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Abstract

Generalized sampling is a recently developed linear framework for sampling and reconstruction
in separable Hilbert spaces. It allows one to recover any element in any finite-dimensional subspace
given finitely many of its samples with respect to an arbitrary basis or frame. Unlike more common
approaches for this problem, such as the consistent reconstruction technique of Eldar et al., it leads
to numerical methods possessing both guaranteed stability and accuracy.

The purpose of this paper is twofold. First, we give a complete and formal analysis of generalized
sampling, the main result of which being the derivation of new, sharp bounds for the accuracy
and stability of this approach. Such bounds improve upon those given previously, and result in
a necessary and sufficient condition, the stable sampling rate, which guarantees a priori a good
reconstruction. Second, we address the topic of optimality. Under some assumptions, we show that
generalized sampling is an optimal, stable method. Correspondingly, whenever these assumptions
hold, the stable sampling rate is a universal quantity. In the final part of the paper we illustrate
our results by applying generalized sampling to the so-called uniform resampling problem.

1 Introduction

A central theme in sampling theory is the recovery of a signal or an image from a collection of its
measurements. Mathematically, this can be modelled in a separable Hilbert space H, with the samples
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of the unknown signal f ∈ H being of the form

f̂j = 〈f, ψj〉, j = 1, 2, . . . ,

where {ψj}∞j=1 is a collection of elements in H and 〈·, ·〉 is the inner product on H. Typically, the

sampling system {ψj}∞j=1 forms a frame for its span S = span{ψ1, ψ2, . . .}.
One of the most common examples of this problem is the recovery of a function f with compact

support from pointwise evaluations of its Fourier transform f̂ . In this case, H = L2(−1, 1)d, where
supp(f) ⊆ [−1, 1]d without loss of generality, and ψj(x) = eiπωj ·x for suitable values {ωj}j∈N ⊆ Rd.
This is precisely the type of sampling encountered in Magnetic Resonance Imaging (MRI), for example.

If the measurements {ωj}j∈N are taken uniformly, both f and f̂ can be recovered via the Shannon
Sampling Theorem [42, 55]. However, the slow convergence of the corresponding reconstructions (both
infinite sums), as well as the appearance of the Gibbs phenomenon, means that this approach is often
impractical [28, 47, 55]. In cases where measurements {ωj}j∈N are not uniformly distributed, no simple
reconstruction need exist. It is standard in this setting to use a gridding algorithm [40, 46, 49, 61].
However, this also typically leads to less than satisfactory accuracy [61].

The MRI problem serves to illustrate several key issues that are critical to this paper. First, although
f is sampled via an infinite collection of elements {ψj}∞j=1, in practice we only have access to a finite
number. Thus, the problem we consider throughout this paper is that of recovering f from only its
first n samples f̂1, . . . , f̂n. Key issues herein are those of approximation – namely, how well f can
be recovered as n → ∞ – and robustness; does increasing n lead to worse stability, and thus more
sensitivity to noise and round-off error?

The MRI example also highlights another important consideration. Namely, the samples {f̂j}j∈N of
f are fixed, and cannot easily be altered. This situation occurs typically when the sampling scheme is
specified by some physical device, e.g. the MR scanner in the above example. Although it is actually
possible in some cases to modify MR scanners to acquire different types of measurements, such as in
so-called wavelet-encoded MRI [36, 62], this is not without complications [44]. Thus, the question we
consider in this paper is the following: given a finite number of fixed samples of an element f of a
Hilbert space H, how can one obtain a good (i.e. accurate and robust) reconstruction?

This question is not new, and there has been much interest in the last several decades in alternative
reconstructions to those given by the Shannon Sampling Theorem. This is typically based on the
following principle: many signals that arise in practice can be much better represented in terms of a
different collection of elements {φj}j∈N ⊆ H than by Shannon’s theorem [28, 55]. Common examples of
such systems include wavelets, splines and polynomials, as well as more exotic objects such as curvelets
[12, 14], shearlets [18, 19, 43] and contourlets [20, 48]. Thus, given this additional knowledge about
f , the problem can now be restated as follows: how can we compute a reconstruction in the system
{φj}j∈N from the measurements f̂j = 〈f, ψj〉?

Consistent sampling is a linear method for this problem, based on stipulating that the reconstruction
of f agrees with the available measurements. Introduced by Unser & Aldroubi [56, 58] and later
generalized significantly by Eldar et al. [23, 24, 25, 29], this technique has proved successful in a
number of areas, and is quite widely used in practice [55]. However, there are several drawbacks.
As discussed in [4, 3, 26, 38], consistent reconstructions need not be stable nor convergent as the
number of measurements increases. Whilst stability and convergence can be guaranteed in certain
shift-invariant spaces [25, 57], it is quite easy to devise examples outside of this setting for which
consistent reconstructions either fail to converge, or are extremely unstable, or both [4].

Fortunately, it transpires that these issues can be overcome by using an recently-introduced alter-
native technique, known as generalized sampling [3, 4, 5]. This method forms the primary focus of our
paper. Our main results are described in the next section.

1.1 Novelty of the paper and overview

The aim of this paper is to give a complete analysis of generalized sampling. First, we establish new,
sharp bounds for its error and stability, which improve on those appearing previously in [3, 4, 5]. Second,
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we provide several optimality results, which demonstrate that under appropriate conditions generalized
sampling cannot be outperformed. To illustrate our results we consider the use of generalized sampling
in so-called uniform resampling problem.

Let us now give an overview of the remainder of the paper. In §2–3 we provide a mathematical
description of the general instability and nonconvergence of consistent reconstructions. For this, it
is first necessary to present a formal description of the reconstruction problem (§2). Herein we also
introduce two key constants to assess different methods: the condition number κ and the quasi-optimality
constant µ. The former measures the sensitivity of a given reconstruction method to perturbations (e.g.
noise and round-off), whilst the latter quantifies how close the reconstruction of an element f is to its
best (i.e. optimal) reconstruction in the desired system of functions. For succinctness, we also introduce
the reconstruction constant C of a method, defined as the maximum of κ and µ.

The focus of §3 is consistent sampling. By analyzing the reconstruction constant C in this instance,
we provide a comprehensive answer as to when this approach will give poor (i.e. unstable or inaccurate)
reconstructions. Moreover, we show how one can determine a priori an answer to this question by
straightforward numerical computations. Finally, we discuss how this question can be reinterpreted
in terms of the behaviour finite sections of infinite operators, and thus draw a connection between
problems in sampling and computational spectral theory (such a connection was previously discussed
in [4]. See also [32] for related work).

Generalized sampling was introduced in [3, 4, 5] to overcome the issues inherent to consistent recon-
structions. In the second part of this paper (§4–5) we improve the previous analysis of [4, 5] by using
the formal framework developed in §2. We explain conclusively how generalized sampling guarantees a
stable and accurate reconstruction by deriving the exact values for µ and κ, and therefore C, as opposed
to the nonsharp bounds given previously in [4, 5]. Moreover, we reinterpret generalized sampling using
geometry of Hilbert spaces, and specifically, the notions of oblique projections and subspace angles.
Next, we introduce a necessary and sufficient condition, the stable sampling rate, as well as its recipro-
cal, the stable reconstruction rate, which determines how to select the generalized sampling parameters
so as to guarantee a good reconstruction. This improves on the previous sufficient conditions of [4, 5].
Once more, this condition is computable, as explained in §5. We also discuss the connections between
generalized sampling and sections of infinite operators.

In §6 we consider optimality of generalized sampling. That is, we pose the following question: can
another method outperform generalized sampling, and if so, in what sense? Using the sharp bounds
derived in §4–5, we show that no method which is perfect (a definition is given later) can exhibit better
stability than generalized sampling. Hence generalized sampling is an optimal, stable approach to
the reconstruction problem amongst the class of perfect methods. Moreover, for problems where the
stable sampling rate grows linearly, we show that no method (perfect or nonperfect) can outperform
generalized sampling in terms of the reconstruction accuracy by more than a constant factor. Thus,
although it is possible in theory to get a better approximation error with a different method, no method
can converge at an asymptotically faster rate than generalized sampling.

In the final part of this paper, §7, we consider the application of generalized sampling to the so-
called uniform resampling problem. This problem concerns the computation of the Fourier coefficients
of a function from nonuniformly-spaced samples of its Fourier transform. We show that the standard
approach to this problem is merely an instance of consistent sampling, and we explain how in general
this will lead to an exponentially large reconstruction constant C. Next we consider the application
of generalized sampling to this problem. We prove that the stable sampling rate is linear, and there-
fore generalized sampling is, in the senses defined in §6, an optimal, stable method for this problem.
Finally, we consider alternatives to uniform resampling, and show how the incorporation of different
reconstruction systems – splines or polynomials, for example – can lead to an improved reconstruction.

1.2 Relation to sparsity and compressed sensing

One of the most significant developments in signal and image reconstruction in the last several decades
has been the introduction of sparsity-exploiting algorithms. Techniques such as compressed sensing
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[13, 21, 27, 30], which use sparsity of the signal f in a particular basis (wavelets, for example) to reduce
the number of measurements required, have recently become extremely popular.

