
Recovering piecewise smooth functions from
nonuniform Fourier measurements

Ben Adcock, Milana Gataric, and Anders C. Hansen

Abstract In this paper, we consider the problem of reconstructing piecewise smooth
functions to high accuracy from nonuniform samples of their Fourier transform.
We use the framework of nonuniform generalized sampling (NUGS) to do this,
and to ensure high accuracy we employ reconstruction spaces consisting of splines
or (piecewise) polynomials. We analyze the relation between the dimension of the
reconstruction space and the bandwidth of the nonuniform samples, and show that
it is linear for splines and piecewise polynomials of fixed degree, and quadratic for
piecewise polynomials of varying degree.

1 Introduction

In a number of applications, including Magnetic Resonance Imaging (MRI), elec-
tron microscopy and Synthetic Aperture Radar (SAR), measurements are collected
nonuniformly in the Fourier domain. The corresponding sampling patterns may be
highly irregular; for example, one may sample more densely at low frequencies and
more sparsely in high frequency regimes. Standard tools for reconstruction from
such data such as gridding [14] seek to compute approximations to the harmonic
Fourier modes, which can be then further postprocessed by conventional filtering
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and/or edge detection algorithms. However, gridding methods are low order, and
lead to both physical (e.g. Gibbs phenomena) and unphysical artefacts [18].

In this paper we consider high-order, artefact-free methods for the reconstruction
of one-dimensional piecewise smooth functions. To do this, we use the recently-
introduced tool of nonuniform generalized sampling (NUGS) [1]. NUGS is recon-
struction framework for arbitrary nonuniform samples which allows one to tailor the
reconstruction space to suit the function to be approximated. Critically, in NUGS the
dimension of the reconstruction space, which we denote by T, is allowed to vary in
relation to the bandwidth K of the samples. By doing so, one obtains a reconstruction
which is numerically stable and quasi-optimal. Hence, if T is chosen appropriately
for the given function – for example, a polynomial or spline space for smooth func-
tions, or a piecewise polynomial space for piecewise smooth functions – one obtains
a rapidly-convergent approximation.

The key issue prior to implementation is to determine such scaling. In principle,
this depends on both the nature of the nonuniform samples and the choice of recon-
struction space. In this paper we provide a general analysis which allows one to si-
multaneously determine such scaling for all possible nonuniform sampling schemes
by scrutinizing two intrinsic quantities ζ and γ of the reconstruction space T, related
to the maximal uniform growth of functions in T and the maximal growth of deriva-
tives in T respectively. Provided these are known (as is the case for many choices
of T), one can immediately estimate this scaling. As a particular consequence, for
trigonometric polynomials, splines and piecewise algebraic polynomials (with fixed
polynomial degree), we can show that this scaling is linear, and for piecewise alge-
braic polynomials with varying degree we show that it is quadratic. The asymptotic
order of such estimates is provably optimal.

2 Nonuniform generalized sampling

Throughout we work in the space H = L2(0,1) with its usual inner product 〈·, ·〉
and norm ‖·‖. Define the Fourier transform by f̂ (ω) =

∫ 1
0 f (x)e−2πiωx dx for ω ∈R.

We let {ΩN}N∈N be a sequence of ordered nonuniform sampling points, i.e. ΩN =
{ωn,N}N

n=1 ⊆R where −∞ < ω1,N < ω2,N < .. . < ωN,N < ∞, and let {TM}M∈N be a
sequence of finite-dimensional subspaces of H. We make the natural assumption that
the sequence of orthogonal projections PM = PTM : H→ TM converge strongly to
the identity operator I on H. That is, any function f ∈ H can be approximated to
arbitrary accuracy from TM for sufficiently large M.

