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Abstract

New deferred correction methods for the numerical solution of initial value problems in ordinary dif-
ferential equations have recently been introduced by Dutt, Greengard and Rokhlin. A convergence proof
is presented for these methods, based on the abstract Stetter-Lindberg-Skeel framework and Spijker-type
norms. It is shown that p corrections of an order-r one-step solver yield order r(p+ 1) accuracy.

1 Introduction.

Deferred correction methods for the numerical solution of the initial value problem

y′(t) = f(t, y(t)), y(a) = ya ∈ Rd, t ∈ [a, b] (1.1)

have been developed and analyzed for many years [3]. There are two important features of such methods:
firstly, the ability to easily estimate the global error and secondly the ability to easily create high order
methods from low order schemes. The combination of these powerful qualities opens up the possibility
for sophisticated codes with adaptive step-sizes and also adaptive order. Two interesting new techniques of
deferred correction were introduced in [6]. The first method (with the slightly misleading name) ”classical”
Deferred Correction is a method that is similar to Zadunaisky’s Iterated Defect Correction (IDeC) [16].
It is based on a previously numerically computed solution to (1.1) where, after deriving and solving an
ODE (numerically) for the global error of the computed solution, the numerical estimate of the error is
added to the previously computed solution. The second method named Spectral Deferred Correction is
based on the same ideas, however, the ODE for the error is turned into an integral equation. The extensive
previous convergence theory of deferred correction methods does not apply to these new techniques (and
thus there are no formal proofs justifying the convergence of these new methods), however, in this paper,
we extend and apply previous technical tools to prove high-order convergence for the first (“classical”)
deferred correction scheme of [6]. Convergence of Spectral Deferred Correction is proved in [10], and the
method has been successfully implemented and tested in [6, 13, 11].

Previous convergence proofs [12, 7, 8] for deferred correction methods often assume a global asymp-
totic error expansion, which Runge-Kutta methods usually possess (but multistep methods usually lack).
Our proof relies instead on the smoothness of the global error in discrete Sobolev norms, defined via di-
vided differences as in [14], and adjusted to fit our situation. Our approach is modeled on the abstract
Stetter-Lindberg-Skeel error analysis [15, 12, 14], which treats the initial value problem (IVP) as an op-
erator equation approximated by a discrete operator equation. Lindberg and Skeel used this approach to
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develop new methods and show convergence of new and existing methods. Skeel extended it into a very
general framework for the analysis of accuracy and convergence, which permits the analysis of many de-
ferred correction methods. We extend it further to prove convergence for the new classical scheme of [6].
One should note that our convergence analysis only covers one-step methods, however, the numerical ex-
amples in Section 5 suggest that multistep methods will also work, although with some restrictions. We
hope that our ”global asymptotic error” free framework can (in the future) be adapted to include multistep
methods.

2 The DGR scheme

The first method introduced in [6] is referred to as ”classical deferred correction” . We believe that this
name is a little misleading as the method is not classical at all. It is quite similar to Zadunaisky’s iterated
deferred correction (IDeC) [16], however, a different method. We will therefore refer to this method as the
DGR method (or scheme) after its inventors Dutt, Greengard and Rokhlin.

The idea of the method is as follows. One constructs a new IVP for the error, solves it numerically,
and thus obtains an approximation to the global error which is added to the previous numerical solution.
The process is repeated on each subinterval separately, and can be viewed as a technique for generating
high-order Runge-Kutta-Fehlberg schemes, without the laborious algebra required to solve large nonlinear
systems of order conditions.

2.1 Description of the algorithm

Suppose a numerical solution u = (u0, . . . , un) is given at (equidistant) grid points {t0, . . . , tn} with step
size h on the current subinterval [a, b] of time integration, with error

y(tk)− uk = O(hp), k = 0, . . . , n.

We can view u as a continuous approximate solution satisfying the IVP with error

δ̃(t) = y(t)−∇nu(t), t ∈ [a, b] (2.1)

by employing the Lagrange interpolation operator ∇n : Rn+1 → C[a, b] based on the grid points. Differ-
entiating the error formula (2.1) and using the IVP for y gives the error equation

δ̃′(t) = f̃(t, δ̃(t)), δ̃(a) = δ̃a = y(a)− u0, (2.2)

f̃(t, δ̃(t)) = f
(
t, δ̃(t) +∇nu(t)

)
− d

dt
∇nu(t).

Solving (2.2) with an order-p accurate numerical method gives a numerical error

δk = y(tk)− uk +O(h2p), k = 0, . . . , n.

The procedure can be iterated, using the same order-p method at each iteration, or more generally we may
use one of r different one-step methods of orders p1, . . . , pr at each correction. We refer to this approach
as the DGR algorithm:

Algorithm 2.1. For j =1:r

• Interpolate u[j−1] → ∇nu[j−1](t) on the current subinterval
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• Solve the following IVP by pj-th order method:

δ̃′(t) = f(t, δ̃(t) +∇nu[j−1](t))− d

dt
∇nu[j−1](t), δ̃(a) = y(a)−∇nu[j−1](a),

to get a numerical approximation δ to the current error δ̃

• Update u[j] = u[j−1] + δ

end

The similarity with the IDeC methods is obvious, however, it is clear that the DGR method is different
from the IDeC scheme. This can be seen in the following way. The IDeC method is based on a computed
numerical solution u = (u0, . . . , un). One then forms the defect d(t) = d

dt∇nu(t)− f(t,∇nu(t)), solves

ρ̃′(t) = f(t, ρ̃(t)) + d(t), ρ̃(a) = ya

numerically and obtain an approximation ρ = {ρ0, . . . , ρn}. The update is defined by

unew
ν = uν − (ρν −∇nu(tν)) , ν = 0, . . . , n.

