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Abstract

Helium atom scattering (HAS) is a well established technique for examining the surface
structure and dynamics of materials at atomic sized resolution. The HAS technique Helium
spin-echo spectroscopy opens up the possibility of compressing the data acquisition process.
Compressed sensing (CS) methods demonstrating the compressibility of spin-echo spectra are
presented. In addition, wavelet based CS approximations, founded on a new continuous CS ap-
proach, are used to construct continuous spectra that are compatible with variable transforma-
tions to the energy/momentum transfer domain. Moreover, recent developments on structured
multilevel sampling that are empirically and theoretically shown to substantially improve upon
the state of the art CS techniques are implemented. These techniques are demonstrated on
several examples, including phonon spectra from a gold surface, allowing significant reduction
in acquisition times.

1 Introduction

Helium Spin-Echo (HeSE) spectroscopy is the ideal tool for studying the dynamical behaviour of a
wide variety of surfaces ranging from simple metals to reactive and metastable surfaces [1]. HeSE
provides information on the static structure of a surface in a manner analogous to Bragg’s original
work [2] on X-ray crystallography, but more importantly it can be used to study the dynamics
on atomic length scales with picosecond time resolution [1]. This involves atoms and molecules
diffusing on the surface [3], phonon vibrations [4], etc. Thanks to the work of van Hove [5] et al.
a theoretical framework exists which describes the dynamics of atoms and molecules through the
relation of time and position (R, t) to momentum and energy transfer (∆K,∆E) as a Fourier pair.

In this paper we present a Compressed Sensing (CS) approach for compressing this measurement
process, showing that the time needed to reconstruct HeSE spectra can be reduced by several orders
of magnitude compared to standard Discrete Fourier Transform (DFT) reconstruction techniques.
CS, pioneered by Candès, Donoho, Tao et. al. [6, 7] has long been associated with Nuclear Mag-
netic Resonance (NMR) based applications such as Magnetic Resonance Imaging [8, 9] and NMR
Spectroscopy [10]. Recently, compressed sensing has also seen applications focusing on Raman
spectroscopy measurements [11] and in molecular dynamics simulations [12].

Spin-echo spectroscopy shares clear similarities with these fields, such as Fourier transforms
arriving naturally in data acquisition, however there are also significant differences. In particular,
one of the goals of spin-echo spectroscopy is to determine dynamical processes by monitoring the
change of polarisation data. Here we consider the whole process of data processing, from polarisation
data measurements to the extraction of the molecular dynamics information. Unlike NMR and many
other spectroscopy-based applications, after we have performed compression on the initial Fourier
transform step we cannot directly use the output data, it must instead undergo several further
transforms. Crucially, this includes a non-linear change of variables to momentum/energy space
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Figure 1: Diagram outlining the various stages of data transformation from measurement in polarisation to the
Intermediate Scattering Function (ISF) describing molecular processes. The Upper plots denote the full 2D data
while the lower plots are 1D projections/slices. The stages highlighted in red correspond to the target data we
wish to reconstruct. The plotted intensities are in consistent arbitrary units (a.u.). Current spacing / resolution is
2.7 · 10−4A / 10233 points and 930 points (≈ 9%) are subsampled. The experimental variable κ is proportional to
current I (see (13)).

(∆K,∆E). This precludes the use of standard DFT-based CS techniques as this transform distorts
the (necessarily discrete) set of values that we can solve for the wavelength intensity function.

Instead a new continuous CS approach, recently introduced by Adcock, Hansen et. al [13–
15], is used to reconstruct a continuous approximation that avoids discretising the wavelength
intensity function entirely. With this method one has the freedom of evaluating the reconstructed
wavelength intensity function at any point they desire while still having the speed-up benefits of
compressive sampling. Such an approach could be used to handle other inverse problems that require
further transformations after reconstruction. Moreover, as demonstrated in [13–15] the continuous
model avoids the so-called wavelet and inverse “crimes” and hence provides superior reconstructions
compared to the classical approach.

Figure 1 shows both the process of converting sampled polarisation data to the intermediate
scattering function alongside the application of this new CS technique. Note that CS reconstructions
in red for the wavelength intensity and scattering functions match the true signal with 9% of the data
traditionally used to reconstruct such spectra using direct Fourier inversion without compression.

Moreover, in NMR-based experiments the smallest group of data that is taken in one measure-
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ment is typically a line (or path) of data points in k-space, however in HeSE each measurement
corresponds to a single point. This gives us an additional degree of freedom in the data acquisi-
tion process which makes this application of CS particularly effective, as one can utilize the new
approach of structured multilevel sampling in [14] to its fullest to boost performance. In particular,
by also taking the structure of the signal into account when designing the sampling strategy one can
outperform the classical compressed sensing results (see [16, 17] for experimental validation) that
are dictated by the estimate on the number of samples m to be

m & s log(N),

where s is the number of non-zero or important coefficients and N is the dimension of the vector
(The notation f(·) & g(·) means there is a universal constant C > 0 such that f(·) ≥ C · g(·)).

However, if a signal has s = M1 +s2 +. . .+sr non-zero coefficients where M1 denotes the number
of the first consecutive non-zero coefficients in the first levels of a wavelet expansion and sj is the
number of non-zero coefficients in the j-th level of the wavelet structure then, by using a multilevel
sampling procedure [14], one needs only

m &M1 + (s2 + s3 + . . .+ sr) log(N).

measurements [14,18]. Typically, the coefficients corresponding to M1 are the most important, and
most of the energy in the signal is contained in these. This is very convenient as we do not have
to pay a log factor for these coefficients. In practice this means substantial gain over the standard
approaches as demonstrated in [16,17].

1.1 Compressing Spin-Echo Spectra

To understand how continuous CS differs from conventional DFT CS we start with a typical 1D
Fourier problem where we measure Fourier samples P of a wavelength intensity function ρ we want
to reconstruct:

P (κ) =

∫
ρ(λ)e2πiκ·λ dλ, λ, κ ∈ R. (1)

From the above it is immediately recognised that P is a Fourier Transform of ρ and therefore ρ
can be obtained by the inverse Fourier transform of P . For a general function ρ this would require
knowing P (κ) at every point κ ∈ R which is unrealistic.