Our goal is the following: given the samples { f̂ (ωn,N)}N
n=1 compute an approx-

imation fN,M to f from the subspace TM . Proceeding as in [1], we do this via the
following weighted least-squares:

fN,M = argmin
g∈TM

N

∑
n=1

µn,N
∣∣ f̂ (ωn,N)− ĝ(ωn,N)

∣∣2 , (1)
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where µn,N ≥ 0 are appropriate weights (see later). As discussed in [1], the key is to
choose M suitably small for a given N (or equivalently N suitably large for a given
M) so that the approximation { f̂ (ωn,N)}N

n=1 7→ fN,M ∈ TM is numerically stable and
quasi-optimal. To this end, the following estimates were shown in [1]:

‖ f − fN,M‖ ≤C(N,M) inf
g∈TM
‖ f −g‖, ‖ fN,M‖ ≤C(N,M)‖ f‖, ∀ f ∈ H, (2)

where C(N,M) =
√

C2(N,M)/C1(N) and C1(N,M) and C2(N) are the optimal con-
stants in the inequalities

N

∑
n=1

µn,N
∣∣ f̂ (ωn,N)

∣∣2 ≥C1(N,M)‖ f‖2, ∀ f ∈ TM,

N

∑
n=1

µn,N
∣∣ f̂ (ωn,N)

∣∣2 ≤C2(N)‖ f‖2, ∀ f ∈ H.

In particular, fN,M exists uniquely for any f ∈ H if and only if C1(N,M)> 0.

Remark 1. Recently, a number of other works have investigated the problem of high-
order reconstructions from nonuniform Fourier data. In [9, 18] spectral reprojection
techniques were used for this task, and a frame-theoretic approach was introduced
in [10]. Recovering the Fourier transform to high accuracy was studied in [16], and
in [8, 15] the problem of high-order edge detection was addressed. A more detailed
discussion is beyond the scope of this paper. However, we note that the methods we
consider in this paper based on NUGS can be shown to achieve optimal convergence
rates amongst all stable, classically convergent algorithms [4, 6].

3 A sufficient condition for stability and quasi-optimality

To ensure that C(N,M) is small and finite, and hence guarantee stability and quasi-
optimality via (2), we first need the following density assumption:

Definition 1. The sequence {ΩN}N∈N is uniformly δ -dense for some 0 < δ < 1
if: (i) there exists a sequence {KN}N ⊆ [0,∞) with KN → ∞ as N → ∞ such that
ΩN ⊆ [−KN ,KN ], and (ii) for each N, the density condition maxn=0,...,N{ωn+1,N −
ωn,N} ≤ δ holds, where ω0,N = ωN,N−2KN and ωN+1,N = ω1,N +2KN .

This condition ensures that the sample points spread to fill the whole real line whilst
remaining sufficiently dense.1 We will commonly refer to the numbers KN as the
sampling bandwidths. Note that the δ -dense sample points can have arbitrary loca-
tions. In particular, the points {ωn,N}N

n=1 are allowed to cluster arbitrarily. To com-
pensate for this, we choose the weights µn,N in the least-squares (2) as follows:

1 We remark in passing that the case of critical density δ = 1 can also be addressed [1], but one
cannot in general expect stable reconstruction for δ > 1. See also [11, 12].



4 Ben Adcock, Milana Gataric, and Anders C. Hansen

µn,N = 1
2 (ωn+1,N−ωn−1,N) , n = 1, . . . ,N. (3)

With this to hand, we next define the z-residual of a finite-dimensional T⊆ H:

ET(M,z) = sup
{
‖ f̂‖R\(−z,z) : f ∈ TM,‖ f‖= 1

}
, z ∈ (0,∞).

Here ‖ f‖I =
√∫

I | f (x)|2 dx denotes the Euclidean norm over a set I.

Theorem 1 ([1]). Let {ΩN}N∈N be uniformly δ -dense, {TM}M∈N be a sequence of
finite-dimensional subspaces and let 0 < ε < 1−δ . Let M,N ∈ N be such that

ET(M,KN−1/2)2 ≤ ε(2− ε), (4)

then the reconstruction f 7→ fN,M defined by (1) with weights given by (3) has con-
stant C(N,M) satisfying

C(N,M)≤ 1+δ

1− ε−δ
. (5)

This theorem reinterprets the required scaling of M and N in terms of the z-residual
E(M,KN −1/2). Note that this residual is independent of the geometry of the sam-
pling points, and depends solely on bandwidths KN . Hence, provided (4) holds, one
ensures stable, quasi-optimal recovery for any sequence of sample points {ΩN}N∈N
with the same parameters KN .