We observe that in the DGR method the error equation (2.2) is approximated in a more direct way, without
explicit use of the defect, which makes a real difference especially for nonlinear problems. It is therefore
clear that when f is non-linear, the methods are very different. It appears that the DGR scheme allows for
some extra freedom when constructing high order methods compared to the IDeC method. In particular,
one can mix one-step methods of completely arbitrary orders and, as suggested in Section 5.4, one can even
combine multistep methods with one-step methods. The proof of this rather striking phenomenon is not
covered in this paper however, and this is left for future research.

The reader will observe, both in the proof and the numerical examples, that the requirement of an
equidistant grid is crucial, and this is also the case for IDeC. Improved variants of IDeC that do not require
equidistant grid have been invented and analyzed in [1, 2], and it is an open question whether one can apply
these ideas to the DGR method. If so, it appears that one may have a very general way of creating high
order methods from lower order one-step and multistep methods that allow for variable step sizes.

3 Theoretical framework

We employ Stetter’s abstract formalism for analyzing numerical solutions of the IVP [15], as do most
previous analyses of deferred correction [14, 12]. Thus we write the IVP (1.1) as an operator equation

Fy = 0 (3.1)

where F : Y → Z is an operator between normed linear spaces Y and Z. A numerical method φ for the
IVP approximates (3.1) by a family of operator equations

φn(F )u = 0, n ∈ N,

where φn(F ) : Yn → Zn is an operator between finite-dimensional normed linear spaces Zn and Yn
with dimensions proportional to n. Euler’s method, for example (applied to a one-dimensional IVP), has
Yn = Zn = Rn+1 and

φn(F )(u)ν =

{
−u0 + ya ν = 0
−uν−uν−1

tν−tν−1
+ f(tν−1, uν−1) ν = 1, . . . , n,
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where {t0, . . . , tn} is a grid on [a, b] and ya is the initial value (we will be more rigorous with the definitions
below). Stetter requires Y andZ to be Banach spaces. It turns out that completeness is not usually necessary
for analyzing the convergence of most numerical methods φn(F ), so normed linear spaces suffice. (Since
Example 1.1 of [15] is not a Banach space, it is fortunate that normed linear spaces suffice.) Following
Skeel [14], we convert the IVP (1.1) to an operator equation with the norm

‖z‖Ym := max{‖z‖∞,
1
2!
‖z′‖∞, . . . ,

1
m!
‖z[m]‖∞} (3.2)

on the normed linear space Y m := Cm[a, b]×· · ·×Cm[a, b] (d times). Here we use the standard maximum
norm

‖z‖∞ := max
t∈[a,b],1≤j≤d

|zj(t)|, zj ∈ Cm[a, b].

The operator F is defined so that Fy = 0 is equivalent to the IVP: Thus, for z ∈ Y m

Fz(t) :=
(
−z(a) + ya,−z′(t) + f(t, z(t))

)
, t ∈ [a, b], (3.3)

where f : [a, b] × Rd → Rd is assumed smooth with bounded derivatives. Then the initial value ya
in F guarantees that y is the unique solution of the IVP. The range of F is then naturally defined to be
Zm := Rd × Cm−1[a, b]× · · · × Cm−1[a, b] (d times), and for g = (ga, g̃) ∈ Zm we define the norm by

‖g‖Zm := ‖Lg‖Ym , Lg(t) = ga +
∫ t

a
g̃(s) ds. (3.4)

3.1 The discrete problem

Finite-dimensional spaces for the numerical method are built on a grid on the interval [a, b]. In particular,
for n ∈ N, we let

Gn = {t0, . . . , tn : a = t0 < · · · < tν−1 < tν < tn = b}, (3.5)

with step sizes hν := tν − tν−1 > 0 for ν = 1, . . . , n, and mesh size h := maxν{hν}. Given a grid Gn,
we define finite-dimensional spaces Y m

n = Zmn := Rd × Rd × · · · × Rd (n + 1 times). We will interpret
u ∈ Y m

n , Zmn as a column vector in Rd(n+1), where (with a slight abuse of notation) uν ∈ Rd is interpreted
as the vector corresponding to tν . In particular,

u = ((u0)1, (u0)2, . . . , (u0)d, (u1)1, (u1)2, . . . , (u1)d, . . . , (un)1, (un)2, . . . , (un)d)T .

The definition of the point evaluation operators (or grid mappings, as we will also call them) should make
this clear. In particular, ∆n : Y m → Y m

n and Λn : Zm → Zmn are defined by

(∆nz)ν := z(tν), z ∈ Y m, 0 ≤ ν ≤ n, (3.6)

and

(Λng)ν :=

{
ga ν = 0,
g(tν−1) 1 ≤ ν ≤ n,

g ∈ Zm, (3.7)

where tν , tν−1 ∈ Gn. The norms on Y m and Zm suggest natural norms on Y m
n and Zmn , with backward

divided differences replacing derivatives. For u ∈ Y m
n let

‖u‖Ymn := max{‖u‖∞, ‖D̃u‖∞, . . . , ‖D̃mu‖∞}, (3.8)

where
‖u‖∞ = max

0≤ν≤n,1≤j≤d
|(uν)j |,
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and
D̃mu = (u0, Du1, D

2u2, . . . , D
mum, . . . , D

mun)T

is an array of divided differences and initial values. Here Dm denotes the backward divided difference
defined by

D0uν = uν ,

Dmuν =
Dm−1uν −Dm−1uν−1

tν − tν−m
, m = 1, 2, . . . ., m ≤ ν.

For z ∈ Zmn we define
‖z‖Zmn := ‖(Lh ⊗ Id)z‖Ymn , (3.9)

where

Lh :=


1
1 h1

1 h1 h2
...

...
...

1 h1 h2 . . . hn

 , Idx = x, x ∈ Rd.