Generalized sampling, in the form we discuss in this paper, does not exploit sparsity. It guarantees
recovery of all signals, sparse or otherwise, from sufficiently many measurements. However, it transpires
that generalized sampling can be combined with existing compressed sensing tools (randomization and
convex optimization) to achieve subsampling, whenever the signal f is sparse (or compressible) in the
basis {φj}j∈N. See [1]. The importance of this development is that it permits compressed sensing
of analog signals (i.e. functions in function spaces) which have sparse (or compressible) information
content in some countable basis. Conversely, most compressed sensing techniques and theorems apply
only to finite-dimensional signals, i.e. vectors in finite-dimensional vector spaces. For related research
on sub-Nyquist sampling for analog signals, see the works of Vetterli et al. on finite rates of innovation
[9, 22, 60] and, more recently, Candès & Fernandez–Granda on super-resolution [15].

2 The reconstruction problem

We now describe the reconstruction problem in more detail. To this end, suppose that {ψj}j∈N is a
collection of elements of a separable Hilbert space H (over C) that forms a frame for a closed subspace
S of H (the sampling space). In other words, span{ψj : j ∈ N} is dense in S and there exist constants
c1, c2 > 0 (the frame constants) such that

c1‖f‖2 ≤
∑
j∈N
|〈f, ψj〉|2 ≤ c2‖f‖2, ∀f ∈ S, (2.1)

where 〈·, ·〉 and ‖·‖ are the inner product and norm on H respectively [17]. Suppose further that {φj}j∈N
is a collection of reconstruction elements that form a frame for a closed subspace T (the reconstruction
space), with frame constants d1, d2 > 0:

d1‖f‖2 ≤
∑
j∈N
|〈f, φj〉|2 ≤ d2‖f‖2, ∀f ∈ T. (2.2)

Let f ∈ H be a given element we wish to recover, and assume that we have access to the samples

f̂j = 〈f, ψj〉, j ∈ N. (2.3)

Note that the infinite vector f̂ = {f̂j}j∈N ∈ `2(N). Ignoring for the moment the issue of truncation –
namely, that in practice we only have access to the first n measurements – the reconstruction problem
can now be stated as follows: given f̂ = {f̂j}j∈N, find a reconstruction f̃ of f from the subspace T.

2.1 Stability and quasi-optimality

There are two important conditions which a reconstruction, i.e. a mapping {f̂j}j∈N 7→ f̃ ∈ T, ought to
possess. The first is so-called quasi-optimality :

Definition 2.1. Let F be an operator on H0, where H0 is a closed subspace of H, with range contained
in T. The quasi-optimality constant of µ = µ(F ) > 0 is the least number such that

‖f − F (f)‖ ≤ µ‖f −QTf‖, ∀f ∈ H0,

where QT : H → T is the orthogonal projection onto T. If no such constant exists, we write µ = ∞.
We say that F is quasi-optimal if µ(F ) is small.

Note that QTf is the best, i.e. energy-minimizing, approximation to f from T. Thus, quasi-
optimality states that the error committed by f̃ is within a small and constant factor of that of the best
approximation. The desire for quasi-optimality arises from the fact that typical images and signals are
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known to be well represented in certain bases and frames, e.g. wavelets, splines or polynomials [55]. In
other words, the error ‖f − QTf‖ is small. When reconstructing f in the corresponding subspace T

from its measurements {f̂j}j∈N it is therefore vital that µ�∞. Otherwise, the beneficial property of

T for the signal f may be lost when computing the reconstruction f̃ .
The second important consideration is that of stability. For this, we introduce a condition number

(see, for example, [54]):

Definition 2.2. Let H0 be a closed subspace of H and suppose that F : H0 → H is a mapping such
that, for each f ∈ H0, F (f) depends only on the vector of samples f̂ ∈ `2(N). The (absolute) condition
number κ = κ(F ) is given by

κ = sup
f∈H0

lim
ε→0+

sup
g∈H0

0<‖ĝ‖`2≤ε

{
‖F (f + g)− F (f)‖

‖ĝ‖`2

}
. (2.4)

We say that F is well-conditioned if κ is small. Otherwise it is ill-conditioned.

A well-conditioned mapping F is robust towards perturbations such as noise, and therefore this
property is vital from a practical perspective.

It is worth noting at this stage that the condition number (2.4) does not assume linearity of F . If
this is the case, then one has the much simpler form

κ(F ) = sup
f∈H0

f̂ 6=0

{
‖F (f)‖
‖f̂‖

}
.

We also remark that (2.4) is the absolute condition number, as opposed to the somewhat more stan-
dard relative condition number [54]. This is primarily for simplicity in the presentation: under some
assumptions, it is possible to adapt the results we prove later in this paper for the latter.

Occasionally, we will also consider the absolute condition number at an element f ∈ H0:

κf (F ) = lim
ε→0+

sup
g∈H0

0<‖ĝ‖`2≤ε

{
‖F (f + g)− F (f)‖

‖ĝ‖

}
, f ∈ H0. (2.5)

This measures the local conditioning of F around f . Naturally, one has κ(F ) = supf∈H0
κf (F ).

For convenience, it is useful to introduce the notion of a reconstruction constant for F :

Definition 2.3. Let F be as in Definition 2.2, and let µ(F ) and κ(F ) be its quasi-optimality constant
and condition number respectively. The reconstruction constant C = C(F ) is defined by C(F ) =
max {κ(F ), µ(F )}. If F is not quasi-optimal or if κ(F ) is not defined, then we set C(F ) =∞.

2.2 The computational reconstruction problem

As mentioned, in practice we do not have access to the infinite vector of samples f̂ . Thus, the com-
putational reconstruction problem concerns the recovery of f from its first n measurements f̂1, . . . , f̂n.
Since we only have access to these samples, it is natural to consider finite-dimensional subspaces of T.
Thus, we let {Tn}n∈N be a sequence of finite-dimensional subspaces satisfying

Tn ⊆ T, dim(Tn) <∞, (2.6)

and
QTn → QT, n→∞, (2.7)

strongly on H. In other words, the spaces {Tn}n∈N form a sequence of finite-dimensional approximations
to T. Strictly speaking, the second condition is not necessary. However, it is natural make this
assumption in order to guarantee a convergent approximation.

With this in hand, the computational reconstruction problem is now as follows: given the samples
f̂1, . . . , f̂n, compute a reconstruction to f from the subspace Tn.
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Remark 2.4 It is quite common in practice to define Tn = span{φ1, . . . , φn} to be the space spanned
by the first n elements of an infinite frame {φj}j∈N for T. Note that (2.6) and (2.7) automatically hold
in this case. Moreover, one has the nesting property T1 ⊆ T2 ⊆ . . .. However, this is not necessary.
The reconstructions we consider in this paper are actually independent of the spanning system for Tn.
Such a system only needs to be specified in order to perform computations. Hence, we consider the
more general setting outlined above.

When considering methods, i.e. mappings Fn, for this problem, it is desirable that the constants
reconstruction C(Fn) should not grow rapidly with n. If this is not the case, then increasing the number
of measurements could, for example, lead to a worse approximation and increased sensitivity to noise.
We shall see examples of this in §3.6. To avoid this scenario, we now make the following definition:

Definition 2.5. For each n ∈ N, let Fn be such that, for each f , Fn(f) belongs to a finite-dimensional

reconstruction space Tn and depends only on the samples f̂ [n] = {f̂1, . . . , f̂n}. We say that the recon-
struction scheme {Fn}n∈N is numerically stable and quasi-optimal if

C∗ := sup
n∈N

C(Fn) <∞,

where C(Fn) is the reconstruction constant of Fn. We refer to the constant C∗ as the reconstruction
constant of the reconstruction scheme {Fn}n∈N.

This definition incorporates the issue of stable approximation into a sequence of reconstruction
schemes. Although in practice one only has access to a finite number of samples, it is natural to consider
the behaviour of Fn as n – the number of samples – increases. Ideally we want Fn(f) to behave like
Qnf , the best approximation to f from Tn. Namely, Fn(f) should converge to f at the same rate
as Qnf . This is important from a practical standpoint. The premise for computing a reconstruction
in Tn is the knowledge that f is well represented in terms of the reconstruction system {φj}j∈N, i.e.
its orthogonal projections Qnf converge rapidly. Hence it is vital that the computed reconstruction
Fn(f) does not possess dramatically different convergence behaviour. Put simply, there is little point
reconstructing in the basis {φj}j∈N if the good approximation properties of f in this basis are destroyed
by reconstruction technique.

Remark 2.6 In some applications, one may wish to relax the above definition slightly to allow mild
growth of C(Fn). If θn ∈ (0,∞) is an increasing sequence, we say that {Fn}n∈N is stable and quasi-
optimal with respect to {θn}n∈N if

C∗ = lim sup
n→∞

C(Fn)

θn
<∞.

In other words, C(Fn) can grow at worst like O (θn) as n→∞.