Unsurprisingly, the behaviour of the z-residual depends completely on the choice
of subspaces {TM}M∈N. Whilst one can often derive estimates for this quantity using
ad-hoc approaches for each particular choice of {TM}M∈N – for example, see [1, 5]
for the case of wavelet spaces – it is useful to have a more unified technique to
reduce the mathematical burden. We now present such an approach.

Definition 2 ([17]). Let U and V be closed subspaces of H with corresponding or-
thogonal projections PU and PV respectively. The gap between U and V is the
quantity G(U,V) = ‖(I −PU)PV‖, where I : H→ H is the identity.

Lemma 1. Let {TM}M∈N and {SL}L∈N be sequences of finite-dimensional sub-
spaces of H. Then ET(M,z)≤ ES(L,z)+G(SL,TM) for every M,L ∈ N.

Proof. Let f ∈ TM , ‖ f‖= 1. Then

‖ f̂‖R\(−z,z) ≤ ‖P̂SL f‖R\(−z,z)+‖ f −PSL f‖
≤ ES(L,z)‖PSL f‖+G(SL,TM)‖ f‖ ≤ ES(L,z)+G(SL,TM).

This lemma implies the following: if the behaviour of z-residual ES(L,z) and the
gap G(SL,TM) are known, then one can immediately determine the required scaling
of M with z to ensure that ET(M,z) satisfies (4). We now make the following choice
for {SL}L∈N to allow us to exploit this lemma:

SL =
{

g ∈ H : g|[l/L,(l+1)/L) ∈ P0, l = 0, . . . ,L−1
}
. (6)
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Here P0 is space of polynomials of degree zero. In [1], it was shown that there exists
a constant c0(ε)> 0 such that ES(L,z)≤ ε whenever z≥ c0(ε)L. Therefore, accord-
ing to Lemma 1, to estimate ET(M,z) we now only need to determine G(SL,TM).

From now on, we let 0 < w1 < .. . < wk < 1 be a fixed sequence of nodes, and
define the space H1

w(0,1) = { f : f |(w j ,w j+1) ∈ H1(w j,w j+1), j = 0, . . . ,k} where
w0 = 0, wk+1 = 1 and H1(I) is the usual Sobolev space of functions on an interval
I. By convention, if k = 0 then H1

w(0,1) = H1(0,1).

Lemma 2. Suppose that TM ⊆ H1
w(0,1) and let SL be given by (6). If L−1 ≤ η =

min j=0,...,k{w j+1−w j} then G(SL,TM)≤
√

γ2
M/(πL)2 +4ζ 2

M/L, where

γM = max
j=0,...,k

sup
{
‖ f ′‖(w j ,w j+1) : f ∈ TM,‖ f‖(w j ,w j+1) = 1

}
,

ζM = max
j=0,...,k

sup
{
‖ f‖∞,(w j ,w j+1) : f ∈ TM,‖ f‖(w j ,w j+1) = 1

}
,

and, if I is an interval, ‖ f‖2
I =

∫
I | f (x)|2 dx and ‖ f‖∞,I = esssupx∈I | f (x)|. Moreover,

if k = 0, i.e. TM ⊆ H1(0,1), then G(SL,TM)≤ γM/(πL).

Proof. Since L≥ 1/η there exist l j ∈N with l1 < l2 < .. . < lk such that 0≤ Lw j−
l j < 1 for j = 1, . . . ,k. For an interval I ⊆ R, let us now write fI =

1
|I|
∫

I f . Then

‖ f −PSL f‖2 =
L−1

∑
l=0

∫
Il

∣∣ f − fIl

∣∣2 = L−1

∑
l=0

l 6=l1,...,lk

∫
Il

∣∣ f − fIl

∣∣2 + k

∑
j=1

∫
Il j

∣∣∣ f − fIl j

∣∣∣2 ,
where Il = [l/L,(l + 1)/L). Since f ∈ H1(Il) for l 6= l1, . . . , lk, an application of
Poincaré’s inequality gives that