Thus, Lh works as a discrete integral operator. In particular,

‖z‖Z0
n

= max
0≤l≤n,1≤j≤d

|(z0 +
l∑

k=1

hkzk)j |

is often called the Spijker norm, while

‖z‖Z1
n

= max
1≤j≤d

{|(z0)j |, |(z1)j |, |(z2)j |, . . . , |(zn)j |}

is the usual maximum norm. These spaces and mappings are related by the following “asymptotically
commutative” diagram:

Y m F−−−−→ Zm

∆n

y yΛn

Y m
n

φn(F )−−−−→ Zmn .

In the sequel we will need the following presumably well-known lemma, whose proof we include for
completeness.

Lemma 3.1. Let n,m ∈ N with n ≥ m. For an equidistant grid Gn on [a, b], the Lagrange interpolation
operator ∇n : Y m

n → Y m satisfies a norm bound ‖∇n‖ ≤ Cn where Cn depends only on n and [a, b].
Moreover, the statement is valid (with the same Cn) for any interval [ã, b̃] ⊂ [a, b].

Proof. Let ζ ∈ Y m
n . By Newton’s interpolation formula, we have

∇nζ(t) =
n∑
µ=0

Dµζµπµ(t), πµ(t) =
µ−1∏
l=0

(t− tl), µ ≥ 1, π0(t) = 1,

which gives
‖∇nζ‖Ym ≤ (n+ 1) max

0≤µ≤n
{‖Dµζµ‖Rd ‖πµ‖Ym},
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where the norm ‖ · ‖Rd is chosen to be the max norm. Since Gn is equidistant, it follows that

‖πm+k‖Ym ≤ Ĉnhk, k = 0, . . . , n−m, h = tl − tl−1,

where Ĉn depends only on n and [a, b], however, the bound is valid for any interval [ã, b̃] ⊂ [a, b]. Also,
‖Dm+kζm+k‖Rd ≤ Kn‖ζ‖Ymn /h

k for some Kn > 0 depending on n and independent of [a, b]. Hence,

‖Dµζm+k‖Rd ‖πm+k‖Ym ≤ C̃n‖ζ‖Ymn , k = 1, . . . , n−m, (3.10)

for some C̃n > 0 depending on n and [a, b], however still true for any [ã, b̃] ⊂ [a, b]. Now, if K̃n bounds
‖πµ‖Ymn , we obviously have

max
0≤µ≤m

{‖Dµζµ‖Rd ‖πµ‖Ymn } ≤ K̃n‖ζ‖Ymn , (3.11)

where the latter equation would be true for any [ã, b̃] ⊂ [a, b]. Thus, (3.10) and (3.11) yield the existence of
Cn > 0 as asserted in the lemma such that ‖∇nζ‖Ymn ≤ Cn‖ζ‖Ymn .

We plan to prove convergence of deferred correction schemes indirectly, by using stability and con-
sistency in the usual manner. However, the following convenient and effective definitions from [15] may
differ from the many other definitions of consistency and stability in the literature.

Definition 3.2. The sequence
λn = φn(F )∆ny ∈ Zmn , n ∈ N

where y is the solution of the IVP Fy = 0, where F is defined in (3.3), is called the local discretization
error.

Definition 3.3. A discretization method φ is called stable if there exist a positive constant S, independent
of n, such that

‖v − w‖Ymn ≤ S‖φn(F )v − φn(F )w‖Zmn (3.12)

for all v, w ∈ Y m
n .

3.2 Local error for one-step methods

Runge-Kutta methods have been widely used in deferred correction algorithms [7, 8]. While we do not
restrict our analysis to Runge-Kutta methods we assume that the method φ is of the form

φn(F )(u)ν =

{
−u0 + ya ν = 0
−uν−uν−1

h + Ψ(h, uν−1, f) ν = 1, . . . , n,

where F is defined in (3.3), ya = y(a), where Fy = 0, f comes from (1.1) and Ψ is the normally referred
to as the increment function of the method. Our approach appears to require the existence of an asymptotic
error expansion: the local discretization error λ of any solution y to Fy = 0 must satisfy

λν = φn(F )(∆ny)ν =
µ∑
k=1

(Λnek)νhk + (Λng)νhµ+1 ν = 1, . . . , n, (3.13)

where ek ∈ Zµ, g ∈ Z0 and µ will depend on the smoothness of f (note that there is a slight abuse of
notation here, λν should actually be (λn)ν , however we allow this to simplify notation). If ek = 0 for
all k < p then the numerical method φ is said to be consistent of order p. For one-step methods (such as
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Runge-Kutta methods) where the local error can be expressed as a Butcher series, after autonomizing the
original equation, there is a (formal) tree expansion

φn(F )(∆ny)ν =
∑
τ∈LT

a(τ)F (τ)((∆ny)ν−1)
hρ(τ)

ρ(τ)!
ν = 1, . . . , n. (3.14)

Here a(τ) are computable error coefficients, F (τ)((∆ny)ν−1) are computable elementary differentials of
f evaluated at (∆ny)ν−1, and LT is the set of all labeled trees [9]. (Note that F used in the elementary
differentials is not the same F as in the operator version of the IVP, however, this will be clear from the
context.) In this case the existence of the expansion (3.13) follows easily when the grid mappings ∆n and
Λn correspond to an equidistant grid Gn. It is straightforward to show that when Gn is equidistant (this is
crucial, see Section 4.2) and if the tree expansion (3.14) holds, we have

max(‖ek‖Zµ−k , ‖g‖Z0) ≤ Cµ max(‖y‖Y µ , ‖y‖µY µ), k = 1, . . . , µ− 1 (3.15)

where
Cµ ≤ K sup{|F (τ)(z)| : z ∈ [a, b]× Rd, τ ∈ LTµ}, (3.16)

LTµ is the set of all labeled trees of order ≤ µ, and K is an integer depending on µ. We assume below that
our numerical method satisfies (3.14) and that f is smooth with bounded derivatives, and hence (3.13) with
(3.15) and (3.16) apply.

