and that Ψ has v ≥ 1 vanishing moments. Then,

for k ≥ 2, µN,M(k, j) ≤ BΦ,Ψ ·


√
ω√

Nk−12Rj−1
·
(
ωNk

2Rj−1

)v
j ≥ k + 1

1
Nk−1

(
2Rj−1

ωNk−1

)α−1/2

j ≤ k − 1

1
Nk−1

j = k,

(7.110)

for k ≥ 2, µN,M(k,∞) ≤ BΦ,Ψ ·


√
ω√

Nk−12Rr−1
·
(
ωNk

2Rr−1

)v
k ≤ r − 1

1
Nr−1

k = r,
(7.111)

µN,M(1, j) ≤ BΦ,Ψ ·


√
ω√

2Rj−1
·
(
ωN1

2Rj−1

)v
j ≥ 2

1 j = 1,
(7.112)

µN,M(1,∞) ≤ BΦ,Ψ ·
√
ω√

2Rr−1

·
(
ωN1

2Rr−1

)v
, (7.113)

where BΦ,Ψ is a constant which depends only on Φ and Ψ and R0 = 0.

Proof. Throughout this proof, BΦ,Ψ is a constant which depends only on Φ and Ψ, although its value may
change from instance to instance. Note that

µN,M(k, j) =
√
µ(P

Nk−1

Nk
UP

Mj−1

Mj
) · µ(P

Nk−1

Nk
U)

≤ BΦ,ΨN
−1/2
k−1

√
µ(P

Nk−1

Nk
UP

Mj−1

Mj
), k ≥ 2, j ∈ {1, . . . , r},

(7.114)

since we have µ(P⊥Nk−1
U) ≤ BΦ,ΨN

−1
k−1 by (ii) of Theorem 7.15. Also, clearly

µN,M(1, j) =
√
µ(PN0

N1
UP

Mj−1

Mj
) · µ(PN0

N1
U) ≤ BΦ,Ψ

√
µ(PN0

N1
UP

Mj−1

Mj
), (7.115)

for j ∈ {1, . . . , r}. Thus, for k ≥ 2, it follows that µN,M(k, k) ≤ µ(P⊥Nk−1
U) ≤ BΦ,Ψ

1
Nk−1

, yielding the
last part of (7.110). Also, the last part of (7.112) is clear from (7.115).

As for the middle part of (7.110), note that for k ≥ 2, and with j ≤ k − 1, we may use (iii) of Theorem
7.15 to obtain√

µ(P
Nk−1

Nk
UP

Mj−1

Mj
) ≤

√
µ(P⊥Nk−1

UPMj ) ≤ BΦ,Ψ ·
1√
Nk−1

(
2Rj−1

ωNk−1

)α−1/2

,

and thus, in combination with (7.114), we obtain the j ≤ k−1 part of (7.110). Observe that if k ∈ {1, . . . , r}
and j ≥ k + 1, then by applying (iv) of Theorem 7.15, we obtain√

µ(P
Nk−1

Nk
UP

Mj−1

Mj
) ≤

√
µ(PNkUP

⊥
Mj−1

) ≤ BΦ,Ψ ·
√
ω√

2Rj−1

·
(
ωNk
2Rj−1

)v
. (7.116)
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Thus, by combining (7.116) with (7.114), we obtain the j ≥ k + 1 part of (7.110). Also, by combining
(7.116) with (7.114) we get the j ≥ 2 part of (7.112). Finally, recall that

µN,M(k,∞) =
√
µ(P

Nk−1

Nk
UP⊥Mr−1

) · µ(P⊥Nk−1
U)

and similarly to the above, (7.111) and (7.113) are direct consequences of parts (ii) and (iv) of Theorem
7.15.

The following lemmas inform us of the range of Fourier samples required for accurate reconstruction of
wavelet coefficients. Specifically, Lemma 7.17 will provide a quantitative understanding of the balancing
property, whilst Lemma 7.18 and Lemma 7.19 will be used in bounding the relative sparsity terms.