‖ f −PSL f‖2 ≤ 1
(Lπ)2

L−1

∑
l=0

l 6=l1,...,lk

‖ f ′‖2
Il +

k

∑
j=1

∫
Il j

∣∣∣ f − fIl j

∣∣∣2 . (7)

We now consider the second term. Write Il j = (l j/L,w j)∪(w j,(l j +1)/L) = A j∪B j

and note that for an arbitrary interval I we have
∫

I | f − fI |2 = ‖ f‖2
I −|I|| fI |2. Hence∫

Il j

∣∣∣ f − fIl j

∣∣∣2 = ∫
A j

∣∣ f − fA j

∣∣2 +∫
B j

∣∣ f − fB j

∣∣2 + |A j||B j|
|A j|+ |B j|

∣∣ fA j − fB j

∣∣2
≤ 1

(πL)2

(
‖ f ′‖2

A j
+‖ f ′‖2

B j

)
+

2|A j||B j|
|A j|+ |B j|

(
‖ f‖2

∞,A j
+‖ f‖2

∞,B j

)
,

where in the final step we use Poincaré’s inequality once more and the fact that f is
H1 within A j and B j. Since |A j|, |B j| ≤ L−1 and |A j|+ |B j|= |Il j |= L−1 we now get
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k

∑
j=1

∫
Il j

∣∣∣ f − fIl j

∣∣∣2 ≤ 1
(πL)2

k

∑
j=1

(
‖ f ′‖2

A j
+‖ f ′‖2

B j

)
+

4
L

k

∑
j=0
‖ f‖2

∞,(w j ,w j+1)
.

Combining this with (7) now gives that

‖ f −PSL f‖2 ≤
(

γM

Lπ

)2 k

∑
j=0
‖ f‖2

(w j ,w j+1)
+

4ζ 2
M

L

k

∑
j=0
‖ f‖2

(w j ,w j+1)
.

Since ‖ f‖2 = ∑
k
j=0 ‖ f‖2

(w j ,w j+1)
the result now follows.

This lemma provides the main result of this paper. Using it, we deduce that for any
{TM}M∈N, the question of stable reconstruction now depends solely on the quanti-
ties γM and ζM , which are intrinsic properties of the subspaces completely unrelated
to the sampling of the Fourier transform.

4 Examples

To illustrate this result, we end by presenting several examples.

Trigonometric polynomials. Functions f that are smooth and periodic can be
approximated in finite-dimensional spaces of trigonometric polynomials TM ={

∑
M
m=−M ame2πimx : am ∈ C

}
. If f ∈ C∞(T), where T= [0,1) is the unit torus, then

the projection error ‖ f −PTM f ‖ decay superalgebraically fast in M; that is, faster
than any power of M−1. If f is also analytic then the error decays exponentially fast.

For this space, we have TM ⊆ H1(0,1) and γM ≤ 2πM by Bernstein’s inequality.
Hence Theorem 1 and Lemmas 1 and 2 give that the reconstruction fN,M is stable
and quasi-optimal provided M scales linearly with the sampling bandwidth KN . This
result extends a previous result of [4] to the case of arbitrary nonuniform samples.
Note that this is the best scaling possible up to a constant: for an arbitrary sequence
{TM}M∈N with dim(TM) = M the scaling of M with KN is at best linear [1].

Algebraic polynomials. Functions that are smooth but nonperiodic can be approx-
imated by algebraic polynomials. If TM = PM is the space of algebraic polynomi-
als of degree at most M, then the projection error ‖ f −PTM f ‖ decays superalge-
braically fast in M whenever f ∈C∞[0,1], and exponentially fast when f is analytic.