3.3 Stability of one-step methods

Convergence of a numerical method is usually proven in two steps. First, one proves consistency λ = O(hp)
at each smooth solution y. Then, if the stability inequality is satisfied, one deduces convergence. Thus we
seek a stability inequality

‖v − w‖Ymn ≤ S‖φn(F )v − φn(F )w‖Zmn , v, w ∈ Y m
n . (3.17)

Obviously S will depend on the norms on Y m
n and Zmn , and since our norms include divided differences,

it is not a surprise that S may include derivatives of f . For Runge-Kutta methods, it can be shown (see
Example 4.2 of [14]) that (3.17) is valid with S = S(θ) where θ is a bound on all the partial derivatives of
f of orders up to and including m and S is a nonnegative increasing function of θ. We assume below that
S has this form.

4 Abstraction of the DGR scheme

The goal is to put Algorithm 2.1 into the abstract framework. Given a previously calculated solution
u ∈ Y m

n , the DGR scheme builds a continuous approximation g(t) = ∇nu(t) to the exact solution y. The
error equation for δ̃

δ̃′(t) = f̃(t, δ̃(t)), δ̃(a) = δ̃a = y(a)− u0, (4.1)

f̃(t, δ̃(t)) = f(t, δ̃(t) + g(t))− g′(t),

can be put in operator form by defining Fg : Y m → Zm, for any interpolated numerical solution g, via

Fgz(t) := (−z(a) + δ̃a,−z′(t) + f(t, z(t) + g(t))− g′(t)). (4.2)
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The numerical scheme for δ̃ is then

φn(Fg)δ = 0, g = ∇nu(t).

In particular, if φ is the implicit midpoint rule we get that

φn(Fg)(u)ν =

{
−u0 + δ̃a ν = 0

−uν−uν−1

h + f
(
t̂ν ,

uν+uν−1

2 + g(t̂ν)
)

+ g′(t̂ν) ν = 1, . . . , n,

where t̂ν = (tν−1 + tν)/2. Before we can prove the desired convergence of the DGR method we need to
make some adjustments. In particular the spaces Y m

n and Zmn must be altered slightly before we can start
proving any theorems, and that is the theme of the next section.

4.1 Theoretical adjustments

We now adjust the previous theoretical framework so that convergence can be proven for the DGR scheme.
In this section we consider the IVP (1.1) on the interval [0, T ]. The previously defined spaces and norms
interfere with the boundedness of the Lagrange interpolation operator ∇n : Y m

n → Y m. Recall that
we are considering the sequence {un}n∈N for un ∈ Y m

n . Obtaining a polynomial g(t) = ∇nun(t) of
arbitrarily high degree as h → 0 does not make any sense, so computationally we only interpolate a fixed
finite number of points. But piecewise interpolation may introduce unsmoothness so boundedness of ∇n
is impossible in spaces Y m with m > 0. Thus we consider each correction interval as a separate IVP. In
other words split the interval [0, T ] into N subintervals [Tk−1, Tk], k = 1, . . . , N where T0 = 0, TN = T
and [0, T ] = ∪Nk=1[Tk−1, Tk]. Let n ∈ N and for each k let Gk

n be an equidistant grid on [Tk−1, Tk] with
hk = (Tk − Tk−1)/n. Letting h = maxk(Tk − Tk−1) we require that there is a constant C (independent of
N ) such that

h ≤ C min
1≤k≤N

hk. (4.3)

Now define the grid GNn on [0, T ] by GNn = ∪Nk=1Gk
n such that Tk = tkn ∈ GNn. We can now define the

vector space Y m
Nn according to GNn. In particular, let

Y m
Nn := Rd(Nn+1),

where we interpret u ∈ Y m
Nn as

u = (u0, . . . , uNn)T , uν ∈ Rd,

where uν corresponds to tν ∈ GNn. Also, for k = 1, . . . , N , let uk ∈ Rd(n+1) be defined by

uk := (u(k−1)n, . . . , ukn)T .

We will for simplicity use the notation uk = (uk0, . . . , u
k
n)T below. We can now define the norm on Y m

Nn by

‖u‖YmNn := max
1≤k≤N

{‖uk‖Ymn }.

Similarly let
ZmNn := Rd(Nn+1), ‖z‖ZmNn := max

1≤k≤N
{‖zk‖Zmn }.

These norms do not require smoothness across subgrid boundaries, and are therefore convenient for the
analysis of deferred correction schemes which work on one subinterval at a time. We now split the IVP into
N IVPs. In particular, we have the IVPs

Fky = 0, k = 1, . . . , N,
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Fkz(t) :=
(
−z(t(k−1)n) + y(t(k−1)n),−z′(t) + f(t, z(t))

)
, t ∈ [Tk−1, Tk], (4.4)

where y satisfy Fy = 0 and F is defined in (3.3). Suppose u ∈ Y m
Nn is an approximation to the discretiza-

tion ∆Nny of the exact solution y to the IVP Fy = 0. Let gk = ∇nuk be the local Lagrange interpolant to
the grid values on the k-th subgrid. The correction equations require δ ∈ Y m

Nn to satisfy

φn(Fgk)(δk)ν =

{
−δk0 + δk−1

n k = 1, . . . , N

− δkν−δkν−1

h + Ψ(h, δkν−1, f̃gk) ν = 1, . . . , n, k = 1, . . . , N

= 0

(4.5)

where, for δ̃ ∈ Y m, f̃gk(t, δ̃) = f(t, δ̃ + gk(t)) + g′k(t) and δ1
0 = 0, assuming exact starting value. With

this framework, we can state the main lemma of the convergence proof:

Lemma 4.1. Let y satisfy Fy = 0, where F is defined in (3.3) and f ∈ C∞(Rd+1) with bounded deriva-
tives. Let n ∈ N and Gn be an equidistant grid on [a, b] with stepsize h. Suppose that the numerical method
φ is stable (with stability properties as in Section 3.3) and consistent of order p with the local discretization
error satisfying (3.13) and (3.15). Suppose also that for integers m, p, r with n ≥ m + p + r, a numer-
ical solution u ∈ Y m+p

n satisfies the error bound ‖u − ∆ny‖Ym+p
n

≤ Chr (for some C > 0). Then the
correction δ satisfies the order-(r + p) error bound

‖δ + u−∆ny‖Ymn ≤ Cn max{‖δ0 + u0 − (∆ny)0‖Rd , hr+p}

(where ‖ · ‖Rd denotes the max norm) for some Cn depending on n, [a, b] and f (and its derivatives). Here
δ is the correction satisfying φn(F∇nu)δ = 0 with initial value δ0 and where F∇nu is defined in (4.2).
Moreover, the statement is valid (with the same Cn) for any interval [ã, b̃] ⊂ [a, b].