Lemma 7.17 ([66, Corollary 5.4]). Consider the setup in §7.4.1. Let the sampling density ω be such that
ω−1 ∈ N and suppose that there exists CΦ, CΨ > 0 and α ≥ 1.5 such that∣∣∣Φ̂(k)(ξ)

∣∣∣ ≤ CΦ

(1 + |ξ|)α
,
∣∣∣Ψ̂(k)(ξ)

∣∣∣ ≤ CΨ

(1 + |ξ|)α
, ξ ∈ R, k = 0, 1, 2.

Then given γ ∈ (0, 1), we have that ‖PMU∗PNUPM − PM‖l∞→l∞ ≤ γ wherever N ≥ Cγ−1/(2α−1)M
and

∥∥P⊥MU∗PNUPM∥∥l∞→l∞ ≤ γ wherever N ≥ Cγ−1/(α−1)M where C is some constant independent of
N but dependent on CΦ, CΨ and ω.

Lemma 7.18 ([66, Lemma 5.1]). Let ϕk denote the kth wavelet via the ordering in (7.102). Let R ∈ N and
M ≤ WR be such that {ϕj : j ≤ M} ⊂ ΛR,a, where WR and ΛR,a are defined in (7.104) and (7.103)
respectively. Also, let the sampling density ω be such that ω−1 ∈ N. Then for any γ ∈ (0, 1), we have that∥∥P⊥NUPM∥∥ ≤ γ, whenever N is such that

N ≥ ω−1

(
4C2

Φ

(2π)2α · (2α− 1)

) 1
2α−1

· 2R+1 · γ−
2

2α−1

and CΦ is a constant depending on Φ.

Lemma 7.19. Let ϕk denote the kth wavelet the ordering in (7.102). Let R1, R2 ∈ N with R2 > R1, and
M1,M2 ∈ N with M2 > M1 be such that

{ϕj : M2 ≥ j > M1} ⊂ ΛR2,a \ ΛR1,a,

where ΛRi,a is defined in (7.103). Then for any γ ∈ (0, 1)

∥∥∥PNUPM1

M2

∥∥∥ ≤ π2

4
‖θΨ‖L∞ · (2πγ)v ·

√
1− 22v(R1−R2)

1− 2−2v

whenever N is such that N ≤ γω−12R1 .

Proof. Let η ∈ l2(N) be such that ‖η‖ = 1. Note that, by the definition of U in (7.107), it follows that

‖PNUPM1

M2
η‖2 ≤

∑
|k|≤N/2

∣∣∣∣∣∣〈ψk,
M2∑

j=M1+1

ηjϕj〉

∣∣∣∣∣∣
2

≤
∑
|k|≤N/2

∣∣∣∣∣∣〈ψk,
R2−1∑
l=R1

∑
j∈∆l

ηρ(l,j)Ψl,j〉

∣∣∣∣∣∣
2

,

where we have defined

∆l = {j ∈ Z : Ψl,j ∈ Λl+1,a \ Λl,a}, ρ : {(l,∆l)}l∈N → N \ {1, . . . , |Λ1,a|}

to be the bijection such that ϕρ(l,j) = Ψl,j . Now, observe that we may argue as in the proof of Theorem
7.15 and use (7.108) to deduce that given l ∈ N, −dae < j < 2ldae and k ∈ Z, we have that 〈Ψl,j , ψk〉 =√

ω
2l

Ψ̂
(
− 2πωk

2l

)
e2πiωjk. Hence, it follows that

∑
|k|≤N/2

∣∣∣∣∣∣〈ψk,
R2−1∑
l=R1

∑
j∈∆l

ηρ(l,j)Ψl,j〉

∣∣∣∣∣∣
2

=
∑
|k|≤N/2

∣∣∣∣∣∣
R2−1∑
l=R1

√
ω√
2l

∑
j∈∆l

ηρ(l,j)Ψ̂

(
−2πωk

2l

)
e2πiωjk/2l

∣∣∣∣∣∣
2

,
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which again gives us that

‖PNUPM1

M2
η‖2 ≤

∑
|k|≤N/2

∣∣∣∣∣
R2−1∑
l=R1

√
ω√
2l

Ψ̂

(
−2πωk

2l

)
f [l]

(
ωk

2l

)∣∣∣∣∣
2

≤
∑
|k|≤N/2

R2−1∑
l=R1

∣∣∣∣Ψ̂(−2πωk

2l

)∣∣∣∣2 · R2−1∑
l=R1

∣∣∣∣√ω√
2l
f [l]