3 Consistent reconstructions and oblique projections

We now consider the consistent sampling technique of [24, 25, 29, 56, 58].

3.1 Consistent sampling

Let us first return to the problem of recovering f from its infinite vector of samples f̂ . A simple way
to obtain a reconstruction with small constant in this instance is by solving the so-called consistency
conditions. Specifically, we let f̃ ∈ T (whenever it exists uniquely) be the solution of

〈f̃ , ψj〉 = 〈f, ψj〉, j = 1, 2, . . . , f̃ ∈ T. (3.1)
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Note that consistency means that the samples of f̃ agree with those of f . Correspondingly, we say
that f̃ is a consistent reconstruction of f , and refer to the operator F : f 7→ f̃ , whenever defined, as
consistent sampling. In Lemma 3.8 we shall provide explicit conditions under which this is the case.

An analysis of consistent reconstructions, which we shall recap and extend in §3.3, was given in
[24, 25, 29]. Crucial to this is the notion of oblique projections in Hilbert spaces, which we discuss next.

3.2 Oblique projections and subspace angles

We commence with the definition of a subspace angle:

Definition 3.1. Let U and V be closed subspaces of a Hilbert space H and QV : H→ V the orthogonal
projection onto V. The subspace angle θ = θUV ∈ [0, π2 ] between U and V is given by

cos(θUV) = inf
u∈U
‖u‖=1

‖QV u‖. (3.2)

Note that there are a number of different ways to define the angle between subspaces [51, 53].
However, (3.2) is the most convenient for this paper. We shall also make use of the following equivalent
expression for cos (θUV):

cos (θUV) = inf
u∈U
‖u‖=1

sup
v∈V
‖v‖=1

|〈u, v〉| . (3.3)

We are interested in subspaces for which the cosine of the associated angle is nonzero. The following
lemma is useful in this regard:

Lemma 3.2. Let U and V be closed subspaces of a Hilbert space H. Then cos (θUV⊥) > 0 if and only
if U ∩V = {0} and U + V is closed H.

Proof. See [53, Thm. 2.1].

We now make the following definition:

Definition 3.3. Let U and V be closed subspaces of a Hilbert space H. Then U and V satisfy the
subspace condition if cos (θUV⊥) > 0, or equivalently, if U ∩V = {0} and U + V is closed in H.

Subspaces U and V satisfying this condition give a decomposition U⊕V = H0 of a closed subspace
H0 of H. Equivalently, this ensures the existence of a projection of H0 with range U and kernel V. We
refer to such a projection as an oblique projection and denote it by WUV. Note that WUV will not, in
general, be defined over the whole of H. However, this is true whenever V = U⊥, for example, and in
this case WUV coincides with the orthogonal projection QU.

We shall also require the following results on oblique projections (see [11, 52]):

Theorem 3.4. Let U and V be closed subspaces of H with U⊕V = H. Then

‖WUV‖ = ‖I −WUV‖ = sec (θUV⊥) ,

where ‖·‖ is the standard norm on the space of bounded operators on H.

Corollary 3.5. Suppose that U and V are closed subspaces of H satisfying the subspace condition, and
let WUV : H0 → U be the oblique projection with range U and kernel V, where H0 = U⊕V. Then

‖WUVf‖ ≤ sec (θUV⊥) ‖f‖, ∀f ∈ H0, (3.4)

and if QU : H→ U is the orthogonal projection,

‖f −QUf‖ ≤ ‖f −WUVf‖ ≤ sec (θUV⊥) ‖f −QUf‖, ∀f ∈ H0. (3.5)

Moreover, the upper bounds in (3.4) and (3.5) are sharp.
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Proof. The sharp bound (3.4) is due to Theorem 3.4. For (3.5) we first note that (I − WUV) =
(I −WUV)(I − QU), since WUV and QU are both projections onto U. Hence, by Theorem 3.4,

‖f −WUVf‖ = ‖(I −WUV)(I − QU)f‖ ≤ sec (θUV⊥) ‖f −QUf‖,

with sharp bound.

Remark 3.6 Although arbitrary subspaces U and V need not obey the subspace condition, this is
often the case in practice. For example, if U ⊆ V⊥ then cos (θUV⊥) = 1 by (3.3).

To complete this section, we present the following lemma which will be useful in what follows:

Lemma 3.7. Let U and V be closed subspaces of H satisfying the subspace condition. Suppose also that
dim(U) = dim(V⊥) = n <∞. Then U⊕V = H.

Proof. Note that U⊕V = H if and only if cos (θUV⊥) and cos (θV⊥U) are both positive [53, Thm. 2.3].
Since cos (θUV⊥) > 0 by assumption, it remains to show that cos (θV⊥U) > 0. Consider the mapping
QV⊥

∣∣
U

: U→ V⊥. We claim that this mapping is invertible. Since U and V⊥ have the same dimension

it suffices to show that QV⊥
∣∣
U

has trivial kernel. However, the existence of a nonzero u ∈ U with

QV⊥u = 0 implies that cos (θUV⊥) = 0; a contradiction. Thus QV⊥
∣∣
U

is invertible, and in particular, it

has range V⊥. Now consider cos (θV⊥U). By (3.3) and this result,

cos (θV⊥U) = inf
w∈V⊥

w 6=0

sup
u∈U
u6=0

|〈w, u〉|
‖w‖‖u‖

= inf
u′∈U
u′ 6=0

sup
u∈U
u6=0

|〈QV⊥u′, u〉|
‖QV⊥u′‖‖u‖

≥ inf
u′∈U
u′ 6=0

‖QV⊥u′‖
‖u′‖

= cos (θUV⊥) > 0.

This completes the proof.

3.3 Quasi-optimality of consistent sampling

Oblique projections arise in many types of sampling [8], and are intimately related to consistent recon-
structions. The following result was proved in [29, Thm. 2.1]:

Lemma 3.8. Suppose that T and S⊥ satisfy the subspace condition. If f ∈ H0 := T ⊕ S⊥ then there
exists a unique f̃ ∈ T satisfying (3.1). Moreover, the mapping F : H0 → T, f 7→ f̃ is well-defined and
coincides with the oblique projection WTS⊥ .

As a result of this lemma, consistent reconstructions are equivalent to oblique projections. However,
we note one important distinction. When defining the consistent reconstruction (3.1), we assume that
a frame {ψj}∞j=1 of S is given. Indeed, this is natural in view of the sampling process and of course
necessary in order to define the condition number κ(F ). However, the oblique projection WTS⊥ , being
determined solely by the spaces T and S, is actually independent of this basis. In light of Lemma 3.8,
the same must also be true for f̃ .

Lemma 3.8, along with Corollary 3.5, gives the following sharp bounds for consistent sampling:

‖f̃‖ ≤ sec (θTS) ‖f‖, ∀f ∈ H0, (3.6)

‖f −QTf‖ ≤ ‖f − f̃‖ ≤ sec (θTS) ‖f −QTf‖, ∀f ∈ H0. (3.7)

The latter establishes quasi-optimality of the reconstruction, whereas the former gives a continuous
stability estimate, i.e. the norm of f̃ is bounded by a constant multiple of the norm of the input signal.
Note that (3.6) and (3.7) were derived previously in [58] and [56] respectively. However, the observation
that they are also sharp does not, to the best of our knowledge, appear in the literature.

Another property of the consistent reconstruction is confirmed by (3.7). Namely, it is a perfect
reconstruction:

Definition 3.9. A mapping F : H→ T is a perfect reconstruction if (i) for each f ∈ H, F (f) depends

only on the vector of samples f̂ , and (ii) F (f) = f whenever f ∈ T.
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3.4 The condition number of consistent sampling

The sharp bound (3.7) shows that the quasi-optimality constant of consistent sampling is µ(F ) =
sec (θTS). We now wish to determine the condition number. For this, it is useful to first recall several
basic facts about frames [17]. Given the sampling frame {ψj}j∈N for the subspace S, we define the
synthesis operator S : `2(N)→ H by

Sα =
∑
j∈N

αjψj , α = {αj}j∈N ∈ `2(N).

Its adjoint, the analysis operator, is defined by

S∗f = f̂ = {〈f, ψj〉}j∈N, f ∈ H.

The resulting composition P = SS∗ : H→ H, given by

Pf =
∑
j∈N
〈f, ψj〉ψj , ∀f ∈ H, (3.8)

is well-defined, linear, self-adjoint and bounded. Moreover, the restriction P|S : S → S is positive and
invertible with c1I|S ≤ P|S ≤ c2I|S, where c1, c2 are the frame constants appearing in (2.1).

We now require the following lemma:

Lemma 3.10. Suppose that T and S⊥ satisfy the subspace condition, and let P be given by (3.8). Then

c1 cos2(θTS) I|T ≤ P|T ≤ c2I|T. (3.9)

Proof. Let f ∈ H be arbitrary, and write f = QSf +QS⊥f . Then

〈Pf, f〉 =
∑
j∈N
|〈f, ψj〉|2 =

∑
j∈N
|〈QSf, ψj〉|2 = 〈PQSf,QSf〉. (3.10)

Suppose now that φ ∈ T. Using (3.10) and the frame condition (2.1) we find that

c1‖QSφ‖2 ≤ 〈Pφ, φ〉 ≤ c2‖QSφ‖2 ≤ c2‖φ‖2.