Proof. Throughout the proof C may represent various constants. Let g(t) = ∇nu(t). By the stability
assumption, the assumption that f has bounded derivatives and the definition of δ we have

‖δ + u−∆ny‖Ymn ≤ S(θ)‖φn(Fg)δ − φn(Fg)(∆ny − u)‖Zmn
= S(θ)‖φn(Fg)(∆ny − u)‖Zmn ,

(4.6)

for some S(θ) > 0 independent of n, where S is an increasing function of θ and θ is a bound on the partial
derivatives of [a, b] × Rd 3 (t, z) 7→ f(t, z + ∇nu(t)) − ∇nu′(t) up to order m. Also, recall that Fg is
defined in (4.2). We will discuss the dependency on θ below. Since the exact solution of the correction
equation is δ̃ = y − ∇nu and ∆n∇n is the identity, it follows that φn(Fg)(∆nδ̃) = φn(Fg)(∆ny − u) is
the local discretization error of the correction IVP Fg δ̃ = 0. Since φ is a scheme that is consistent of order
p, with an asymptotic error expansion as in (3.13), it follows that

φn(Fg)(∆ny − u)ν =

{
δ0 + u0 − (∆ny)0 ν = 0∑m

j=0 h
p+j(Λnep+j)ν + hm+p+1(Λng)ν ν = 1, . . . , n.

(4.7)

Thus, the local discretization error of the corrected solution satisfies

‖φn(Fg)(∆ny − u)‖Zmn

≤ max

‖δ0 + u0 − (∆ny)0‖Rd ,
m∑
j=0

hp+j‖Λnep+j‖Zmn + hm+p+1‖Λng‖Zmn

 ,

where the norm ‖ · ‖Rd is the max norm. We will now consider the last part of this bound in the following
claim.
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Claim: There is a C depending on n and [a, b] such that

m∑
j=0

hp+j‖Λnep+j‖Zmn + hm+p+1‖Λng‖Zmn ≤ Ch
r+p.

Moreover, the claim is valid (with the same C) for any interval [ã, b̃] ⊂ [a, b]. To prove the claim, note that
by the extended mean value theorem for higher order derivatives and divided differences, the operator norm
of the point evaluation Λn satisfies ‖Λn‖Zk→Zk+ln

≤ Mh−l for any positive integers k, l and a constant
M > 0 depending on l, n and [a, b], however independent of any [ã, b̃] ⊂ [a, b]. Thus

m∑
j=0

hp+j‖Λnep+j‖Zmn + hm+p+1‖Λng‖Zmn

≤ hp
m∑
j=0

Mj‖ep+j‖Zm−j + hp+1Mm‖g‖Z0

where the constants Mj may depend on n and [a, b] however independent of any [ã, b̃] ⊂ [a, b]. By the
asymptotic error expansion assumptions (3.15) and (3.16), ‖ep+j‖Zm−j (for 0 ≤ j ≤ m) and ‖g‖Z0 are
bounded by

C̃ max(‖∇nu− y‖Ym+p , ‖∇nu− y‖m+p
Ym+p)

where
C̃ ≤ K sup{|F (τ)(z)| : z ∈ [a, b]× RN , τ ∈ LTm+p},

with F (τ)(z) an elementary differential of the autonomized correction equation

δ̃′(t) = f(t, δ̃(t) +∇nu(t))−∇nu′(t), t ∈ [a, b],

andK is an integer depending onm+p. Thus, our claim will follow if we can bound C̃ and show that there
is a C > 0 such that ‖∇nu− y‖Ym+p ≤ Chr. Let us start with the latter. Note that the triangle inequality
gives

‖∇nu− y‖Ym+p ≤ C‖u−∆ny‖Ym+p
n

+ ‖∇n∆ny − y‖Ym+p ,

where C (depending on n and [a, b], however independent of any [ã, b̃] ⊂ [a, b]) is a bound on the operator
norm of Lagrange interpolation ‖∇n‖ (recall Lemma 3.1). Interpolation and point evaluation are related by
‖∇n∆ny−y‖Ym+p ≤ Chn−m+p (C may depend on n and [a, b], however independent of any [ã, b̃] ⊂ [a, b].
Thus, by the assumption that ‖u − ∆ny‖Ym+p

n
≤ Chr and the choice of n (recall that n ≥ m + p + r),

it follows that ‖∇nu − y‖Ym+p ≤ Chr. Where C depends on n and [a, b], however independent of any
[ã, b̃] ⊂ [a, b].

Now returning to the bound on C̃. By the definition of elementary differentials, C̃ will depend only on
f (and its derivatives) and n if ‖∇nu‖Y k is bounded for k = p + m + 1. To bound ‖∇nu‖Y k we observe
that, for any positive integer l the identity operator I is bounded by Mlh

−l (for some Ml > 0) from Y m
n to

Y m+l
n . Thus

‖u−∆ny‖Y kn ≤ Ch
−1‖u−∆ny‖Ym+p

n
.