(
ωk

2l

)∣∣∣∣2

≤
R2−1∑
l=R1

max
|k|≤N/2

∣∣∣∣Ψ̂(−2πωk

2l

)∣∣∣∣2 · R2−1∑
l=R1

∑
|k|≤N/2

ω

2l

∣∣∣∣f [l]

(
ωk

2l

)∣∣∣∣2 ,
(7.117)

where f [l](z) =
∑
j∈∆l

ηρ(l,j)e
2πizj . Let H = χ[0,1) and, for l ∈ N, −dae < j < 2jdae, define Hl,j =

2
l
2H(2l ·−j). By the choice of j, we have thatHl,j is supported on [−T1, T2]. Also, since by (7.105) we have
ω ∈ (0, 1/(T1 + T2)), we may argue as in (7.108) and find that 〈Hl,j , ψk〉 =

√
ω
2l
Ĥ
(−2πkω

2l

)
e2πiωkj/2l .

Thus,

〈
∑
j∈∆l

ηρ(l,j)Hl,j , ψk〉 =

√
ω

2l

∑
j∈∆l

ηρ(l,j)Ĥ

(
−2πkω

2l

)
e2πiωkj/2l . (7.118)

It is straightforward to show that inf |x|≤π

∣∣∣Ĥ(x)
∣∣∣ ≥ 2/π, and since N ≤ 2R1/ω, for each l ≥ R1, it follows

directly from (7.118) and the definition of f [l] that

∑
|k|≤N/2

ω

2l

∣∣∣∣f [l]

(
ωk

2l

)∣∣∣∣2 ≤ ( inf
|x|≤π

∣∣∣Ĥ(x)
∣∣∣2)−1 ∑

|k|≤N/2

∣∣∣∣∣∣〈
∑
j∈∆l

ηρ(l,j)Hl,j , ψk〉

∣∣∣∣∣∣
2

≤ π2

4

∥∥∥∥∥∥
∑
j∈∆l

ηρ(l,j)Hl,j

∥∥∥∥∥∥
2

≤ π2

4
‖P∆l

η‖2.

Hence, we immediately get that

R2−1∑
l=R1

∑
|k|≤N/2

ω

2l

∣∣∣∣f [l]

(
ωk

2l

)∣∣∣∣2 ≤ π2

4

R2−1∑
l=R1

‖P∆l
η‖2 ≤ π2

4
‖η‖2 ≤ π2

4
. (7.119)

Also, since Ψ has v vanishing moments, we have that Ψ̂(z) = (−iz)vθΨ(z) for some bounded L∞ function
θΨ. Thus, since N ≤ γ · 2R1/ω, we have

R2−1∑
l=R1

max
|k|≤N/2

∣∣∣∣Ψ̂(2πωk

2l

)∣∣∣∣2 ≤ π2

4
‖θΨ‖2L∞

R2−1∑
l=R1

(
2πγ2R1−l

)2v
≤ π2

4
(2πγ)2v‖θΨ‖2L∞

1− 22v(R1−R2)

1− 2−2v
.

Thus, by applying (7.117), (7.118) and (7.119), it follows that

‖PNUPM1

M2
η‖2 ≤ π2

4
‖θΨ‖2L∞ · (2πγ)2v 1− 22v(R1−R2)

1− 2−2v
,

and we have proved the desired estimate.

7.4.3 The proofs

Proof of Theorem 6.2. In this proof, we will let BΦ,Ψ be some constant which depends only on Φ and Ψ,
although its value may change from instance to instance. The assertions of the theorem will follow if we
can show that the conditions in Theorem 5.3 are satisfied. We will begin with condition (i). First ob-
serve that since U is an isometry we have that ‖PMU∗PNUPM − PM‖l∞ = ‖PMU∗P⊥NUPM‖l∞→l∞ ≤
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√
M
∥∥P⊥NUPM∥∥ and ‖P⊥MU∗PNUPM‖l∞→l∞ = ‖P⊥MU∗P⊥NUPM‖l∞→l∞ ≤

√
M
∥∥P⊥NUPM∥∥. So N , K

satisfy the strong balancing property with respect to U , M and s if∥∥P⊥NUPM∥∥ ≤ 1

8

(
M log2(4KM

√
s)
)−1/2

.