To obtain (3.9) we now use the definition of the subspace angle θTS.

Corollary 3.11. Suppose that S and T are as in Lemma 3.10, and let F : H0 := T⊕ S⊥ → T denote
the consistent reconstruction defined by (3.1). Then the condition number κ(F ) satisfies

sec(θTS)
√
c2

≤ κ(F ) ≤ sec(θTS)
√
c1

.

Proof. Since the reconstruction f̃ = F (f) ∈ T is defined by (3.1), we have

‖f̂‖2`2 =
∑
j∈N
|〈f, ψj〉|2 =

∑
j∈N
|〈f̃ , ψj〉|2 = 〈P f̃ , f̃〉.

Hence, by the previous lemma, ‖f̂‖2`2 ≥ c1 cos2(θTS)‖f̃‖2. Since F is linear, this now gives

κ(F ) = sup
f∈H0

f̂ 6=0

{
‖F (f)‖
‖f̂‖`2

}
≤ sec(θTS)

√
c1

.

On the other hand, since the reconstruction F is perfect, and since f̂ = 0 if and only if f = 0 for f ∈ T,

κ(F ) ≥ sup
f∈T

f̂ 6=0

{
‖f‖
‖f̂‖`2

}
= sup
f∈T
f 6=0

{
‖f‖
‖f̂‖`2

}
.
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By (3.10), we have ‖f̂‖2`2 ≤ c2‖QSf‖2. Hence

κ(F ) ≥ 1
√
c2

sup
f∈T
f 6=0

{
‖f‖
‖QSf‖

}
=

sec(θTS)
√
c2

,

as required.

Combining Corollaries 3.5 and 3.11, we now find that the reconstruction constant C(F ) of consistent
sampling satisfies

sec(θTS) max{1, 1√
c2
} ≤ C(F ) ≤ sec(θTS) max{1, 1√

c1
}. (3.11)

Hence, if S and T are not close to perpendicular (i.e. if cos(θTS) is not too small), then consistent
sampling is stable and quasi-optimal.

3.5 Consistent sampling for the computational reconstruction problem

The consistent reconstruction f̃ solves the reconstruction problem of recovering f from the infinite
vector f̂ = {f̂j}j∈N. Note that once a frame {φj}j∈N is specified for T, this is equivalent to the infinite

system of linear equations Uα = f̂ , where U is the infinite matrix

U =

 〈φ1, ψ1〉 〈φ2, ψ1〉 · · ·
〈φ1, ψ2〉 〈φ2, ψ2〉 · · ·

...
...

. . .

 , (3.12)

and α = {αj}j∈N ∈ `2(N) is such that f̃ =
∑
j∈N αjφj . Observe that U , which we may view as a

bounded operator on `2(N), coincides with X = S∗T : `2(N)→ `2(N), where S and T are the synthesis
operators for the frames {ψj}∞j=1 and {φj}∞j=1 respectively.

Clearly this approach does not solve the computational reconstruction problem outlined in §2.2
since one cannot compute solutions to Uα = f̂ in general. To overcome this, the standard approach
[24, 25, 26, 38, 55] is to replace the infinite consistency conditions (3.1) by a finite version. That is, we
seek a reconstruction f̃n,n defined by

〈f̃n,n, ψj〉 = 〈f, ψj〉, j = 1, . . . , n, f̃n,n ∈ Tn, (3.13)

(the use of the double index in f̃n,n is for agreement with subsequent notation). Note that if Tn =

span{φ1, . . . , φn} then this is equivalent to the finite linear system U [n,n]α[n,n] = f̂ [n], where

U [n,n] =

 〈φ1, ψ1〉 · · · 〈φn, ψ1〉
...

. . .
...

〈φ1, ψn〉 · · · 〈φn, ψn〉

 , (3.14)

f̂ [n] = {f̂1, . . . , f̂n}, α[n,n] = {α[n]
1 , . . . , α

[n]
n } and f̃n,n is given by

∑n
j=1 α

[n,n]
j φj .

The condition (3.13) is completely natural enforce: it states that the available measurements of f
agree with those of the reconstruction f̃n,n. It is tempting to think that stability and quasi-optimality of

the infinite-dimensional consistent reconstruction f̃ should imply the same behaviour of f̃n,n. In other
words, C∗ = supn∈N C(Fn,n) should be both finite and not too large. Unfortunately, as we explain in
the next section, there is no guarantee that this will be the case in practice.

First, however, let us determine the reconstruction constant for this approach. As a direct conse-
quence of Lemmas 3.7, 3.8 and Corollary 3.5, we have

Corollary 3.12. Let Sn = span{ψ1, . . . , ψn} and suppose that

cos (θn,n) > 0, (3.15)
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where θn,n = θTnSn . Then, for each f ∈ Hn := Tn ⊕ S⊥n there exists a unique f̃n,n ∈ Tn satisfying

(3.13). Moreover, the mapping Fn,n : Hn → Tn, f 7→ f̃n,n coincides with the oblique projection WTnS⊥
n

,
and we have the sharp bounds

‖f̃n,n‖ ≤ sec (θn,n) ‖f‖, (3.16)

and
‖f −Qnf‖ ≤ ‖f − f̃n‖ ≤ sec (θn,n) ‖f −Qnf‖, (3.17)

where Qn is the orthogonal projection onto Tn. If dim(Tn) = dim(Sn) (in particular, if both {ψj}j∈N
and {φj}j∈N are bases), then the above conclusions hold with Hn = H.

This theorem demonstrates that the quasi-optimality constant of consistent sampling satisfies

µ(Fn,n) = sec (θn,n) . (3.18)

We now state the following result concerning the condition number (a proof is given in §4):

Corollary 3.13. Suppose that cos(θn,n) > 0 and that dim(Sn) = dim(Tn). Then the condition number
of consistent sampling satisfies

κ(Fn,n) ≥ 1
√
c2

sec(θn,n).

This result, in combination with (3.18), implies that the reconstruction constant

C(Fn,n) ≥ max{1, 1√
c2
} sec(θn,n).

Hence, good behaviour of the reconstructions (i.e. stability and quasi-optimality for all n) is only possible
if the subspace angles θn,n remain bounded away from π

2 for all n ∈ N. As we next explain, there is no
reason for this to be the case in general.

3.6 Example

Consider the following simple problem. Let H = L2(−1, 1) and, for 0 < δ < 1 set

ψj(x) =
1√
2

eijπδx, φj(x) =
1√
2

eijπx, j ∈ Z,

(for convenience we now index over Z, as opposed to N). Note that {ψj}j∈Z is a tight frame for S = H
with frame bounds c1 = c2 = 1

δ , and {φj}j∈Z is an orthonormal basis for T = H. Since S = T = H in
this case, we have cos(θTS) = 1.

This example is a simple instance of the so-called uniform resampling (URS) problem. In this
problem, Fourier samples are acquired nonuniformly and one wishes to compute standard harmonic
Fourier coefficients. We shall consider the URS problem in more detail in §7. Note that the above
example, where ‘nonuniformly’ merely means sampling at the rate 1/δ, is reasonably unrealistic. Yet,
as we see next, it serves to illustrate the main point: namely, consistent reconstructions can be extremely
unstable, even for apparently simple problems.

In Figure 1(a) we plot the behaviour of cos(θn,n) against n for δ = 1
2 , where

Sn = span{ψj : |j| ≤ n}, Tn = span{φj : |j| ≤ n}.

As is evident, the quantity cos (θn,n) is exponentially small in n. In particular, when n = 50 Figure
1(a), in combination with Corollary 3.13, implies that the reconstruction constant for the consistent
reconstruction based on these spaces is around 1014 in magnitude.

In this example, the reconstruction space Tn is the space of trigonometric polynomials of degree n,
and as such, it is well-suited for recovering smooth and periodic functions. In particular, if f is smooth,
then the error ‖f −Qnf‖ faster than any algebraic power of n−1. However, such good approximation
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Figure 1: (a): cos(θn,n) against n. (b): the errors ‖f − f̃n,n‖ (circles) and ‖f −Qnf‖ (crosses) against n, where
f̃n,n is the consistent reconstruction of f , Qnf is the orthogonal projection of f onto Tn, and f(x) = 1

2+cosπx
.

(c): the error ‖f − f̃n,n‖ against n, where f(x) = 1√
2
e8iπx and each sample f̂j is perturbed by an amount ηj

chosen uniformly at random with |ηj | ≤ η for η = 0, 10−9, 10−2 (circles, crosses and diamonds respectively).

properties are destroyed when passing to f̃n,n. In Figure 1(b) we plot the error ‖f − f̃n,n‖ for the
consistent reconstruction, as well as that of the orthogonal projection Qnf . The latter decays rapidly
with n, as expected. On the other hand, the maximal achievable accuracy of f̃n,n is limited to only
around one or two digits due to the ill-conditioning and the effect of round-off errors.