In practice however, the wavelength intensity function ρ is treated as a periodic function

ρ̃(λ) =
∑
k∈Z

ρ(λ+ (b− a)k), (2)

over a fixed interval [a, b]. This is convenient because it permits changing the problem to one of
handling a Fourier transform to that of handling a Fourier series expansion:

ρ̃(λ) =
∑
k∈Z
〈ρ, χk,ε〉χk,ε(λ), λ ∈ [a, b],

〈ρ, χk,ε〉 =

∫
R
ρ(λ)χk,ε(λ) dλ = P (kε)ε.

χk,ε(λ) = ε1/2 exp(−2πiεk · λ), k ∈ Z, ε = (b− a)−1,

(3)

The upshot of (3) is that we now only need the values P (kε), k ∈ Z, to obtain the wavelength
intensity function ρ, rather than P (κ), κ ∈ R.

Typically the next step is to truncate the Fourier series expansion, meaning that one makes the
approximation

ρ̃(λ) ≈ ρ̃N (λ) =
N∑

k=−N

〈ρ, χk,ε〉χk,ε(λ), λ ∈ [a, b], (4)

for some fixed N ∈ N. The problem is now feasible as only finitely many data points k are required
to determine ρ̃N .
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Up to this point both continuous CS and conventional DFT CS agree. Conventional DFT CS
then breaks up the interval [a, b] into a uniform grid of N points

λj,N = a+
b− a

2N + 1
j (5)

and solves for ρ̃N (λj,N ), j = 1, ..., 2N+1. The advantage of doing this is that (4) becomes a vector-
matrix equation of the form g = Af where gj = ρ̃N (λj,N ), A is a DFT matrix and f corresponds
to samples of P . This can be inverted to give f = A−1g where A−1 is still a DFT matrix, and
therefore an isometry, which facilitates the application of CS.

The drawback of this approach is that we have lost something by only considering ρ̃N (λj,N ), j =
1, ..., 2N + 1 instead of (4). The Fourier series approximation could have been evaluated at any
point in the interval [a, b] and suddenly the best we can do is reconstruct the ρ̃N (λj,N ), even though
we are still working with the same number of Fourier samples. Do we really have to pay this price
in order to be able to compress this problem?

Motivated by the Fourier series (4), one can try approximating ρ in terms of a new Reconstruction
Basis σn, n ∈ N

ρ̃(λ) ≈
M∑
n=1

〈ρ, σn〉σn(λ), λ ∈ [a, b]. (6)

Apart from the benefit of the keeping the problem continuous, one also has the freedom to choose
which basis σn to work with, making the approach more versatile than a straight DFT approach.

Since one is still sampling data that corresponds to Fourier coefficients of ρ, it is impossible to
exclusively work with their choice of basis σn. Instead one has to convert Fourier series coefficients
into coefficients in the basis σn. This is achieved by working with the infinite change of basis matrix
for the two bases:

Bk,n = 〈σn, χk,ε〉, n ∈ N, k ∈ Z. (7)

Using this matrix to reconstruct the coefficients 〈ρ, σn〉, n = 1, ...,M we can then use (6) to
approximate ρ̃(λ). As long as we assume the σn form an orthonormal basis then the matrix B is an
infinite-dimensional isometry which also allows the application of CS thanks to the work of [13–15].

This continuous approach has two significant advantages:

• The approximation ρ̃ is now a continuous function (as opposed to discrete) that can be eval-
uated at any point and hence this allows the non-linear change of variables going from the
wavelength distribution to the scattering function S (as shown in Figure 1). Such a transform
is not possible with conventional discrete CS techniques.

• The approximation ρ̃ is computed with the actual coefficients in the new expansion of the
wavelength function, and hence this approximation has the characteristics of the approxima-
tion in the new basis rather than the truncated Fourier series. This means reducing Gibbs
ringing and other artefacts coming from Fourier approximations (see [13–15] for details).

Details on the theoretical background of CS, what basis to use, the convex optimisation problems
we solve and how to subsample the Fourier data are provided later on in the paper.

1.2 Paper Outline

The rest of the paper is split into two halves. The first focuses on the first Fourier transform step
from polarisation data to the wavelength intensity function shown in Figure 1. Focusing on the
step, DFT CS is used to demonstrate the compressibility of phonon detection.

The second half goes into the full cycle of transforms shown in Figure 1, from polarisation data
to molecular processes. After covering some brief background on molecular diffusion we elaborate
on the continuous CS technique leading to a final comparison with DFT CS.
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2 Helium Spin-Echo Spectroscopy

Surface-related phenomena are prevalent throughout everyday life through processes such as friction,
corrosion and tension. When designing new materials, such as for catalysis [19] or electronics [20,21],
one would like to study various vibrational and electronic properties to determine their potential
benefits and drawbacks. Neutrons and X-rays have been successful in measuring such phenomena
over the entire bulk of a sample. However, to truly understand surface processes one needs to
investigate the differences between the structure of a surface and the bulk [22]. Therefore, a purely
surface sensitive approach is highly desirable. The repulsive part of the 3He/surface interaction
potential prevents the He atoms from penetrating into the surface layer of materials. Consequently
they are ideal as a surface scattering probe.

The basic setup of the Helium spin-echo apparatus at Cambridge’s Cavendish laboratory is
given in Figure 2. A beam of thermal 3He is generated from the source in a fixed direction. The
nuclear spins are polarised and then rotated by a solenoid before being scattering upon the target
crystal surface. Afterwards any scattered He atoms heading in the direction of the detector are then
rotated by a second solenoid and passed through another polarisation filter. Thereby the apparatus
achieves an energy resolution of 3 µeV and dynamical processes within a time window spanning
from the sub-picosecond regime up to hundreds of picoseconds can be observed. A schematic for
the apparatus can be found in [1].