In the case of α ≥ 1, by applying Lemma 7.18 with γ = 1
8 (M log2(4KM

√
s))
−1/2, it follows that N ,

K satisfy the strong balancing property with respect to U , M , s whenever

N ≥ Cω,Φ · 2R+1 ·
(

1

8

(
M log2(4KM

√
s)
)−1/2

)− 2
2α−1

,

where R is the smallest integer such that M ≤WR (where WR is defined in (7.104)) and Cω,Φ is a constant
which depends only on the Fourier decay of Φ and ω. By the choice of R, we have that M = O

(
2R
)

since
WR = O

(
2R
)

by (7.104). Thus, the strong balancing property holds provided that

N &M1+1/(2α−1) ·
(
log2(4MK

√
s)
)1/(2α−1)

where the constant involved depends only on ω and the Fourier decay of Φ. Furthermore, if (7.101) holds,
then a direct application of Lemma 7.17 gives thatN , K satisfy the strong balancing property with respect to
U , M , s whenever N & M · (log2(4KM

√
s))

1/(4α−2). So, condition (i) of Theorem 6.2 implies condition
(i) of Theorem 5.3.

To show that (ii) in Theorem 5.3 is satisfied, we need to demonstrate that

1 &
Nk −Nk−1

mk
· log(ε−1) ·

(
r∑
l=1

µN,M(k, l) · sl

)
· log

(
KM̃

√
s
)
, (7.120)

(with µN,M(k, r) replaced by µN,M(k,∞), and also recall that N0 = 0) and

mk & m̂k · log(ε−1) · log
(
KM̃

√
s
)
,

1 &
r∑

k=1

(
Nk −Nk−1

m̂k
− 1

)
· µN,M(k, l) · s̃k, ∀ l = 1, . . . , r,

(7.121)

where
M̃ = min{i ∈ N : max

k≥i
‖PNUek‖ ≤ 1/(32K

√
s)}. (7.122)

We will first consider (7.120). By applying the bounds (7.110) and (7.111) on the local coherences derived
in Corollary 7.16, we have that (7.120) is implied by

mk

(Nk −Nk−1)
& BΦ,Ψ ·

(
k−1∑
j=1

sj
Nk−1

(
2Rj−1

ωNk−1

)α−1/2

+
sk

Nk−1

+

r∑
j=k+1

sj ·
√
ω√

Nk−12Rj−1

·
(
ωNk
2Rj−1

)v )
· log(ε−1) · log

(
KM̃

√
s
)
, k = 2, . . . , r

(7.123)

m1

N1
& BΦ,Ψ ·

(
s1 +

r∑
j=2

sj ·
√
ω√

2Rj−1

·
(
ωN1

2Rj−1

)v )
· log(ε−1) · log

(
KM̃

√
s
)
. (7.124)

To obtain a bound on the value of M̃ in (7.122), observe that by Lemma 7.19,
∥∥PNUP{j}∥∥ ≤ 1/(32K

√
s)

whenever j = |ΛJ,a| = O
(
2J
)

such that 2J ≥ (32K
√
s)1/v · N · ω. Thus, M̃ ≤ d(32K

√
s)1/v · N · ωe,

and by recalling that Nk = 2Rkω−1, we have that (7.123) is implied by

mk ·Nk−1

Nk −Nk−1
& BΦ,Ψ · log(ε−1) · log

(
(K
√
s)1+1/vN

)
·

(
k−1∑
j=1

sj ·
(

2α−1/2
)−(Rk−1−Rj−1)

+ sk + sk+1 · 2−(Rk−Rk−1)/2

+

r∑
j=k+2

sj · 2−(Rj−1−Rk−1)/2 · 2−v(Rj−1−Rk)

)
, k ≥ 2,

(7.125)
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and when k = 1, (7.124) is implied by
m1

N1
& BΦ,Ψ · log(ε−1) · log

(
(K
√
s)1+1/vN

)
·

(
s1 + s2 · 2−R1/2 +

r∑
j=k+2

sj · 2−(Rj−1−Rk−1)/2 · 2−v(Rj−1−Rk)

)
.