The situation worsens significantly when the samples f̂j are corrupted by noise. The function used
in Figure 1(c) actually lies in Tn whenever n ≥ 8, and therefore, in theory at least, should be recovered
perfectly. However, this is completely obliterated by even moderate amounts of noise. For example,
with noise at amplitude 10−9 the reconstruction error is around 104 (i.e. an amplification of 1015),
rendering such an approach useless for this particular problem.

Remark 3.14 The exponential blow-up of the reconstruction constant in the above example is by no
means unique to this particular problem. In [4] several other problems, based on spaces Tn consisting
of polynomials or piecewise constant functions, were shown to exhibit similar exponential growth.

3.7 Operator-theoretic interpretation

The failure of the finite-dimensional consistent reconstruction f̃n,n can be traced to the poor behaviour
of the finite subspace angles θn,n = θTn,Sn in relation to θ = θTS. As was discussed in [4], this failure
can also be understood in terms of operators. If the sampling and reconstruction bases are orthonormal
(this fact is not necessary, but simplifies what follows) then cos(θn,n) and cos(θ) coincide with the
minimal singular values of the matrices U [n,n] and U respectively. Hence, the fact that θn,n may behave
wildly, even when θ is bounded away from π

2 , demonstrates that the spectra of the matrices U [n,n]

poorly approximate the spectrum of U .
This question – namely, how well does a sequence of finite-rank operators approximate the spectrum

of a given infinite-rank operator – is one of the most fundamental in the field of spectral theory. Recalling
the definition (3.14), we notice that U [n,n] is nothing more than the n × n finite section of U : if {ej}
is the canonical basis for `2(N) and Pn : `2(N) → span{e1, . . . , en} is the orthogonal projection, then

U [n,n] = PnUPn. Moreover, f̂ [n] = Pnf̂ , and thus the finite-dimensional consistent reconstruction f̃n,n
is precisely the result of the finite section method applied to the equations Uα = f̂ .

The properties of finite sections have been extensively studied over the last several decades [10,
35, 45], and unfortunately there is no guarantee that they be well behaved. To put this in a formal
perspective, suppose for the moment that we approximate the operator U with a sequence U [n] of
finite-rank operators (which may or may not be finite sections), and instead of solving Uα = f̂ , we

solve U [n]α[n] = f̂ [n]. For obvious reasons, it is vitally important that this sequence satisfies the three
following conditions:

(i) Invertibility: U [n] is invertible for all n = 1, 2, . . ..
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(ii) Stability: ‖(U [n])−1‖ is uniformly bounded for all n = 1, 2, . . ..
(iii) Convergence: the solutions α[n] → α as n→∞.

Unfortunately, there is no guarantee that finite sections, and therefore the consistent reconstruction
technique, possess any of these properties. In fact, one requires rather restrictive conditions, such as
positive self-adjointness, for this to be the case. Typically operators U of the form (3.12) are not

self-adjoint, thereby making this approach unsuitable in general for discretizing Uα = f̂ .
Generalized sampling, which we next discuss, overcomes these issues by obtaining a sequence of

operators that possess the properties (i)–(iii) above. The key to doing this is to allow the number of
samples m and the number of reconstruction vectors n to differ. When m is sufficiently large for a given
n, or equivalently, n is sufficiently small for a given m, we obtain a finite-dimensional operator U [n,m]

(which now depends on both m and n) that inherits the spectral structure of its infinite-dimensional
counterpart U . This ensures a stable, quasi-optimal reconstruction.

4 Generalized sampling

Generalized sampling was introduced in [4], and applied to the resolution of the Gibbs phenomenon in
[5]. Several extensions have also been pursued. These include infinite-dimensional compressed sensing
[1], inverse and ill-posed problems [6], and problems where the sampling and reconstruction systems lie
in different Hilbert spaces [2].

From now on we shall assume that the subspaces T and S⊥ obey the subspace condition. Without
this, the infinite-dimensional reconstruction problem is itself ill-posed, and thus the computational
reconstruction problem becomes substantially more difficult.

Let Sm = span{ψ1, . . . , ψm} and suppose that {Tn}n∈N is a sequence of finite-dimensional recon-
struction spaces satisfying (2.6) and (2.7). We seek a reconstruction f̃n,m ∈ Tn of f from the m samples

f̂1, . . . , f̂m. Let Pm : H→ Sm be the finite rank operator given by

Pmg =

m∑
j=1

〈g, ψj〉ψj .

Note that the sequence of operators Pm converge strongly to P on H , where P is given by (3.8), since
{ψj}j∈N is a frame [17]. With this to hand, the approach proposed in [4] is to define f̃n,m ∈ Tn as the
solution of the equations

〈Pmf̃n,m, φj〉 = 〈Pmf, φj〉, j = 1, . . . , n, f̃n,m ∈ Tn. (4.1)

We refer to the mapping Fn,m : f 7→ f̃n,m as generalized sampling. Observe that Pmf is determined

solely by the coefficients f̂1, . . . f̂m of f . Hence Fn,m(f) is also determined solely by these values.
In what follows it will be useful to note that (4.1) is equivalent to

〈f̃n,m,Pmφj〉 = 〈f,Pmφj〉, j = 1, . . . , n, f̃n,m ∈ Tn, (4.2)

due to the self-adjointness of Pm. An immediate consequence of this formulation is the following:

Lemma 4.1. Suppose that cos(θn,n) > 0 and that dim(Sn) = dim(Tn). Then when m = n the gener-

alized sampling reconstruction f̃n,m of f ∈ H defined by (4.1) is precisely the consistent reconstruction

f̃n,n defined by (3.13).

Proof. We first claim that Pn is a bijection from Tn to Sn. Suppose that Pnφ = 0 for some φ ∈ Tn.
Then 0 = 〈Pnφ, φ〉 =

∑n
j=1 |〈φ, ψj〉|2 and therefore φ ∈ S⊥n . Since φ ∈ Tn, and Tn ∩ S⊥n = {0} by

assumption, we have φ = 0, as required.
By linearity, we now find that the conditions (4.2) are equivalent to (3.13). Since the consistent

reconstruction f̃n,n satisfying (3.1) exists uniquely (Corollary 3.12), we obtain the result.
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We conclude that generalized sampling contains consistent sampling as a special case corresponding
to n = m, which explains our use of the same notation for both. However, as mentioned above, the key
to generalized sampling is to allow m and n to vary independently. As we prove next, doing so leads to
a small reconstruction constant.

4.1 An intuitive argument

Before providing a full analysis, we first give an intuitive explanation as to why letting n and m vary
independently works. To this end, suppose that n is fixed and let m→∞. Equations (4.1) now read

〈P f̃n,∞, φ〉 = 〈Pf, φ〉, ∀φ ∈ Tn, f̃n,∞ ∈ Tn,

for some f̃n,∞ ∈ Tn, where P is given by (3.8). In [5] it was shown that f̃n,∞ = limm→∞ f̃n,m for fixed

n ∈ N. Hence, we can understand the behaviour of f̃n,m for large m by first analyzing f̃n,∞.

Since P is self-adjoint, f̃n,∞ is equivalently defined by

〈f̃n,∞,Φ〉 = 〈f,Φ〉, ∀Φ ∈ P(Tn), f̃n,∞ ∈ Tn. (4.3)

We now have

Theorem 4.2. For each f ∈ H, there exists a unique f̃n,∞ ∈ Tn satisfying (4.3). Moreover, the

mapping f 7→ f̃n,∞ is precisely the oblique projection with range Tn and kernel (P(Tn))⊥, and we have
the sharp bounds

‖f̃n,∞‖ ≤ sec (θn,∞) ‖f‖, (4.4)

and
‖f −Qnf‖ ≤ ‖f − f̃n,∞‖ ≤ sec (θn,∞) ‖f −Qnf‖, (4.5)

where θn,∞ is the angle between Tn and P(Tn).

Proof. We first claim that cos(θn,∞) > 0, so that the oblique projection W with range Tn and kernel
(P(Tn))⊥ is well-defined on H0 = Tn ⊕ (P(Tn))⊥. Suppose not. Since Tn is finite dimensional, there
exists a φ ∈ Tn, φ 6= 0, satisfying QP(Tn)φ = 0. Thus

0 = 〈QP(Tn)φ,Pφ′〉 = 〈φ,Pφ′〉, ∀φ′ ∈ Tn,

and, in particular, 〈φ,Pφ〉 = 0. Thus φ = 0 by Lemma 3.10, a contradiction. Hence W is well-defined.
Note that Wf satisfies the equations (4.3). Arguing in the standard way, we can show that solutions
to (4.3) are unique. Hence f̃n,∞ =Wf , as required.

It remains to show that H0 = H. The result follows immediately from Lemma 3.7 provided
dim(P(Tn)) = dim(Tn). However, if not, then there is a nonzero φ ∈ Tn with Pφ = 0, which also
contradicts Lemma 3.10.