Key variables that the operator can freely adjust include

• The currents Ii, If that run through Solenoids A and B respectively

• The scattering geometry, namely the angle of the surface normal relative to the source/detector
setup

The incoming monochromatic He beam can be viewed as a plane wave with propagation wavevec-
tor k ∈ R3 and angular frequency ω:

ψ(r, t) = exp(i(k · r− ωt)), r ∈ R3, t ∈ R. (8)

Here, r denotes position and t is time. The wavevector k and wavelength λ are related to particle’s
momentum p by the de Broglie relations

p = ~k, |p| = p =
2π

λ
. (9)

Furthermore, the frequency ω is related to the particle energy E by the relation

E = ~ω. (10)

Using these relations we can treat k as representing momentum and ω as energy. Notice that
by Formula (8) we have identified two Fourier pairs (k, r), (ω, t). However, at present these pairs
only relate to the beam of Helium and not the crystal surface that it will be scattering upon.

2.1 Phonons

Detailed descriptions about lattice vibrations in a solid can be found in most solid state physics
textbooks [23]. At the surface the altered environment with respect to the bulk modifies the dynam-
ics to give rise to new vibrational modes. This new vibrational modes are called surface phonons
due to their localisation at the surface [24–26].

Now we look at how phonons can influence the scattering of the He beam. Figure 3 shows three
possible outcomes for the scattering of a single He atom on a crystal surface. The figure shows a
cross section of the crystal where the path of the He beam lies in the same cross section, therefore,
we are effectively working with a two dimensional problem. We shall assume there is conservation
of energy before and after scattering and that the momentum is conserved parallel to the surface of
the crystal (recall that the 3He beam cannot penetrate into the bulk which is why we only consider
momentum parallel to the surface). If we let little i, f denote the incident and final He states, little
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Figure 2: Outline of the Cambridge Spin-Echo Apparatus.

p a possible phonon, k a wavevector and k = |k| its magnitude, then by conservation of energy and
momentum

Ef = Ei + ∆E, Ki = Kf + ∆K, (11)

where Ki = ki sin θi,Kf = kf sin θf denotes the projections of the incident and final momentums
ki,kf onto the surface, provided that the scattering plane defined by ki,kf contains the surface’s
normal vector. The change in energy ∆E is equal to the change in kinetic energy of the Helium
particle:

∆E =
~2

2m
k2
f −

~2

2m
k2
i . (12)

In the case of elastic scattering (∆E = 0) we have ki = kf and ∆K = G where G corresponds
to a reciprocal lattice vector consistent with the Laue equations. Suppose now that a He atom
annihilates a surface phonon with energy ∆E = ~ωp. For the momentum transfer ∆K = kp + G
holds where kp is the wavevector of the phonon and G a surface reciprocal lattice vector and the
norm of these vectors can be directly added if ∆K is parallel to a high symmetry direction of the
crystal.

The key point of these concepts is that the changes of energy and momentum contain information
about the phonons on the crystal surface.

2.2 Solenoid Currents and Spin Polarisation

We now turn to how the scattering apparatus shown in Figure 2 can be used to measure prop-
erties of the He beam. In particular, we show how the solenoid currents (Ii, If ) and scattering
wavelengths (λi, λf ) share a direct Fourier relationship. This section follows closely the review [27]
of Alexandrowicz and Jardine and a more detailed description can be found in the Supporting
Information.

Recall that we have two solenoids that generate magnetic fields which rotate the polarisation
of the He beam. The solenoid current determines the strength of the magnetic field but it is more
convenient to use the experimentally controllable parameter κ which is proportional to the current
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Figure 3: Three possible scattering events. The 3He atom (in blue) can gain or lose energy after scattering. The 3He
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atom cannot penetrate into the bulk which is indicated by the red region.
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Figure 4: Example of a wavelength intensity function with key features highlighted. Classification of the features is
deduced from Equation (15).

in the solenoids via:

κi =
mγBeffIi

2πh
, κf =

mγBeffIf
2πh

. (13)

where γ is the gyromagnetic ratio of the He atom and Beff is an apparatus specific constant. The
polarisation of the He beam in terms of amplitude and phase can be conveniently written as a
complex number. When using the scaled variables of equation 13 the measured polarisation of the
He beam in the detector can be represented as the two-dimensional Fourier transform of ρ(λi, λf ):

P (κκκ) =

∫
ρ(λλλ)e2πiκκκ·λλλ dλλλ,

λλλ = (λi, λf ),κκκ = (κi, κf ) ∈ R2.

(14)

Here ρ(λi, λf ) denotes the Wavelength Intensity Function describing the distribution of He atoms
that reach the detector according to initial and final wavelengths.

An example of a wavelength intensity function is given in Figure 4, along with possible phonon
creation and annihilation events labelled. Another 2D example can be found in [28] for incom-
ing/outgoing energy spectra. Assuming the features in the plot originate from phonon phenomena
on the crystal surface, the classification into creation/annihilation/elastic originates from Equation
(12):

Ef − Ei =
~2

2m

(
k2
f − k2

i

)
=

~2

2m

(
1

λ2
f

− 1

λ2
i

)
. (15)
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2.3 The Fourier Slice Theorem

Since the wavelength intensity function is supported around the average initial wavelength it could
be viewed as a one-dimensional function that has been smoothed out into two-dimensions by the
spread of initial wavelengths. Looking at Figure 4 as an example, we see that the key features of
the wavelength intensity function can be broken down into lines of various slants which suggests
that treating the function as one-dimensional would be advantageous.

It is precisely because of this decomposition into slanted regions that the two-dimensional prob-
lem is often reduced to a one-dimensional one using the Fourier slice theorem: Suppose we rotate
the λλλ = (λi, λf ) coordinate system by an angle α to a new system τττ = (τ1, τ2) = Rα(λλλ). Then one
can derive the formula

Pα(κi) := P (Rα(κi, 0)) = P (κi cosα,−κi sinα)

=

∫ (∫
ρ(Rα(τ1, τ2)) dτ2

)
exp(2πiκiτ1) dτ1.

(16)

Therefore if we let ρα(τ1) denote the integral of ρ(λ) along the line {Rα(τ1, τ2) : τ2 ∈ R} then we
have

P (κi cosα,−κi sinα) =

∫
ρα(τ1) exp(2πiκiτ1) dτ1. (17)

This equation says that the restriction of P along the line {(κ cosα,−κ sinα), κ ∈ R} , corresponds
to the Fourier transform of ρα.