(7.126)

However, the condition (6.1) obviously implies (7.125) and (7.124), hence we have established that condition
(6.1) implies (7.120). As for condition (7.121), we will first derive upper bounds for the s̃k values. Recall
that according to Theorem 5.3 we have

s̃k ≤ Sk(N,M, s) = max{‖PNk−1

Nk
Uη‖2 : ‖η‖l∞ ≤ 1, |supp(P

Ml−1

Ml
η)| = sl, l = 1, . . . , r},

where N0 = M0 = 0. Thus, we will concentrate on bounding Sk. First note that by a direct rearrangement
of terms in Lemma 7.18, for any γ ∈ (0, 1) and R ∈ N such that M ≤ WR, we have that

∥∥P⊥NUPM∥∥ ≤ γ
whenever N is such that

γ ≥
(

2R

ωN

) 2α−1
2

·
√

2

2α− 1
· CΦ

πα
.

So for any L > 0, by letting γ =
√

2
2α−1 ·

CΦ

πα · L
− 2α−1

2 , if γ ∈ (0, 1), then
∥∥P⊥NUPM∥∥ ≤ γ provided that

N ≥ ω−1 · L · 2R. Also, if γ > 1, then
∥∥P⊥NUPM∥∥ ≤ γ is trivially true since ‖U‖ = 1. Therefore, for

k ≥ 2 we have that

‖P⊥Nk−1
UPMl

‖ <
√

2

2α− 1
· CΦ

πα
·
(

2Rl

2Rk−1

)α−1/2

, l ≤ k − 1.

Also, by Lemma 7.19, it follows that

‖PNkUP
Ml−1

Ml
‖ < (2π)v · ‖θΨ‖L∞ ·

(
2Rk

2Rl−1

)v
, l ≥ k + 1.

Consequently, for k = 3, . . . , r√
s̃k ≤

√
Sk = max

η∈Θ
‖PNk−1

Nk
Uη‖ ≤

r∑
l=1

‖PNk−1

Nk
UP

Ml−1

Ml
‖
√
sl

≤ BΦ,Ψ

(
k−2∑
l=1

√
sl ·
(

2Rl

2Rk−1

)α−1/2

+
√
sk−1 +

√
sk +

√
sk+1 +

r∑
l=k+2

√
sl ·
(

2Rk

2Rl−1

)v )
,

where
Θ = {η : ‖η‖l∞ ≤ 1, |supp(P

Ml−1

Ml
η)| = sl, l = 1, . . . , r},

and for k = 1, 2 we have√
s̃k ≤ BΦ,Ψ

(
√
sk−1 +

√
sk +

√
sk+1 +

r∑
l=k+2

√
sl ·
(

2Rk

2Rl−1

)v)
,

where we let s0 = 0. Hence, for k = 3, . . . , r, Aα = 2α−1/2 and Av = 2v

s̃k ≤ BΦ,Ψ

(√
ŝk +

k−2∑
l=1

√
sl ·A−(Rk−1−Rl)

α +

r∑
l=k+2

√
sl ·A−(Rl−1−Rk)

v

)2

,

where ŝk = max{sk−1, sk, sk+1}. So, by using the Cauchy-Schwarz inequality, we obtain

s̃k ≤ BΦ,Ψ

(
1 +

k−2∑
l=1

A−(Rk−1−Rl)
α +

r∑
l=k+2

A−(Rl−1−Rk)
v

)

·

(
ŝk +

k−2∑
l=1

sl ·A−(Rk−1−Rl)
α +

r∑
l=k+2

sl ·A−(Rl−1−Rk)
v

)

≤ BΦ,Ψ

(
ŝk +

k−2∑
l=1

sl ·A−(Rk−1−Rl)
α +

r∑
l=k+2

sl ·A−(Rl−1−Rk)
v

)
,
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and similarly, for k = 1, 2, it follows that s̃k ≤ BΦ,Ψ(ŝk +
∑r
l=k+2 sl · A

−(Rl−1−Rk)
v ). Finally, we will

use the above results to show that condition (6.1) implies (7.121): By our coherence estimates in (7.110),
(7.112), (7.111) and (7.113), we see that (7.121) holds if mk & m̂k · (log(ε−1) + 1) · log