Hence, it follows that

‖∇nu‖Y k ≤ ‖∇nu− y‖Y k + ‖y‖Y k
≤ Chr−1 + ‖y‖Y k ,

(4.8)

by the assumption that ‖u−∆ny‖Ym+p
n

≤ Chr, and the claim is proved.
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Note that the lemma will follow by (4.6) and the claim if we can control θ from (4.6). Recall that θ is a
bound on the partial derivatives of [a, b]×Rd 3 (t, z) 7→ f(t, z+∇nu(t))−∇nu′(t) up to order m. Since
all partial derivatives of f are bounded, it suffices to bound ‖∇nu‖Ym+1 which follows from (4.8).

Our main theorem follows immediately from the main lemma:

Theorem 4.2. Let y satisfyFy = 0 (whereF is as in Lemma 4.1 except with the interval [0, T ]) and suppose
that φ satisfies the assumptions in Lemma 4.1. Let, for n,N ∈ N, GNn be a grid on [0, T ] with properties
as in Section 4.1. Suppose that a numerical solution u ∈ Y m+p

Nn satisfies ‖u − ∆Nny‖Ym+p
Nn

≤ Chr and

‖u0 − (∆Nny)0‖Rd ≤ Chr+p (the max norm) for some C > 0 then the corrected solution u+ δ satisfies

‖δ + u−∆Nny‖YmNn ≤ Cnh
p+r

(where Cn depends only on n and not on N ) whenever δ is determined by (4.5).

Proof. Apply Lemma 4.1 to the subproblem Fky = 0 defined in (4.4) and the subgrid correction δk satis-
fying (4.5) to get for 1 < k ≤ N that

‖δk + uk − (∆ny)k‖Ymn ≤ Cn max
(
|(δk−1

0 + uk−1
0 − (∆ny)k−1

0 )|, hp+rk

)
,

(recall the notation from Section 4.1) and

‖δ1 + u1 − (∆ny)1‖Ymn ≤ Cn max
(
‖u0 − (∆Nny)0‖Rd , h

p+r
1

)
where Cn depends only on n (and not on N ) The theorem follows by the definition of the global norm
‖ · ‖YmNn , the assumption (4.3) that

h ≤ C min
1≤k≤N

hk,

the assumption that ‖u0 − (∆Nny)0‖Rd ≤ Chr+p and induction on k.

Remark 4.3. The assumption that f is smooth with bounded derivatives may seem like a strong assump-
tion. We do this simply to simplify the exposition. The assumption that f has bounded derivatives may
just as easily be replaced with the assumption that f has bounded derivatives on compact sets. Also, the
assumption that f is infinitely smooth can easily be replaced by the assumption that f is sufficiently smooth
(i.e. having enough derivatives required in the proof).

4.2 Error Expansions and Equidistant Grids

Note that the assumption in Theorem 4.2 that GNn = ∪Nk=1Gk
n, where Gk

n is equidistant is absolutely
crucial. We use this fact already in Lemma 3.1, however, this is really only for convenience. In fact, one
could actually carry out the proof of Theorem 4.2 without the assumption of equidistant subgrids. However,
the increase in order when correcting may not happen with non-equidistant subgrids (see Section 5). Thus,
one may ask: where is the requirement of equidistant subgrids hidden? The answer is: it is hidden in the
assumption in Lemma 4.1 that there exists an expansion of the local error of the following form

φn(F )(∆ny)ν =
µ∑
k=1

(Λnek)νhk + (Λng)νhµ+1 ν = 1, . . . , n, (4.9)

where ek ∈ Zµ, g ∈ Z0 and µ will depend on the smoothness of f . And also that we have

max(‖ek‖Zµ−k , ‖g‖Z0) ≤ Cµ max(‖y‖Y µ , ‖y‖µY µ), k = 1, . . . , µ− 1. (4.10)
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The problem is that (4.9) with (4.10) may not be true (even Euler’s method will not work) on a non-
equdistant grid. In particular, the functions {ek}µk=1 may not exist. To see this consider the following
example: Suppose we want to solve the equation

y′(t) = y(t), y(0) = y0 = 1, t ∈ [0, 2h], (4.11)

for some h > 0. Let us, for a ∈ (0, 1], define the grid G2 = {0, ah, (2−a)h} on [0, 2h] (with corresponding
grid maps ∆2 and Λ2). Let φ denote Euler’s method. (If we use Euler’s method twice in the DGR method
with G2 and solve (4.11) we get order one when a 6= 1 and order two when a = 1.) Note that

φ2(F )(∆2y)ν =

{
− eah−1

ah + 1 ν = 1
− e2h−eah

(2−a)h + eah ν = 2.

Thus, after applying some easy calculation with series expansions of the exponential function we obtain
that

φ2(F )(∆2y)ν =

{
−
(
ah
2! +O(h2)

)
ν = 1

−
(

(2−a)h
2! +O(h2)

)
ν = 2.

Now let µ = 3 in (4.9) (this is the value we need if we were to use the DGR scheme and Euler’s method to
obtain a second order numerical solution). Now suppose that e1 ∈ Z2 exists as in the expansion (4.9) with
the property (4.10). By (4.9) we get that

e1(0) = −a
2
, e1(ah) =

a− 2
2

.

Thus, by the mean value theorem, we have that

‖e1‖Z2 ≥
1− a
ah

→∞, h→ 0, ∀ a ∈ (0, 1).

In particular, such an e1 satisfying (4.10) can only exist when a = 1, namely, when the grid G2 is equidis-
tant. Another assumption that may require equidistant sub grids is the assumption in Lemma 4.1 that

‖u−∆ny‖Ym+p
n

≤ Chr, (4.12)

where u is the original approximation (that we are trying to improve) to ∆ny. However, if we consider
(4.11) and suppose that we have an approximation u = {u0, u1, u2} to ∆2y such that u is produced by
Euler’s method (note that u0 = y0), then a short calculation actually yields

‖u−∆2y‖Y 1
2
≤ Ch, ∀ a ∈ (0, 1], (4.13)

which is what we need to apply Lemma 4.1 to be able to correct with Euler’s method and yield a second
order numerical approximation. To see this note that

‖u−∆2y‖Y 1
2

= max{|uν − (∆2y)ν |, |Duµ −D(∆2y)µ| : ν = 1, 2, 3, µ = 1, 2}.