Note that this theorem improves on [5, Thm. 2.1] by giving sharp bounds. We can also estimate the
reconstruction constant of the mapping Fn,∞ : f 7→ f̃n,∞:

Corollary 4.3. Let Fn,∞ be the mapping f 7→ f̃n,∞, where f̃n,∞ is defined by (4.3). Then

1 ≤ µ(Fn,∞) ≤
√
c2
c1

sec (θTS) ,
1
√
c2
≤ κ(Fn,∞) ≤ sec (θTS)

√
c1

. (4.6)

and therefore

max

{
1,

1
√
c2

}
≤ C(Fn,∞) ≤

max
{

1,
√
c2
}

√
c1

sec (θTS) . (4.7)
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This corollary (we present the proof in the next section) confirms that the reconstruction scheme

{Fn,∞}n∈N is stable and quasi-optimal in the sense of Definition 2.5, with constant C∗ ≤ max{1,√c2}√
c1

sec(θTS).

Hence, unlike the consistent sampling scheme {Fn,n}n∈N, where the reconstruction constants C(Fn,n)
can quite easily be exponentially large in n (see §3.6), this approach guarantees good approximation
and robustness with respect to noise.

However, one cannot actually compute f̃n,∞, since it involves the infinite-rank operator P. Nonethe-

less, since the generalized sampling reconstruction f̃n,m ≈ f̃n,∞ for large m, we expect the key properties
of Fn,∞ to be inherited whenever m is sufficiently large. In §4.2 we prove this to be the case.

Before doing so, however, let us relate f̃n,∞ to the the discussion in §3.7. Recall first that we wish

to solve Uα = f̂ . Since α satisfies these equations it also obeys the normal equations

U∗Uα = U∗f̂ . (4.8)

Now write f̃n,∞ =
∑n
j=1 α

[n,∞]
j φj . It is easily shown that α[n,∞] = {α[n,∞]

1 , . . . , α
[n,∞]
n } is defined by

PnU
∗UPnα = PnU

∗f̂ ,

where f̂ = {f̂1, f̂2, . . .}. Thus, α[n] is precisely the result of the finite section method applied to the
normal equations (4.8). Since the operator U∗U is self-adjoint and positive, its finite sections must
possess properties (i)–(iii), and hence we are guaranteed a good reconstruction.

4.2 Analysis of generalized sampling

The analysis of f̃n,m is similar to that of f̃n,∞. Whilst such analysis was originally given in [4, 5], the
estimates derived were not sharp. Our main result in this section is to present new, sharp bounds. We
first require the following lemma:

Lemma 4.4. Let θn,m and θn,∞ be the angles between Tn and the subspaces Pm(Tn) and P(Tn)
respectively. Then, for fixed n, θn,m → θn,∞ as m→∞. In particular,

1 ≤ lim
m→∞

sec (θn,m) ≤
√
c2
c1

sec (θTS) .

Proof. From the definition (3.2), we have

cos (θn,m) = inf
φ∈Tn
‖φ‖=1

sup
φ′∈Tn
Pmφ′ 6=0

|〈φ,Pmφ′〉|
‖Pmφ′‖

.

Recall first that Pm → P strongly on H. Since Tn is finite-dimensional, this implies uniform convergence
of Pm → P on Tn, i.e. em = ‖P|Tn − Pm|Tn‖ → 0 as m → ∞. In particular, for sufficiently large m,
Pmφ′ 6= 0 if and only if Pφ′ 6= 0. Thus, for large m,

cos (θn,m) = inf
φ∈Tn
‖φ‖=1

sup
φ′∈Tn
Pφ′ 6=0

|〈φ,Pmφ′〉|
‖Pmφ′‖

. (4.9)

Now

〈φ,Pmφ′〉
‖Pmφ′‖

=

(
‖Pφ′‖
‖Pmφ′‖

)(
〈φ,Pφ′〉
‖Pφ′‖

− 〈φ, (P − Pm)φ′〉
‖Pφ′‖

)
. (4.10)

Note that ∣∣‖Pmφ′‖ − ‖Pφ′‖∣∣ ≤ ‖(P − Pm)φ′‖ ≤ em‖φ′‖.
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Moreover,

‖Pφ′‖ = sup
g∈H
‖g‖=1

|〈Pφ′, g〉| ≥ 〈Pφ
′, φ′〉
‖φ′‖

≥ c1 cos2 (θTS) ‖φ′‖.

Thus, ∣∣‖Pmφ′‖ − ‖Pφ′‖∣∣ ≤ ‖(P − Pm)φ′‖ ≤ em
c1

sec2(θTS)‖Pφ′‖. (4.11)

Combining this with (4.10), we now obtain

|〈φ,Pmφ′〉|
‖Pmφ′‖

≥ 1

1 + em
c1

sec2(θTS)

(
|〈φ,Pφ′〉|
‖Pφ′‖

− ‖φ‖em
c1

sec2(θTS)

)
,

and
|〈φ,Pmφ′〉|
‖Pmφ′‖

≤ 1

1− em
c1

sec2(θTS)

(
|〈φ,Pφ′〉|
‖Pφ′‖

+ ‖φ‖em
c1

sec2(θTS)

)
,

Hence (4.9) now gives

cos(θn,m) ≥ 1

1 + em
c1

sec2(θTS)

(
cos(θn,∞)− em

c1
sec2(θTS)

)
cos(θn,m) ≤ 1

1− em
c1

sec2(θTS)

(
cos(θn,∞) +

em
c1

sec2(θTS)

)
,

and the result now follows from the fact that em → 0 as m→∞.

We now have:

Theorem 4.5. For each n ∈ N and any f ∈ H, there exists an m0, independent of f , such that the
reconstruction f̃n,m defined by (4.1) exists and is unique for all m ≥ m0. In particular, m0 is the least

m such that cos(θn,m) > 0. Moreover, the mapping f 7→ f̃n,m is precisely the oblique projection with
range Tn and kernel [Pm(Tn)]⊥, and we have the sharp bounds

‖f̃n,m‖ ≤ sec (θn,m) ‖f‖, (4.12)

and
‖f −Qnf‖ ≤ ‖f − f̃n,m‖ ≤ sec (θn,m) ‖f −Qnf‖. (4.13)

Proof. The existence of an m0 such that cos(θn,m) > 0 for all m ≥ m0 follows from Lemma 4.4. Thus,
when m ≥ m0 the oblique projection W with range Tn and kernel (Pm(Tn))⊥ is well-defined over
H0 := Tn⊕(Pm(Tn))⊥ and satisfies (4.1). Moreover, under this condition, solutions of (4.1) are unique,
and thus f̃n,m = Wf whenever f ∈ H0. An application of Corollary 3.5 now gives (4.12) and (4.13).
To complete the proof we need only show that H0 = H. This follows immediately from Corollary 3.7,
provided dim(Pm(Tn)) = dim(Tn). However, if not then there exists a nonzero φ ∈ Tn ∩ (Pm(Tn))⊥,
which contradicts the fact that cos(θn,m) > 0.

Note that this theorem improves the bounds of [5, Thm. 2.4], and gives the exact value µ(Fn,m) =
sec(θn,m) for the quasi-optimality constant of generalized sampling.

Having done this, we next determine the condition number κ(Fn,m), and as a result, the reconstruc-
tion constant C(Fn,m). For this, we introduce the following quantity:

Dn,m =

 inf
φ∈Tn
‖φ‖=1

〈Pmφ, φ〉

− 1
2

, n,m ∈ N, (4.14)
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(this is similar to the quantity Cn,m of [5, Eqn. (2.12)]). Note that Dn,m need not be defined for all
n,m ∈ N. However, we will show subsequently that this is the case provided m is sufficiently large (for
a given n). We shall also let

Dn,∞ =

 inf
φ∈Tn
‖φ‖=1

〈Pφ, φ〉

− 1
2

, n ∈ N.

We now have the following lemma:

Lemma 4.6. For fixed n ∈ N, Dn,m → Dn,∞ as m→∞. In particular,

1
√
c2
≤ lim
m→∞

Dn,m ≤
sec (θTS)
√
c1

.

Proof. The first result follows from strong convergence of the operators Pm → P on H and the fact
that Tn is finite-dimensional. The second result is due to Lemma 3.10.