(
(K
√
s)1+1/vN

)
and for each l = 2, . . . , r,

1 & BΦ,Ψ

((
N1

m̂1
− 1

)
· s̃1 ·

√
ω

2Rl−1
·
(
ωN1

2Rl−1

)v

+

l−1∑
k=2

(
Nk −Nk−1

m̂k
− 1

)
· s̃k ·

√
ω

Nk−12Rl−1
·
(
ωNk
2Rl−1

)v

+

(
Nl −Nl−1

m̂l
− 1

)
· s̃l ·

1

Nl−1
+

r∑
k=l+1

(
Nk −Nk−1

m̂k
− 1

)
· s̃k ·

1

Nk−1

(
2Rl−1

ωNk−1

)α−1/2
)
,

(7.127)

(where we with slight abuse of notation define
∑l−1
k=2(Nk−Nk−1

m̂k
− 1)s̃k

√
ω

Nk−12Rl−1
( ωNk

2Rl−1
)v = 0 when

l = 2), and for l = 1

1 & BΦ,Ψ

((
N1

m̂1
− 1

)
· s̃1 +

r∑
k=2

(
Nk −Nk−1

m̂k
− 1

)
· s̃k ·

1

Nk−1

(
1

ωNk−1

)α−1/2
)
. (7.128)

Recalling that Nk = ω−12Rk , (7.127) becomes, for l = 2, . . . , r,

1 & BΦ,Ψ ·

((
N1

m̂1
− 1

)
· s̃k
Nk−1

· 2−v(Rl−1−Rk) +

l−1∑
k=1

(
Nk −Nk−1

m̂k
− 1

)
· s̃k
Nk−1

· 2−v(Rl−1−Rk)

+

(
Nl −Nl−1

m̂l
− 1

)
· s̃l
Nl−1

+

r∑
k=l+1

(
Nk −Nk−1

m̂k
− 1

)
· s̃k
Nk−1

·
(

2α−1/2
)−(Rk−1−Rl−1)

)
,

and (7.128) becomes

1 & BΦ,Ψ ·

((
N1

m̂1
− 1

)
· s̃1 +

r∑
k=l+1

(
Nk −Nk−1

m̂k
− 1

)
· s̃k
Nk−1

·
(

2α−1/2
)−Rk−1

)
.

Observe that for l = 2, . . . , r

1 +

l−1∑
k=1

2−v(Rl−1−Rk) +

r∑
k=l+1

(
2α−1/2

)−(Rk−1−Rl−1)

≤ BΦ,Ψ,

and that 1 +
∑r
k=l+1

(
2α−1/2

)−(Rk−1) ≤ BΦ,Ψ. Thus, (7.121) holds provided that for each k = 2, . . . , r,

m̂k ≥ BΦ,Ψ ·
Nk −Nk−1

Nk−1
· s̃k, m̂1 ≥ BΦ,Ψ ·N1 · s̃1,

and combining with our estimates of s̃k, we may deduce that (6.1) implies (7.121).

Proof of Proposition 6.3. If ‖P⊥J x‖ = 0, there is nothing to prove, thus, we assume that ‖P⊥J x‖ 6= 0. Let
f =

∑∞
j=1 xjϕj and f̂ = {f̂j}j∈N, where f̂j = 〈f, ψj〉. Similarly, let g =

∑J
j=1 xjϕj and ĝ = {ĝj}j∈N,

where ĝj = 〈g, ψj〉. Let Ω be a multilevel sampling scheme as in Theorem 6.2, and define y = PΩf̂ + z
where z ∈ ran(PΩ) is a noise vector satisfying ‖z‖ ≤ δ. Now, let z1 = PΩUPJx − y. Suppose for the
moment that

∥∥PΩUP
⊥
J

∥∥∥∥P⊥J x∥∥ ≤ δ, we will show this later. Then we have

‖z1‖ ≤ ‖PΩUx− y‖+
∥∥PΩUP

⊥
J x
∥∥ ≤ δ +

∥∥PΩUP
⊥
J

∥∥∥∥P⊥J x∥∥ ≤ 2δ.