Figure 5 shows how the Fourier slice theorem applies to the wavelength intensity function shown
in Figure 4. Notice that different angles of integration produce different results, especially when
it comes to discerning different features. Since we know beforehand that an elastic peak lies along
the line λi = λf we expect that an integration angle of α = π/4 will produce the best results for
resolving this feature as a single spike. Since the spread of initial wavelengths is already rather
concentrated, the Fourier slice theorem is often used to treat this distribution as a single point.
This point, the average wavelength λav, is either known beforehand or deduced by projecting along
the λf -axis. With the incident wavelength λi = λav fixed, any projection can be converted to a
function in terms of λf only [1]:

λf = λav cotα− λproj secα, (18)
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where λproj ∈ R is a point on the line to which we project.
With this projection, we can treat the problem (17) as a one-dimensional version of (14) with a

new wavelength intensity function ρα(λ)

Pα(κ) =

∫ b

a

ρα(λ)e2πiκ·λ dλ, λ, κ ∈ R. (19)

3 Compressed Sensing

In this section we shall assume that we have already reduced the problem to one-dimension and
write Pα, ρα from (19) as P, ρ.

One can discretise (19) by breaking up the interval [a, b] into a uniform grid of N points λj,N as
in (5), leading to the following matrix equation:

gj =

N∑
k=−N

Aj,kfk, j = 0, ..., 2N, gj = ρ̃N (λj,N ), (20)

where fk = Constant(k) · P (kε) and A is a DFT matrix.
Currently, to obtain the full vector (gj)j=0,...,2N we need to know the entire vector (fk)k=−N,...,N .

If we only had knowledge of a fraction of the entries of f we can no longer use (20) to determine g
directly as the problem is now underdetermined. Therefore, the problem is not well posed and has
to be modified.

The matrix equation (20) can be inverted to give

fj =

2N∑
k=0

A−1
j,kgk, j = −N, ..., N. (21)

Now suppose that Ω ⊂ {−N, ..., N} denotes the of set indices corresponding to the samples of f that
are measured and PΩ denotes the projection onto these samples. With this notation PΩf denotes
the vector of samples that are measured. Therefore when we subsample from {−N, ..., N} equation
(21) becomes

PΩf = PΩA
−1g. (22)

The classical CS approach is to solve this problem via the now well established l1 recovery
problem

min
z∈CN

‖Wg‖l1 subject to PΩf = PΩA
−1g, (23)

where W is some transformation that should make g sparse. Typically this is a wavelet transfor-
mation. We can then solve this kind of problem quickly and conveniently using convex solvers such
as the (SPGL1) algorithm [29].

The classical idea of CS is that Ω should be chosen uniformly at random. In this case the number
of samples m = |Ω| must satisfy

m & N · µ(A−1W−1) · s · log(N), (24)

in order to guaranty successful recovery with high probability, where µ(B) = max1≤i,j≤N |Bi,j |2. In
the case where B = A−1W−1 as above with any wavelet transform W we have that µ(B) = 1. In this
case, as well as many others, uniform random sampling may give suboptimal results and one has to
sample with (structured) variable density sampling, see [14] and references therein. The key problem
is that the optimality of variable density sampling depends on the signal itself [14,16,17], and thus
designing the best sampling pattern is a very delicate task. We will give a short demonstration
below.
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3.1 How to do structured sampling

The key to understanding structured sampling is to understand the structure of the signal. For
example, the coefficients of a signal in a wavelet basis typically have a very specific level structure.
This is known as sparsity in levels.

Sparsity in levels: Let x be a CN vector. For r ∈ N let M = (M1, . . . ,Mr) ∈ Nr with
1 ≤M1 < . . . < Mr and s = (s1, . . . , sr) ∈ Nr, with sk ≤Mk −Mk−1, k = 1, . . . , r, where M0 = 0.
We say that x is (s,M)-sparse if, for each k = 1, . . . , r, ∆k := supp(x) ∩ {Mk−1 + 1, . . . ,Mk},
satisfies |∆k| ≤ sk. This known structure can be utilised when designing the sampling strategy and
is the motivation behind multilevel sampling.

Multilevel sampling: Let r ∈ N, N = (N1, . . . , Nr) ∈ Nr with 1 ≤ N1 < . . . < Nr,
m = (m1, . . . ,mr) ∈ Nr, with mk ≤ Nk − Nk−1, k = 1, . . . , r, and suppose that Ωk ⊆ {Nk−1 +
1, . . . , Nk}, |Ωk| = mk, k = 1, . . . , r, are chosen uniformly at random, where N0 = 0. We refer
to the set Ω = ΩN,m = Ω1 ∪ . . . ∪ Ωr as an (N,m)-multilevel sampling scheme. The key is that
in the case of Fourier sampling, represented by the B above, combined with a wavelet transform
W such that the recovery problem becomes (23), the multilevel sampling should match the level
structure of the wavelets. More precisely, N = M. In this case, if x is (s,M)-sparse with total
sparsity s = s1 + . . .+ sr and s1 = M1 = m1. Then the total number of samples needed is

m = m1 + . . .+mr & s1 + (s2 + s3 + . . .+ sr) log(N). (25)

In particular, by utilizing the level structure in the sampling, one can outperform the standard
CS results. For a more in-depth analysis and explanation see [14, 17, 18]. See also [7, 30] for early
versions of this kind of sampling.

4 Continuous Compressed Sensing

The motivations behind continuous CS are: (i) to obtain a continuous approximation in the CS
reconstruction, as opposed to a discrete approximation, as this allows for an easy non-linear change
of variables to obtain the scattering function and the intermediate scattering function. (ii) If an
alternative basis to the Fourier representation yields a better representation of the function to be
recover, one wants the freedom to use that. In particular, one can try approximating the wavelength
intensity function ρ in terms of a new Reconstruction Basis σn, n ∈ N:

ρ̃(λ) ≈
N∑
n=1

〈ρ, σn〉σn(λ), λ ∈ [a, b]. (26)

For technical reasons, one often requires these functions to form an orthonormal basis of L2[a, b], e.g.
Legendre polynomials, splines, wavelets etc., although this condition can be relaxed to other groups
of functions like frames [31]. For this paper we shall be using Daubechies wavelets [32] exclusively
as our reconstruction basis. Let us quickly discuss why one would want to work with another basis.