It is clear that
max{|uν − (∆2y)ν | : ν = 1, 2, 3} = O(h), h→ 0, ∀ a ∈ (0, 1].

Also, note that since we are considering (4.11) and u is produced by Euler’s method, it follows that

Du1 = u0, Du2 = u1, D(∆2y)1 =
y0(eah − 1)

ah
, D(∆2y)2 =

y0(e2h − eah)
(2− a)h

.
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Hence,

Du1 −D(∆2y)1 = y0
ah

2
+O(h2), Du2 −D(∆2y)2 = y0

(
ah− 2 + a

2
h

)
+O(h2).

And hence we get (4.13). In particular, it is the problem with the existence of (4.9) with (4.10) and not
(4.12) that is the issue. Having said that, of course on a nonlinear problem (4.12) may be an issue on a
non-equidistant grid. Note, however, that if φ is a numerical method, that satisfies (4.9) with (4.10) and
u is the numerical solution corresponding to φ, then (4.12) will be satisfied (as long as f is sufficiently
smooth). Indeed, this can be seen by Lemma 4.1 by interpreting u as being obtained from the DGR method
correcting from the ”zero numerical solution”. In this case we need ‖∆ny‖Ym+2p

n
≤ C, and this will be

satisfied given sufficient smoothness.

5 Numerical examples

In this section we will test the method on a standard example; the Van der Pol equation. The equation is
given by

x′′(t) + µ(1− x(t)2)x′(t) + x(t) = 0, t ∈ [0, T ].

Making the usual transformation, y1(t) = x(t), y2(t) = µx′(t), and t = t/µ yields the system of equations

y′1(t) = y2(t)

y′2(t) = (−y1(t) + (1− y1(t)2)y2(t))/ε, ε = 1/µ2, t ∈ [0, T ].
(5.1)

5.1 Example with Euler’s Method

As a first example it is natural to use a basic first order one-step scheme. In particular, we have tested the
DGR method on (5.1) with the Euler method, thus

φn(F )(u)ν =

{
−u0 + y0 ν = 0
−uν−uν−1

h + f(tν−1, uν−1) ν = 1, . . . , n.

We consider (5.1) with µ = 1, T = 6 and y0 = y(0) = [2, 2/3]T . The ”exact” solution has been computed
with MATLAB’s ode45 with ’AbsTol’ = 10−16 and ’RelTol’ = 10−16. Table 5.1 shows error Err =
[er1, er2, er3, er4] at T = 6 (upper part), where erj corresponds to ‖y(T ) − ycomp,hj‖2 where ycomp,hj is
the computed value at T according to the step size hj = T/Nj j = 1, . . . , 4, as well as the measured order
log(erj/erj+1)/ log(2) (lower part). In all examples, each interval [(k−1)hj , khj ], k = 1, . . . Nj has been
divided into n = 7 subintervals used in the interpolation according to Section 4.1. The notation DGRk

Eul

denotes k corrections with Euler’s method from the zero solution and hence the DGRk
Eul method should be

of order k.

5.2 Example with 2-order Runge-Kutta Method

In this example we will test the DGR method on (5.1) with the midpoint method ( which is of order 2), thus

φn(F )(u)ν =

{
−u0 + y0 ν = 0
−uν−uν−1

h + f(tν−1 + h
2 , uν−1 + h

2f(tν−1, uν−1)) ν = 1, . . . , n.

We consider (5.1) with the same data as in the previous example. And the tested results have been collected
in Table 5.2 similar to Table 5.1. In all examples, each interval [(k − 1)hj , khj ], k = 1, . . . Nj has been
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N h Euler DGR2
Eul DGR3

Eul DGR4
Eul DGR5

Eul DGR6
Eul DGR7

Eul

12 0.5000 7.78e-01 2.96e-02 3.76e-03 4.49e-03 2.81e-03 2.01e-03 5.72e-04
24 0.2500 3.67e-01 9.12e-03 6.93e-04 2.49e-05 2.35e-05 4.30e-06 2.42e-06
48 0.1250 1.78e-01 2.29e-03 9.10e-05 1.94e-06 8.76e-07 4.16e-08 2.03e-08
96 0.0625 8.50e-02 5.80e-04 1.15e-05 1.28e-07 2.90e-08 5.60e-10 1.45e-10

12 0.5000
24 0.2500 1.08 1.69 2.44 7.49 6.91 8.87 7.88
48 0.1250 1.07 1.99 2.93 3.68 4.74 6.69 6.90
96 0.0625 1.04 1.98 2.98 3.92 4.92 6.25 7.12

Table 5.1: The table shows error and measured order of the DGR method using the Euler scheme.

N h RK2 DGR2
RK2 DGR3

RK2 DGR4
RK2 DGR5

RK2 DGR6
RK2 DGR6

RK2,ne

3 2.00 2.87e-02 1.72e-01 3.57e-01 2.29e-01 2.71e-01 2.82e-01 8.82e-04
6 1.00 9.67e-03 7.84e-05 1.07e-05 7.76e-06 9.00e-06 8.87e-06 1.28e-06

12 0.50 2.67e-03 7.33e-06 2.92e-08 2.43e-09 2.17e-09 2.18e-09 2.85e-09
24 0.25 6.94e-04 5.61e-07 1.99e-10 1.790e-12 6.06e-13 1.70e-13 3.44e-11

3 2.00
6 1.00 1.57 11.10 15.02 14.85 14.88 14.96 9.42

12 0.50 1.86 3.42 8.52 11.64 12.02 11.99 8.81
24 0.25 1.94 3.71 7.20 10.41 11.80 13.64 6.38

Table 5.2: The table shows error and measured order of the DGR method using the midpoint scheme.

divided into n = 14 subintervals used in the interpolation according to Section 4.1. The notation DGRk
RK2

denotes k corrections with the midpoint method (we use RK2 for short) from the zero solution and hence
the DGRk

RK2 method should be of order 2k. Note that to show that the correction scheme does not work
with a non-equidistant sub grid we have plotted the error and measured order of 6 corrections with a RK2
on a non-equidistant grid . This method has been denoted by DGR6

RK2,ne.