With this to hand, our main result is as follows:

Corollary 4.7. Let n ∈ N and suppose that m ≥ m0, where m0 is as in Theorem 4.5. Let Fn,m be the

generalized sampling reconstruction f 7→ f̃n,m, where f̃n,m is defined by (4.1). Then

µ(Fn,m) = sec (θn,m) , κ(Fn,m) = Dn,m, (4.15)

and the reconstruction constant C(Fn,m) satisfies

Dn,m ≤ C(Fn,m) ≤ max {1,
√
c2}Dn,m, (4.16)

whenever Dn,m is defined. In particular, for fixed n,

1 ≤ lim
m→∞

µ(Fn,m) ≤
√
c2
c1

sec (θTS) ,
1
√
c2
≤ lim
m→∞

κ(Fn,m) ≤ sec (θTS)
√
c1

, (4.17)

and

max

{
1,

1
√
c2

}
≤ lim
m→∞

C(Fn,m) ≤
max

{
1,
√
c2
}

√
c1

sec (θTS) . (4.18)

Proof. We claim that
sec (θn,m) ≤

√
c2Dn,m. (4.19)

Note first that Dn,m <∞ implies that Pm|Tn : Tn → Pm(Tn) is invertible. Hence, by (3.2),

cos (θn,m) = inf
φ∈Tn
φ 6=0

sup
φ′∈Tn
φ′ 6=0

|〈φ,Pmφ′〉|
‖φ‖‖Pmφ′‖

≥ inf
φ∈Tn
φ6=0

〈φ,Pmφ〉
‖φ‖‖Pmφ‖

. (4.20)

Now consider ‖Pmφ‖. Since Pmφ ∈ Sm, basic properties of Pm give that

‖Pmφ‖ = sup
ψ∈Sm
‖ψ‖=1

|〈ψ,Pmφ〉| ≤
√
〈φ,Pmφ〉 sup

ψ∈Sm
‖ψ‖=1

√
〈ψ,Pmψ〉 ≤

√
〈φ,Pmφ〉 sup

ψ∈S
‖ψ‖=1

√
〈ψ,Pψ〉, (4.21)

and therefore
‖Pmφ‖ ≤

√
c2
√
〈φ,Pmφ〉.

Applying this to (4.20) now gives (4.19).
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Note that (4.16) and (4.18) now follow immediately from (4.15), (4.17), (4.19) and the definition
C(Fn,m) = max{µ(Fn,m), κ(Fn,m)}. Moreover, (4.17) follows from (4.15) and Lemmas 4.4 and 4.6.
Hence we only need to prove (4.15). The first part is due to Theorem 4.5. Therefore it remains to show
that κ(Fn,m) = Dn,m. Since Fn,m is linear and, due to (4.13), perfect on Tn, we have

κ(Fn,m) = sup
f∈H

f̂ 6=0

{
‖Fn,m(f)‖
‖f̂‖`2

}
≥ sup
φ∈Tn
φ 6=0

{
‖φ‖
‖φ̂‖`2

}
.

Since ‖φ̂‖2`2 = 〈Pmφ, φ〉, this now gives

κ(Fn,m) ≥

 inf
φ∈Tn
‖φ‖=1

〈Pmφ, φ〉

− 1
2

= Dn,m.

We now wish to derive the upper bound. Let Fn,m(f) = f̃n,m. Since f̃n,m ∈ Tn, (4.1) gives that∣∣∣〈Pmf̃n,m, f̃n,m〉∣∣∣ =
∣∣∣〈Pmf, f̃n,m〉∣∣∣ ≤√〈Pmf, f〉√〈Pmf̃n,m, f̃n,m〉.

Thus ‖f̂‖`2 ≥
√
〈Pmf̃n,m, f̃n,m〉. Since f 7→ f̃n,m is a surjection onto Tn, we therefore deduce that

κ(Fn,m) ≤ sup
f∈H

f̂ 6=0

 ‖f̃n,m‖√
〈Pmf̃n,m, f̃n,m〉

 = sup
φ∈Tn
φ 6=0

{
‖φ‖√
〈Pmφ, φ〉

}
= Dn,m,

as required. This completes the proof.

We are now in a position to establish the two results not proved previously:

Proof of Corollary 4.3. By replacing Pm by P in the proof of Corollary 4.7 we find that sec (θn,∞) ≤√
c2Dn,∞ and κ(Fn,∞) = Dn,∞. The result now follows from this and Lemmas 4.4 and 4.6.

Proof of Corollary 3.13. Under the assumption dim(Sn) = dim(Tn) the consistent reconstruction (3.13)
coincides with the generalized sampling reconstruction (4.1) (Lemma 4.1). The result now follows
immediately from (4.15) and (4.19).

Corollary 4.7 confirms the advantage of generalized sampling. Given n ∈ N, one can always take
m sufficiently large to guarantee a stable, quasi-optimal reconstruction with reconstruction constant

asymptotically bounded by
max{1,√c2}√

c1
sec (θTS). Conversely, if m ∈ N is fixed, one may take n suffi-

ciently small to achieve the same goal.
The main issue remaining is to determine the nature of the scaling of m and n. This will be discussed

in §5. First, however, let us connect generalized sampling to the discussion of §3.7. Observe that if

f̃n,m =
∑n
j=1 α

[n,m]
j φj , then the vector α[n,m] = {α[n,m]

1 , . . . , α
[n,m]
n } ∈ Cn is the unique solution to

(U [n,m])∗U [n,m]α[n,m] = (U [n,m])∗f̂ [m],

where U [n,m] ∈ Cm×n is precisely PmUPn and f̂ [m] = Pmf̂ . The matrix U [n,m] is the leading m × n
submatrix of U , and is sometimes referred to as an uneven section of U . Uneven sections have recently
gained prominence as effective alternatives to the finite section method for discretizing non-self adjoint
operators [32, 37]. In particular, in [34] they were employed to solve the long-standing computational
spectral problem. Their success is due to the observation that, under a number of assumptions (which
are always guaranteed for the problem we consider in this paper), we have

(U [n,m])∗U [n,m] = PnU
∗PmUPn → PnU

∗UPn, m→∞,
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where PnU
∗UPn is the n× n finite section of the self-adjoint matrix U∗U . This guarantees properties

(i)–(iii) for U [n,m], whenever m is sufficiently large in comparison to n.

Remark 4.8 Finite (and uneven) sections have been extensively studied [10, 35, 45], and there exists
a well-developed and intricate theory of their properties involving C∗-algebras [33]. However, these
general results say little about the rate of convergence, nor do they provide explicit constants. Yet,
as illustrated in Theorem 4.5, the operator U in this case is so structured that its uneven sections
admit both explicit constants and estimates for the rate of convergence. Moreover, of great practical
importance, such constants can also be numerically computed (see §5).

4.3 The condition number and quasi-optimality constant

As shown, the condition number κ(Fn,m) coincides with Dn,m, and the quasi-optimality constant
µ(Fn,m) = sec (θn,m), where θn,m is the angle between Tn and Pm(Tn). In addition, since sec (θn,m) ≤√
c2Dn,m by (4.19), one can control the behaviour of both quantities, and therefore also C(Fn,m), by

controlling Dn,m. The advantage of this, as we discuss in §5, is that it is typically easier to compute
Dn,m than it is θn,m.

However, it is in general possible for sec (θn,m) to be somewhat smaller than Dn,m. Thus, in
numerical examples, one may see a better approximation than the bound (4.19) suggests. The following
result clarifies the relationship between sec (θn,m) and Dn,m:

Lemma 4.9. Let c1,m and c2,m be the frame bounds for the frame sequence {ψ1, . . . , ψm}. Then

√
c1,mDn,m ≤ sec (θn,m) ≤ √c2,mDn,m,

In particular, if {ψj}j∈N is a Riesz basis, we have

d1Dn,m ≤ sec (θn,m) ≤ d2Dn,m,

where d1, d2 > 0 are the Riesz basis constants for {ψj}j∈N, and when {ψj}j∈N is an orthonormal basis
it holds that sec (θn,m) = Dn,m.

Note that, by Riesz basis constants, we mean constants d1, d2 > 0 such that

d1‖β‖`2 ≤

∥∥∥∥∥∥
∑
j∈N

βjψj

∥∥∥∥∥∥ ≤ d2‖β‖`2 , ∀β = {βj}j∈N ∈ `2(N).

Proof of Lemma 4.9. By definition

cos (θn,m) = inf
φ∈Tn
‖φ‖=1

‖QPm(Tn)φ‖.

Consider ‖QPm(Tn)φ‖. Since Pm(Tn) ⊆ Sm, we have

‖QPm(Tn)φ‖ = sup
ψ∈Sm
‖ψ‖=1

|〈φ, ψ〉| .

Recall that the operator Pm is invertible on Sm. Hence

‖QPm(Tn)φ‖ = sup
ψ∈Sm
ψ 6=0

|〈φ,Pmψ〉|
‖Pmψ‖

≤
√
〈Pmφ, φ〉 sup

ψ∈Sm
ψ 6=0

√
〈Pmψ,ψ〉
‖Pmψ‖

. (4.22)

Consider the latter term. The operator Pm : Sm → Sm is invertible, self-adjoint and positive-definite.
Hence, it has a unique square root (Pm)

1
2 with these properties [17, Lem. 2.4.4]. Thus

sup
ψ∈Sm
ψ 6=0

√
〈Pmψ,ψ〉
‖Pmψ‖

= sup
ψ∈Sm
ψ 6=0

‖(Pm)
1
2ψ‖

‖Pmψ‖
= sup
ψ∈Sm
ψ 6=0

‖ψ‖
‖(Pm)

1
2ψ‖

= sup
ψ∈Sm
ψ 6=0

‖ψ‖√
〈Pmψ,ψ〉

=
1

√
c1,m

.
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Combining this with (4.22) now gives sec(θn,m) ≥ √c1,mDn,m as required.
For the upper bound, we first notice that

‖QPm(Tn)φ‖ ≥
〈φ,Pmφ〉
‖Pmφ‖

.