The classical Markov inequality for this space gives that γM ≤
√

2M2, ∀M ∈ N
[7]. Hence we deduce stability and quasi-optimality of the reconstruction, but only
with the square-root scaling M = O

(√
KN
)
, N → ∞ (this result extends previous

results [2, 3, 13] to the case of nonuniform Fourier samples). On the face of it,
this scaling is unfortunate since it means the approximation accuracy of fN,M is
limited to root-exponential in KN , which is much slower than the exponential decay
rate of the projection error. However, such scaling is the best possible: as shown
in [6], any reconstruction algorithm (linear or nonlinear) that achieves faster than
root-exponential accuracy for analytic functions must necessarily be unstable.
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Fig. 1 In the first pair of panels, depending on the type of the reconstruction space, appropriate
ratios are shown: M/KN (for trigonometric polynomials), M/

√
KN (for algebraic polynomials) and

Md2/KN (for splines of order d), where for a given KN ∈ [5,200], we used M = max{M ∈ N :
C(N,M) ≤ 3}. In the second pair of panels, for such KN and M, the error ‖ f − fN,M‖ is plot-
ted where f (x) = x2 + xsin(4πx)− exp(x/2)cos(3πx)2. We used different sampling schemes ΩN :
jittered (for the first and third panel) and log (for the second and forth panel).

Piecewise algebraic polynomials. There are two issues with the previous result.
First, the space is not suitable for approximating piecewise smooth functions. Sec-
ond, the scaling is severe. To mitigate both issues, we may consider spaces of piece-
wise polynomials on subintervals. In the first case, we fix the intervals corresponding
to the discontinuities of the function, and vary the polynomial degree. In the second
case, we vary the subinterval size whilst keeping the polynomial degree fixed.

Mathematically, both scenarios equate to considering the subspaces Tw,M = { f ∈
H : f |[w j ,w j+1) ∈ PM j , j = 0, . . . ,k}, where w = {w1, . . . ,wk} for 0 = w0 < w1 <

.. .wk < wk+1 = 1 and M = {M0, . . . ,Mk} ∈ Nk+1. If f is piecewise smooth with
jump discontinuities at known locations 0 = w0 < w1 < .. .wk < wk+1 = 1 then
the projection error decays superalgebraically fast in powers of (Mmin)

−1 as Mmin
increases, where Mmin = min{M0, . . . ,Mk}, and exponentially fast if f is piecewise
analytic. Alternatively, if f is smooth and the points w are varied whilst the degrees
M are fixed, then the error decays like h−Mmin−1, where h = max j=0,...,k |w j+1−w j|
and Mmin = min{M0, . . . ,Mk}.

For analysis, we need to determine γM and ζM . For the first we use the scaled
Markov inequality ‖p′‖I ≤

√
2M2/|I|‖p‖I , ∀p ∈ PM , M ∈ N, where |I| denotes the

length of I. Hence, if η =min j=0,...,k{w j+1−w j} then γM ≤
√

2M2
max/η . For ζM , we

recall the following inequality for polynomials ‖p‖∞,I ≤ cM/
√
|I|‖p‖I , ∀p ∈ PM ,

M ∈N, where c > 0 is a constant. Hence ζM ≤ cMmax/
√

η . We therefore deduce the
following sufficient condition: M2

max/η = O (KN) as N → ∞. In the first scenario,
where η is fixed and Mmax is varied, we attain the same square-root-type scaling for
piecewise smooth functions when approximated by piecewise polynomials as with
the polynomial space of the previous example. In the second scenario, where Mmax
is fixed and η is varied, we see that this leads to a linear relation between KN and η .
Thus, by forfeiting the superalgebraic/exponential convergence of the polynomial
space for only algebraic convergence, we obtain a better scaling with KN . Note that
in some cases it may be desirable to approximate using functions that are themselves
smooth (up to a finite order). In this case, we can replace Tw,M by the spline space
T̃w,Mmin of degree Mmin on the knot sequence w. Since T̃w,Mmin ⊆ Tw,M we obtain the
same linear scaling with KN in this case as well.
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Numerical results. We demonstrate our results using two common nonuniform
sampling schemes; jittered and log sampling (see [1] for details). In the first two
panels of Fig. 1, we illustrate the scaling for different spaces TM between the sam-
pling bandwidth KN and space dimension M such that C(N,M) is bounded. For such
KN and M, in the second pair of panels, we compute the L2 error of the approxima-
tion fN,M for a continuous function f . The superiority of the spline spaces for small
N is evident, with the polynomial space becoming better as N increases.
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