5.3 Example with Mixed Methods

In this example we have tested the DGR method on (5.1) with mixed methods, meaning both the Euler
method as well as RK2 in the corrections. We consider (5.1) with the same data as in the previous exam-
ples. And the tested results have been collected in Table 5.3 similar to Table 5.1. In all examples, each
interval [(k − 1)hj , khj ], k = 1, . . . Nj has been divided into n = 10 subintervals used in the interpolation
according to Section 4.1. The notation DGRj,k

Eu,R2 means j corrections with the Euler method first and

then k corrections with RK2. Similarly, DGRj,k
R2,Eu means means j corrections with RK2 first and then k

corrections with the Euler method. Thus, DGRj,k
Eu,R2 should be of order j + 2k and DGRj,k

R2,Eu should be
of order 2j + k.

Note that in Table 5.2 and Table 5.3 the grid is rather coarse, because observing higher orders is other-
wise not possible in double precsion. On the other hand, the observed orders are not yet in the ”asymptotic
regime” meaning that the step size h may not be close enough to zero to actually reveal the actual order.
This is why one can observe a slightly more optimistic value of the measured order than what is theoretically
predicted.
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N h DGR2,3
Eu,R2 DGR3,2

R2,Eu DGR5,2
Eu,R2 DGR2,5

R2,Eu DGR7,1
Eu,R2 DGR4,1

R2,Eu

6 1.000 2.25e-04 1.92e-03 2.85e-03 7.23e-03 1.25e-02 8.86e-05
12 0.500 1.28e-06 9.73e-06 2.57e-06 2.26e-06 8.24e-06 2.21e-06
24 0.250 4.09e-10 5.75e-09 3.86e-10 5.85e-09 4.30e-10 2.67e-09
48 0.125 7.03e-13 1.60e-12 1.64e-13 3.10e-12 8.17e-13 7.20e-13

6 1.000
12 0.500 7.46 7.62 10.12 11.64 14.88 5.33
24 0.250 11.61 10.72 12.70 8.59 12.02 9.69
48 0.125 9.18 11.82 11.20 10.88 11.80 11.86

Table 5.3: The table shows error and measured order of the DGR method using mixed methods.

5.4 Example with Multistep Methods

Even though our convergence proof only covers one-step methods, we could not resist the temptation to
experiment with multistep methods. We have tested the DGR method on (5.1) with mixed methods, both
one-step and multistep. The test has been carried out as in the previous examples, and the results are
displayed in Table 5.4 similar to Table 5.1. The notation DGREu

ABj means that a solution has been computed
with a j-step (order j) Adams-Bashford method and then corrected (according to the framework in Section
4.1) with Euler’s method. Also, DGRR2

ABj means that a solution has been computed with a j-step (order
j) Adams-Bashford method and then corrected with a Runge-Kutta method of order two. In all examples,
each interval [(k − 1)hj , khj ], k = 1, . . . Nj has been divided into n = 8 subintervals. Note that the
correction with Euler’s method improves the order of the method with one, however, the correction with
a second order RK method does not improve the order of the method with two but rather one. We do not
want to speculate why this is the case, but leave this for future research. Although correcting with a higher
order method does not seem to be a very good idea, using correction with Euler’s method for easy error
control may be worth looking into.

The notation DGRABj
R4 means that a solution has been computed with a Runge-Kutta method of order

four and then this solution has been corrected with an Adams-Bashford method of order j. Note that in this
case, it seems from the experiment, that the total order of the method is order of Runge-Kutta + order of
multistep. Note that a DGR method based on a mix between one-step and multistep may have a connection
to the General Linear Methods of Butcher [4, 5]. We postpone the theoretical analysis of the numerical
results to future papers.

6 Conclusion

We have proved convergence for the new DGR method based on one-step methods, and as the numerical
results suggest, this is a nice new addition to the deferred correction family. Since there previously did
not exist any convergence proof for this method, new theoretical tools had to be built. However, as the
numerical examples with multistep methods suggest, the convergence theory is not fully understood. We
strongly believe that our analysis, based on smooth local error estimates, should be extendable to multistep
methods.

The most notably advantages of the method is that it is easy to build high order schemes from low order
methods, however, this feature is general for deferred correction methods. What makes this method really
stand out is the advantage that one may be able to at least have an easy error control for multistep methods,
and also build methods from one-step methods and multistep methods. The connection to Butcher’s General
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N h DGREu
AB3 DGREu

AB4 DGRR2
AB4 DGRAB3

Eu DGRAB2
R4 DGRAB3

R4

10 0.60 1.45e-02 8.96e-03 6.28e-05 2.15e-02 1.41e-04 1.83e-05
20 0.30 9.15e-04 2.20e-04 1.80e-05 3.43e-04 2.89e-07 2.34e-07
40 0.15 5.72e-05 5.94e-06 5.90e-07 1.71e-05 9.83e-10 1.18e-10
80 0.075 3.59e-06 1.69e-07 1.73e-08 9.41e-07 1.61e-11 3.41e-13

10 0.60
20 0.30 3..99 5.35 1.81 5.97 8.93 5.33
40 0.15 4.00 5.21 4.93 4.33 8.20 9.69
80 0.075 4.00 5.13 5.09 4.18 5.93 11.86

Table 5.4: The table shows error and measured order of the DGR method using one-step and multistep
methods.

Linear Methods [4, 5] is not obvious, but there is a chance that what one eventually ends up with is a way
of generating General Linear Methods. We postpone such analysis to future papers.
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