Apart from the benefit of keeping the problem continuous, one also has the freedom to choose
which basis σn to work with, making the approach more versatile than a straight DFT approach,
where we are essentially forced to work with a pixel basis every time.

Furthermore, the notion of sparsity is now in terms of the coefficients 〈ρ, σn〉, which means we
have the additional advantage of choosing a basis that makes the function ρ sparse. As we shall see,
this opens up the possibility of using compressed sensing where traditional sparsity does not hold.
In addition, this approach is closer to the philosophy that ρ being sparse should relate to ρ having
low information content; a choice of basis σn that makes ρ sparse tells us how to (approximately)
express the function ρ with a few non-zero coefficients.

Since one is still sampling data that corresponds to Fourier coefficients of ρ, it is impossible to
exclusively work with their choice of basis σn. Instead one has to convert Fourier series coefficients
into coefficients in the basis σn. This is achieved by working with the infinite change of basis matrix
for the two bases:

Bk,n = 〈σn, χk,ε〉, n ∈ N, k ∈ Z. (27)
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As opposed to (23), we now end up solving the infinite dimensional convex optimisation problem of
finding

h∗ ∈ argmin
h∈`2(N)

{
‖h‖1 : PΩBh = PΩf

}
, (28)

Again PΩ denotes the projection onto the samples we have taken. In practice we cannot solve
for the infinite solution to (28), therefore we truncate the reconstruction basis in a similar fashion
to how we truncate the Fourier basis. This means we end up computing

h∗ ∈ argmin
h∈CN

{
‖h‖1 : PΩBPNh = PΩf

}
, (29)

where PN denotes the projection onto the first N functions in the reconstruction basis. This problem
is now numerically feasible since the submatrix PΩBPN is now finite (see [14] for estimates on how to
choose N). The solution to (29), let’s say h∗, is recognised as the (approximate) wavelet coefficients
of the intensity function. We can then use these wavelet coefficients to compute an approximation
to ρ evaluated at any point on the interval [a, b] by following (26):

ρ(λ) ≈
N∑
n=1

h∗nσn(λ), λ ∈ [a, b]. (30)

From here one can use the same multilevel sampling techniques as the discrete case to reconstruct
(s,M)-sparse coefficients. Moreover, the sampling rule (25) also applies in this case.

Note that this approach is very different from (23). First, (29) is not based on the traditional
DFT, however, fast n log(n) implementation of matrix vector multiplication with PΩBPN , the finite
section of the infinite matrix B, is possible. Second, the solution to (23) would (modulo the wavelet
”crime”, see [13]) yield wavelet coefficients of a discretisation of the truncated Fourier series and are
therefore not wavelet coefficients of the original function ρ. For further explanation and numerical
examples demonstrating the benefits the continuous approach and the differences with the discrete
approach, see [13–15].

5 CS for Phonon Detection

In this section we look at the performance of the CS approach described in the previous section by
looking at examples of phonon detection. We shall first look at its effects on the one-dimensional
projections shown previously and then focus on a real 3He spectrum for scattering of gold where
more exotic signal behaviour is present.

5.1 Simulated 1D Example

For consistency with previous sections we shall first work with the 45 degree projection shown
earlier. Although this is a simplified model it clearly demonstrates some of the basic properties of
compressed sensing. Reconstructions are shown in Figure 6.

Recall that we project along a 45 degree angle in an attempt to reduce the spread caused by
the inaccuracy of the wavelength of the incident He3 beam. In particular, since we know that there
will always be an elastic feature in the wavelength intensity function which itself is slanted at a 45
angle, this choice is seen as ideal for refocusing the various phonon features to be closer to that of a
delta spike. Not only is this useful in preventing features from overlapping each other but this also
increases sparsity which is ideal for compressed sensing; if features are sparse then by the rule (24)
we can subsample to a great degree since the signal itself is very sparse. In this case, a change of
basis may not be needed.

If one goes for a uniformly random approach to subsampling (as in Reconstruction A), as opposed
to multilevel sampling discussed above, then there is only so far that one can go before problems
occur. At around 20% subsampling, the reconstruction becomes unreliable in recovering the least
sparse of the features on the far right. Around 30% however, the rightmost features is typically
reconstructed but it is nonetheless unreliable. There is however an even more effective way of
reliably reconstructing the rightmost feature by using multilevel sampling (as in Reconstruction B).
The theory on how to design optimal structured multilevel sampling strategies is very new [14,16,17]
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Figure 6: Demonstrating CS for the 1D 45 degree projection shown in Figure 5, using uniform and multilevel
sampling. Samples are taken from the Fourier data according to the sampling histograms shown. Sampling pattern
A is unreliable in reconstructing the rightmost feature as it is the least sparse of the four peaks while sampling
pattern B remedies this by taking more of the lower frequency values that it depends upon. Reconstructions are at
a resolution of 512 data points.

and this is a highly unexplored topic. We do not attempt to seek optimality here, as this paper
is about establishing the effectiveness of CS in HeSE. Note that, since there is no wavelet change
of basis (W = I, the identity, in (23)) in this case, the theoretical understanding of the effect of
multilevel sampling is not fully understood. This is under investigation together with optimality
conditions.

5.2 Real Phonon Spectrum

As we have already mentioned, real phonon spectra contain more exotic features than the simu-
lation given in the previous example. Naturally noise adds to the data due to some experimental
uncertainties in the apparatus, but more unusual are the relative sizes and shapes of the various
features.

In Figure 7 we have uniform sampling reconstructions for a typical gold spectrum (for more
details see Supporting Information) with projection at 45 degrees to focus on the elastic peak,
which is the only clearly visible feature in the graphs. The peak is extremely fine and is in fact even
smaller than the pixel resolution used for reconstruction (2048) which can be determined from the
observation that the Fourier data has yet to decay to zero near the highest frequencies. Consequently
this is an ideal situation for CS since this feature is almost as sparse as can be. Hence, one can
subsample to a much greater degree (e.g. 1%) than in the previous example.