Define ỹ = PΩĝ− z1 and apply Theorem 6.2 to g and the noise vector z1. Then, since ỹ = y we get that any
minimizer ξ̃ of

min
η∈CJ

‖η‖l1 subject to ‖PΩUPJη − y‖ ≤ 2δ,
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satisfies
‖ξ̃ − PJx‖ ≤ C ·

(
2δ̃ ·

(
1 + L ·

√
s
)

+ σs,M(g)
)
.

However, σs,M(g) ≤ σs,M(f) and ‖P⊥J x‖ ≤ σs,M(f). Thus,

‖ξ̃ − x‖ ≤ 2C ·
(
δ̃ ·
(
1 + L ·

√
s
)

+ σs,M(f)
)
,

where we have assumed without loss of generality that C ≥ 1. So, to finish the proof, we only need to
show that

∥∥PΩUP
⊥
J

∥∥∥∥P⊥J x∥∥ ≤ δ. In fact, we will show that
∥∥PNUP⊥J ∥∥∥∥P⊥J x∥∥ ≤ δ. To see the latter, by

choosing R1 = R and letting R2 →∞ in Lemma 7.19, it follows that for any γ ∈ (0, 1)

∥∥PNUP⊥J ∥∥ ≤ π2

4
‖θΨ‖L∞(2πγ)v

√
2

whenever N ≤ γ2Rω−1. Letting

γ = (2π)−1

(
δ

‖P⊥J x‖ · ‖θΨ‖L∞π2

)1/v

we get the desired bound when 2R ≥ 2πωN ·
(
‖P⊥Kx‖2·CΨ

δ

)1/v

, where C−1
Ψ = ‖θΨ‖L∞π2.
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Felix Krahmer, Gitta Kutyniok, Thomas Strohmer, Gerd Teschke, Michael Unser, Martin Vetterli and Rachel
Ward for useful discussions and comments. The authors also thank Stuart Marcelle and Homerton College,
University of Cambridge for the provision of computing hardware used in some of the experiments. BA
acknowledges support from the NSF DMS grant 1318894. ACH acknowledges support from a Royal Soci-
ety University Research Fellowship as well as the UK Engineering and Physical Sciences Research Council
(EPSRC) grant EP/L003457/1. CP acknowledges support from the EPSRC grant EP/H023348/1 for the
University of Cambridge Centre for Doctoral Training, the Cambridge Centre for Analysis.

References
[1] B. Adcock and A. C. Hansen. A generalized sampling theorem for stable reconstructions in arbitrary bases. J.

Fourier Anal. Appl., 18(4):685–716, 2012.

[2] B. Adcock and A. C. Hansen. Stable reconstructions in Hilbert spaces and the resolution of the Gibbs phenomenon.
Appl. Comput. Harmon. Anal., 32(3):357–388, 2012.

[3] B. Adcock and A. C. Hansen. Generalized sampling and infinite-dimensional compressed sensing. Found. Comp.
Math., 2016 (to appear).

[4] B. Adcock, A. C. Hansen, E. Herrholz, and G. Teschke. Generalized sampling: extension to frames and inverse
and ill-posed problems. Inverse Problems, 29(1):015008, 2013.

[5] B. Adcock, A. C. Hansen, and C. Poon. Beyond consistent reconstructions: optimality and sharp bounds for
generalized sampling, and application to the uniform resampling problem. SIAM J. Math. Anal., 45(5):3114–3131,
2013.

[6] B. Adcock, A. C. Hansen, and C. Poon. On optimal wavelet reconstructions from Fourier samples: linearity and
universality of the stable sampling rate. Appl. Comput. Harmon. Anal., 36(3):387–415, 2014.

[7] B. Adcock, A. C. Hansen, B. Roman, and G. Teschke. Generalized sampling: stable reconstructions, inverse
problems and compressed sensing over the continuum. Advances in Imaging and Electron Physics, 182:187–279,
2014.

[8] R. G. Baraniuk, V. Cevher, M. F. Duarte, and C. Hedge. Model-based compressive sensing. IEEE Trans. Inform.
Theory, 56(4):1982–2001, 2010.

[9] A. Bastounis and A. C. Hansen. On the absence of the RIP in real-world applications of compressed sensing and
the RIP in levels. arXiv:1411.4449, 2014.

50



[10] J. Bigot, C. Boyer, and P. Weiss. An analysis of block sampling strategies in compressed sensing. Arxiv:1305.4446,
2013.
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