However, what has happened to the other non-elastic features in this spectrum? At first one
might come to the conclusion that they are not there at all, however, focusing on a small part of
this spectrum reveals features that are over 200 times smaller than the measured intensity of the
large elastic spike. Figure 8 shows various CS reconstructions zoomed in on this region. Notice
that we still have the elastic peak visible, along with a couple of more (and less sparse) features.
Like in the previous example, we expect the smooth features to be more dependent upon the lower
frequency samples. Therefore, when we attempt to take just the first 10% of samples all from
the lowest frequencies (the linear reconstruction) we find that these features are at the very least
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Figure 7: Compressed sensing reconstructions for a gold phonon spectrum (a.u.). With this choice of viewing range,
only the elastic peak can be clearly seen. For a zoomed in closeup on other features see Figure 8. In this Figure
the sampling is performed uniformly at random which recovers the highly sparse central peak. This is suboptimal
compared to the multilevel sampling in Figure 8. Frequencies sampled are from the range {−1024, ..., 1023} and
reconstructions are at a resolution of 2048.

present, unlike the 10% uniform sampling approach where only the central peak remains. On the
other hand, the central peak suffers from Gibbs artifacts which manifests themselves as wave like
features near the central peak as well as broadening of the peak itself.

Instead, one can opt for a mix of these methods by taking the first 5% of samples from the lowest
frequencies and the other 5% taken uniformly from the rest. This approach empirically performs
the best out of the three methods, resolving the low resolution features without the Gibbs artefacts
of the linear approach. Note that, as demonstrated in [14, 16], the optimal sampling procedure is
signal structure dependent. How to choose optimal multilevel sampling is beyond the scope of this
paper, and we have deliberately chosen a simple two-level sampling pattern, which is a reasonable
all rounder, in order to demonstrate the effectiveness of the sampling technique.

5.3 Comparing CS Techniques

In this section we look at an example of how the continuous wavelet approach to compressed sensing
can be used to tackle problems that are beyond the capabilities of the traditional compressed sensing
approach described earlier.

Prior to data acquisition the spacing in current (equivalent to spacing in κ) must be chosen,
which in turn determines the length of the wavelength window [a, b] that the wavelength intensity
function ρ is constructed over. If ρ is not truly supported on this window, then by (2) we instead
reconstruct the periodised version of ρ. In particular, if peaks in the intensity function decay
particularly slowly relevant to the window then the intensity function will stay considerably above
zero throughout that window. Because of this, the traditional compressed sensing approach applied
earlier cannot be used successfully here as the function is maximally non-sparse.

However, if one recalls the wavelet reconstruction bases that are used, then one quickly notices
that they both have a constant function as the first basis function. This effectively means that the
base level caused by slow decay is captured by this single basis function, which keeps the function
sparse in these bases.
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Figure 8: Compressed sensing reconstructions for the same gold phonon spectrum, zoomed in so that features beside
the elastic peak are visible. For a complete picture of the spectrum consult Figure 7. Notice that the smaller features
shown here are over 200 times smaller than the elastic peak. Reconstructions shown here are not only uniform (as in
the bottom left graph) but also linear (i.e. straight Fourier series) and non-linear examples using roughly the same
number of samples across each.

Figure 9 compares the two compression techniques for the diffusion of cobalt phthalocyanine
(CoPc) on Ag(001) with an observable baseline feature. The full set of polarisation data points only
corresponds to the first 101 frequencies and therefore there is noticeable Gibbs artefacts around
the elastic peak in the Fourier series approximation. This strongly suggests that the Fourier series
approximation here is not a particularly accurate approximation to the true intensity function.

Furthermore, the wavelet approximation aims to reconstruct the true underlying continuous
wavelength intensity function, unlike the DFT approach which attempts to reconstruct a discre-
tised form of the Fourier series approximation. Consequently, even with full sampling, the wavelet
reconstruction is noticeably different to the Fourier series approximation. This reflects the fact
that, as we are handling real data, we cannot directly compare to the true underlying wavelength
intensity function.

Regardless we clearly observe that the baseline feature is preserved under subsampling using
wavelets where the DFT approach clearly fails, matching predictions based on sparsity observations
earlier. Note that both techniques use exactly the same samples. While we are able to subsample
to a reasonable degree here (≈ 33%), one should ideally work with a larger range of frequencies to
truly exploit the benefits of this approach, i.e. subsampling from Polarisation data with thousands
of points rather than hundreds.

6 Molecular Diffusion Using Continuous CS

In this section we shall focus on studying diffusive properties of surfaces. As we mentioned earlier,
if one wants to determine how effective a surface behaves, e.g. for catalysis, then one must study
how molecules move on top of the surface over time. This is very different to the previous phonon
examples covered earlier because we are no longer just considering the motions of nuclei in the lattice.
Instead we have species (molecules, atoms) diffusing on top of the surface that are interacting with
each other.

Three models of diffusion are given in Figure 10. An important question is how one can differ-
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Figure 9: (Continuous vs discrete CS) Reconstructions of a spin-echo spectrum (a.u.) of CoPc molecules deposited
on Ag(001) (see Supporting Information for details on the sample preparation) with a noticeable baseline feature. In
the DFT reconstructions the baseline level of around 0.1 is no longer flat leaving bumpy artefacts while the wavelet
reconstructions preserve this flat feature. As we are only subsampling from 101 frequency points, considerable Gibbs
artefacts are present in the Fourier series approximation. The DFT reconstructions have a resolution of 101 points,
while the continuous Fourier series and wavelet reconstructions have been rasterised at a resolution ten times this
number.

entiate these three types of diffusive regimes on a surface by using He atom scattering.

6.1 Scattering Cross Sections and the Van Hove Formalism

The van Hove formalism was initially developed for thermal neutron scattering [33] and we shall
mention a few key results from this theory. This theory establishes a relationship between the
neutron spectra (as a function of energy and momentum transfer) and the dynamics of the nuclei
within the sample. This theoretical approach makes some assumptions that generally holds well for
neutrons, for example

• The incoming beam of neutrons has a fixed incident wavevector ki (and therefore a fixed
incident energy). This is equivalent to monochromatisation of the beam.

• The potential for scattering of each nuclei is modelled as a Fermi pseudopotential, which is a
delta spike at its position. This does not hold well for 3He.

• A scattered neutron interacts with the bulk potential at most once. This is carried through
to 3He scattering (considering multiple scattering events, while possible, is very challenging
and often avoided [34]).

With these assumptions one can compute the differential scattering cross section d2σ
dΩd(~ω) , defined

as the number of neutrons scattered through a solid angle dΩ with change of energy d(~ω) divided

15



Figure 10: A depiction of three diffusive regimes. Orange denotes molecules on the surface and red denotes the
surface potential. In the jump diffusion case the molecules are assumed to move instantly between vacant sites where
the potential energy is smallest. The corresponding dephasing rates are shown in the lower plots.

by the flux of incident neutrons [33, Eq. 4.13]:(
d2σ

dΩd(~ω)

)
=

σ

4π

kf
ki
NS(Q, ω), (31)

where σ is the total scattering cross section, ki = |ki|, kf = |kf | are the magnitudes of the incoming
and outgoing scattering wavevectors, Q = ki − kf , N is the total number of nuclei, ~ω denotes the
change in energy (from (10)) and S(Q, ω) is called the Scattering Function (SF). What makes (31)
particularly useful is that the structure factor can be related to the motion of nuclei in the bulk via
multiple Fourier transforms:

G(R, t) =

∫
R3

exp(−2πiQ ·R)I(Q, t) dQ

=

∫
R3

∫
R

exp(−2πi(Q ·R + ωt))S(Q, ω) dtdQ.

(32)

The function G(R, t) is often called the van Hove correlation function and I(Q, t) the Intermediate
Scattering Function (ISF). The correlation function G(R, t) can be interpreted as the probability
that a particle will be at position R at time t provided this particle or a different one is at the origin
at time t = 0. G(R, t) contains information about both self- and collective diffusion. However, if the
spatial correlations between particles are negligible, the scattering function is essentially sensitive
to the dynamics of single particles (self-diffusion).

6.2 Extension to HeSE

Assuming that there there is no correlation between particle dynamics, formula (31) can be adapted
[1] to the surface sensitive helium scattering approach using

d2σ

dΩdω
= S(K, ω) · |F (K, ω)|2, (33)

where the change of momentum K (the ∆ is omitted) now denotes kf − ki projected onto the
surface (like in (11)) and F (K, ω) denotes the Form Factor that takes into account the fact that
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Figure 11: A detailed 1D description of the full loop presented in Figure 1. Blue lines denote the true underlying
signal and red lines denote the reconstructions (except for the top left where the red dots denote the sampling points).
Sampling points are taken according to the sampling histogram present in Figure 1. Note that there is no comparison
with standard discrete CS here as the change of variable technique is impossible in the discrete setup. This can only
be done in the continuous case.

3He atoms are scattered from the electronic cloud of the atoms/molecules. This contrasts with the
nuclear scattering of neutrons. For simplicity, we shall be assuming that the form factor can be
compensated for when interpreting the scattering data, which effectively means setting this term to
be equal to 1. Similarly (32) still holds but for the two-dimensional equivalents of G(R, t), I(Q, t)
and S(Q, t) (with Q ∈ R3 replaced by K ∈ R2 and now R ∈ R2)

As we shall see shortly in the next section, one often does not have the luxury of knowing the SF
S(K, ω) on the entire (K, ω) space, likewise for the ISF I(K, t). This means that one cannot easily
calculate the van Hove correlation function directly. Instead, it is sometimes preferable to infer
properties of G(R, t) from partial knowledge of the SF/ISF. One such example is the Dephasing
Rate α(K), which describes the decay in t of the ISF as a function of K. Formally,

α(K) = inf{t > 0 : |I(K, t)| = e−1|I(K, 0)|}. (34)

Different types of models for self-diffusion are presented in Figure 10. For the Brownian/Ballistic/Jump
Motion the dephasing rate shows a quadratic/linear/periodic dependence upon K [1].
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6.3 Changing Variables

Now we connect up the dots between the van Hove formalism described in the last section and the
experimental background.

Recall that by (33) we know that the scattering cross section is expressed in terms of change of
surface momentum K and energy E = ~ω. Therefore if one wants to convert wavelength intensity
to intensity in terms of energy or wavelength one first needs to change variables (recalling (11) and
(12)):

ω =
E

~
=

~
2m

k2
f −

~
2m

k2
i =

πh

m

(
1

λ2
f

− 1

λ2
i

)

K = kf sin θi − ki sin θf =
2π

λf
sin θi −

2π

λi
sin(γ − θi).

(35)

Here γ = θi + θf is the total scattering angle between the source/surface/detector setup which
cannot be changed for the Cambridge spin-echo apparatus. Instead one tilts the surface in order
to vary the incident angle θi, which in turn determines θf . The direction of the change in surface
momentum K is determined by the geometry of the apparatus but is always parallel to the surface
(formally when we restrict K to the plane in the source/surface/detector setup it becomes a scalar
hence why we only have a scalar K in (35)).

From (35) we see that the initial scattering angle θi is also an important variable in our ex-
periments, therefore it is convenient to explicitly declare this dependency by rewriting ρ(λi, λf ) as
ρ(λi, λf , θi). Our goal is to convert knowledge of ρ(λi, λf , θi) to knowledge of the scattering cross
section/SF and then to the ISF. In this paper we focus on the approach where we fix λi (using a
Fourier slice) and θi, leaving a function of one variable ρ(λf ), like in the phonon case.

By fixing λi, θi we only know S̃(K,ω) on a one-dimensional path in (K,ω) space. Because of
this issue, some choose to exclusively work with the energy ω. With this approach the wavelength
intensity function is converted into a frequency intensity function, which we interpret as S(ω). This
involves using the change of variables (35) along with a Jacobian term to preserve intensity:

S(ω(λf )) = ρ(λf ) ·
(

dω

dλf
(λf )

)−1

. (36)

From here one can Fourier transform S(ω) to derive an approximation to the ISF I in (32) as in [1].
One problem however, is that the paths taken in (K,ω) space with θi, λf fixed are not straight
lines parallel to the K-axis which otherwise would have justified this method using the Fourier slice
theorem. Because of this issue we refer to I(t) as an approximate-ISF.

7 The Big Picture

Let us sum up the various stages we have discussed. The three key steps in order are:

1. The initial Fourier transform measurement step (19) from polarisation to wavelength that is
subject to continuous CS.

2. A non-linear change of variables (35) from wavelength to energy.

3. A further Fourier transform step (33) from energy to time, generating an approximation to
the Intermediate Scattering Function.

Figure 11 shows these steps in more detail. After the Intermediate Scattering Function is
reconstructed the dephasing rate can be extracted and the diffusive properties analysed. There is
no comparison with standard discrete CS here as the change of variable technique is impossible in
the discrete setup. As discussed in the introduction, the change of variables (35) is incompatible
with the standard DFT based CS methods since the uniform grid of coordinates in wavelength
space is transformed into a non-uniform grid in (K, E)-space. With continuous CS one can work
backwards, first specifying a uniform grid in (K, E)-space which is converted to a non-uniform grid
in wavelength space. Since, using the continous CS approach, the reconstructed solution of (28) is
a function rather than a vector, one can directly sample the wavelength intensity function on this
non-uniform grid directly and use (36) to compute the scattering function.
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8 Conclusion and Outlook

This work demonstrates that continuous compressed sensing can be used to reduce measurement
times by at least an order of magnitude whilst capturing both phonon and diffusion processes
simultaneously. This is done by working through the whole cycle from polarisation data, through
to the wavelength intensity and scattering functions, up the intermediate scattering function where
physicallly significant properties can be deduced. Not only has this made current helium spin-echo
experiments more convenient, but this has also brought forward future projects that were originally
deemed too time-consuming to measure. Eventually the final goal is to capture the entire scattering
function over all of (K, E)-space using a two-dimensional continuous CS method. The authors hope
that these advances will be quickly brought to the attention of the neutron scattering and X-ray
communities.
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Supporting Information: Continuous Compressed Sensing of Inelastic
and Quasielastic Helium Atom Scattering Spectra

8.1 From Solenoid Currents to the Spin Phase

The polarisation of the helium spin can be encoded by a phase quantity φ. We assume that the
relationship between the generated field strength B in the solenoids and the current I flowing
through the coil is linear, i.e. B = Beff · I for some constant Beff . If the solenoid has length L then
the total accumulated phase has the form

φ =
γ

V
BeffI, (S1)

where V denotes the velocity of the He atom and γ is the gyromagnetic ratio of the He atom.
Therefore if φi denotes the accumulated phase in the first coil and φf the phase in the second then

φ = φi + φf = γBeff

(
Ii
Vi

+
If
Vf

)
, (S2)

where we assume that the currents Ii, If and velocities Vi, Vf are different but the length L and
constant Beff is the same. We observe that the incoming velocity Vi is related to the incoming wave-
length via the de Broglie relation, i.e. Vi = pim

−1 = h(mλi)
−1, where λi denotes the wavelength

of the beam. Consequently, (S2) becomes

φ = mγBeffh
−1
(
Iiλi + Ifλf

)
. (S3)

Now suppose that polarisation is rotated in the xy-plane and is initially polarised in the x-direction.
Then, assuming that the analyser near the detector is also in the x-direction, the signal received
has the form [1]

Px,I(Ii, If ) = 〈cosφ〉ρ

=

∫
ρ(λi, λf ) cos

(
mγBeffh

−1
(
Iiλi + Ifλf

))
dλidλf .

(S4)

Here ρ(λi, λf ) denotes the Wavelength Intensity Function which describes the distribution of helium
atoms that reach the final polariser according to initial and final wavelengths. When combining the
polarisation along the x and y-direction after (S4) to a complex quantity and by introducing the
scaled variables (κi, κf ) which have been defined in equation 13 in the main text the polarisation
becomes:

P (κκκ) =

∫
ρ(λλλ)e2πiκκκ·λλλ dλλλ,

λλλ = (λi, λf ),κκκ = (κi, κf ) ∈ R2.

(S5)

which is the two-dimensional Fourier transform introduced in equation 14 of the main text.

9 Experimental Details

9.1 Sample Preparation

The single crystals used in the study were discs with a diameter of 10 mm and a thickness of 1 mm.
The crystals were mounted on the sample holder which can be heated using a radiative heating
from a filament on the backside of the crystal or cooled down to 100 K using liquid nitrogen. The
sample temperature was measured using a chromel-alumel thermocouple.

Prior to the measurements the surface was cleaned by several Ar+ sputtering and annealing
cycles. For the Au(111) surface this included cycles of sputtering with 0.5 kV Ar+ ions, 5 µA
current for 15 minutes followed by annealing to 800 K (1 min). Ag(001) was typically sputtered
with 0.8 kV Ar+ ions, 8 µA current for 20 minutes, followed again by annealing to 800 K (2 min).
The base pressure in the scattering chamber was < 3 · 10−11 mbar and the surface quality was
monitored using helium reflectivity measurements.
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The Au(111) experiments were performed at a sample temperature of TS = 200 K, at which the
surface remained clean, with no measured decrease in the reflectivity, for a period of at least four
hours. After this time any adsorbed contaminants were removed by flashing the crystal to 500 K
before continuing measurements. The Ag(001) experiments were done with the crystal above room
temperature where the surface remains clean for several days.

For the deposition of cobalt phthalocyanine (CoPc, C32H16CoN8) on Ag(001), a home-built
Knudsen cell was used where a crucible filled with CoPc is resistively heated. The Knudsen cell was
mounted in a separate dosing arm and was inserted into the scattering chamber for deposition of
CoPc onto the clean Ag(001) surface. CoPc was deposited at a surface temperature of 350 K and a
typical dosing pressure of 2 ·10−9 mbar until the elastically scattered He signal had been attenuated
by a factor of 2.

9.2 Experimental Parameters

The experimental parameters for the measurements presented in this study are summarised in table
1.

Table 1: Experimental parameters for the measured systems presented in this work.

Measured system Au(111) CoPc/Ag(001)

Sample temperature 200 K 350 K
Incident He energy Ei 8.0 meV 8.1 meV
Current range [-4,4] A [0,10] A
Number of sampled points 2048 101
Incident angle θi 19.325◦ 24.2◦

Momentum transfer ∆K
0.32 Å

−1 −0.22 Å
−1

(for elastic scattering)
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