Moreover, arguing as in (4.21) one finds that ‖Pmφ‖ ≤
√
c2,m

√
〈Pmφ, φ〉. Combining this with the

previous expression and using the definition of cos(θn,m) now gives the first result.
For the second part of the proof, we first recall that the Riesz basis bounds d1, d2 for {ψj}j∈N

are lower and upper bounds for the Riesz basis bounds d1,m, d2,m for the finite subset {ψ1, . . . , ψm}.
Moreover, by [17, Thm. 5.2.1], the frame bounds c1,m, c2,m for the Riesz basis {ψ1, . . . , ψm} are identical
to the Riesz basis bounds d1,m, d2,m. This gives the second result. Finally, when {ψj}j∈N is orthonormal
we have d1 = d2 = 1, and thus we obtain the final result.

This lemma demonstrates that the difference in magnitudes between sec (θn,m) and Dn,m is deter-
mined by

√
c1,m and

√
c2,m. Note that c2,m ≤ c2, where c2 is the frame bound for the infinite frame

{ψj}j∈N. However, c1,m can in general exhibit wild behaviour in comparison to c1: it is possible to
construct simple frames for which c1,m is exponentially small in m, even though c1 is finite [16]. On
the other hand, if {ψj}j∈N is a Riesz or orthonormal basis, we find that Dn,m and sec(θn,m) are, up to
a possible factor proportional to the constants d1 and d2, equal.

4.4 Computing the generalized sampling reconstruction

Recall that the generalized sampling reconstruction f̃n,m depends only on Tn, and not on the system

of functions used to span Tn. Let {φj}dnj=1 be a spanning set for Tn, where dn ≥ dim(Tn), and write

f̃n,m =

dn∑
j=1

α
[n,m]
j φj .

The vector α[n,m] = {α[n,m]
j }dnj=1 is the least squares solution to the linear system

U [n,m]α[n,m] = f̂ [m],

where U [n,m] ∈ Cm×dn has (j, k)th entry 〈φk, ψj〉. Thus, computing f̃n,m is equivalent to solving a least
squares problem. From a numerical perspective, it is important to understand the condition number
κ(U [n,m]) = ‖U [n,m]‖‖(U [n,m])†‖ of the matrix U [n,m], where † denotes the pseudoinverse. The following
lemma is similar to [5, Lem. 2.11] (for this reason we forgo the proof):

Lemma 4.10. Let {φj}dnj=1 be a spanning set for Tn, and write G[n] ∈ Cdn×dn for its Gram matrix.

Then the condition number of the matrix U [n,m] satisfies

1
√
c2Dn,m

√
κ
(
G[n]

)
≤ κ(U [n,m]) ≤

√
c2Dn,m

√
κ
(
G[n]

)
.

This lemma shows that the condition number of the matrix U [n,m] is no worse than that of the Gram
matrix G[n] whenever m is chosen sufficiently large to ensure boundedness of Dn,m. In particular, if the
vectors {φ1, . . . , φn} are a Riesz or orthonormal basis, then κ(G[n]) = O (1) and hence the condition
number of U [n,m] is completely determined by the magnitude of Dn,m. In this case, not only is the

reconstruction f̃n,m numerically stable, but so is the computation of its coefficients α[n,m]. For further

details on the computation of f̃n,m, see [5].
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5 The stable sampling and reconstruction rates

The key ingredient of generalized sampling is that the parameter m must be sufficiently large in com-
parison to n, or vice versa. The notion of how large was first quantified in [4, 5]. In this section we
improve on this by using the sharp bounds of the previous section.

Definition 5.1. For θ ∈
(

max{1,√c2}√
c1

sec(θTS),∞
)

, the stable sampling rate is given by

Θ(n; θ) = min {m ∈ N : C(Fn,m) ≤ θ} , n ∈ N. (5.1)

The stable reconstruction rate is given by

Ψ(m; θ) = max{n ∈ N : C(Fn,m) ≤ θ}, m ∈ N. (5.2)

The stable sampling rate measures how large m must be for a fixed n to ensure guaranteed, stable
and quasi-optimal recovery. Conversely, the stable reconstruction rate measures how large n can be for
a fixed number of measurements m. Note that, by choosing either m ≥ Θ(n; θ) or n ≤ Ψ(m; θ), we
guarantee that the reconstruction f̃n,m is numerically stable and quasi-optimal, up to the magnitude
of θ. Moreover, the condition m ≥ Θ(n; θ) (or n ≤ Ψ(m; θ)) is both sufficient and necessary to ensure
stable, quasi-optimal reconstruction: if one were to sample at a rate below Θ(n; θ) (or above Ψ(m; θ))
then worse stability and convergence of the reconstruction would occur.

Recall that Remark 2.6 permits sequences of reconstruction schemes with mildly growing recon-
struction constants. One can also readily define the stable sampling and reconstruction rates to reflect

this. For a positive and increasing sequence θ = {θn}n∈N with θn >
max{1,√c2}√

c1
sec (θTS), ∀n, we define

Θ(n; θ) = min {m ∈ N : C(Fn,m) ≤ θn} , n ∈ N,

and
Ψ(m; θ) = max {n ∈ N : C(Fn,m) ≤ θn} , m ∈ N.

Once more, one has the interpretation that sampling at the rate m ≥ Θ(n; θ) ensures stability and
quasi-optimality up to the growth of θn.

A key property of the stable sampling and reconstruction rates is that they can be computed:

Lemma 5.2. Let Dn,m and θn,m be as in (4.14) and Lemma 4.4 respectively, and suppose that {φj}nj=1

is a basis for Tn. Then the quantities 1/D2
n,m and cos2(θn,m) are the minimal generalized eigenvalues

of the matrix pencils
{

(U [n,m])∗U [n,m], A[n]
}

and {B[n,m], A[n]} respectively, where A[n] is the Gram

matrix for {φj}dnj=1, U [n,m] is as in §4.4, B[n,m] is given by

B[n,m] = (U [n,m])∗U [n,m]
(

(U [n,m])∗C [m]U [n,m]
)−1

(U [n,m])∗U [n,m],

and C [m] is the Gram matrix for {ψj}mj=1. In particular, if {φj}nj=1 is an orthonormal basis for Tn,

Dn,m =
1

σmin(U [n,m])
, sec(θn,m) =

1√
λmin(B[n,m])

,

where σmin(U [n,m]) and λmin(B[n,m]) denote the minimal singular value and eigenvalue of the matrices
U [n,m] and B[n,m] respectively.

Proof. The proof of this lemma is similar to that of [5, Lem. 2.13], and hence is omitted.

Although this lemma allows for computation of the reconstruction constant C(Fn,m) (recall that
C(Fn,m) = max{sec(θn,m), Dn,m} as a result of Corollary 4.7), and therefore Θ(n; θ) and Ψ(m; θ), it is
somewhat inconvenient to have to compute both Dn,m and sec(θn,m). The latter, in particular, can be
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computationally intensive since it involves both forming and inverting the matrix (U [n,m])∗C [m]U [n,m].
However, recalling the bound C(Fn,m) ≤ max{1,√c2}Dn,m, we see that stability and quasi-optimality
can be ensured, up to the magnitude of c2, by controlling the behaviour of Dn,m only. This motivates
the computationally more convenient alternative

Θ̃(n; θ) = min {m ∈ N : Dn,m ≤ θ} , n ∈ N, θ ∈
(

1
√
c1

sec(θTS),∞
)
,

and likewise Ψ̃(m; θ). Note that setting m ≥ Θ̃(n; θ) or n ≤ Ψ̃(m; θ) ensures a condition number of at
worst θ and a quasi-optimality constant of at most max{1,√c2}θ.

6 Optimality of generalized sampling

In the previous sections we gave an analysis of generalized sampling. This improved on [4, 5] by
providing sharp bounds and establishing the connection between generalized sampling and certain
oblique projections. In this section we address the question of optimality of generalized sampling; a
topic which was has not been addressed previously.

We shall consider the following problem:

Problem 6.1. Given the m measurements {〈f, ψj〉}mj=1 of an element f ∈ H, compute a reconstruction

f̃ of f from the subspace Tn.

Generalized sampling provides a (perhaps the most) straightforward solution to this problem –
namely, performing a least-squares fit of the data – with stability and quasi-optimality being determined
by the quantities Dn,m and sec(θn,m). An obvious question to pose is the following: can a different
method outperform generalized sampling? A partial answer to this question is provided next.

6.1 Optimality amongst perfect methods

Theorem 6.2. Suppose that m,n ∈ N are such that Dn,m 6= 0, where Dn,m is given by (4.14). Let
Gn,m be a (linear or nonlinear) method taking measurements {〈f, ψj〉}mj=1 and giving a reconstruction
Gn,m(f) ∈ Tn. Suppose that Gn,m is perfect in the sense of Definition 3.9. Then, if the condition
number κ(Gn,m) is defined as in (2.4), we have κ(Gn,m) ≥ Dn,m. In particular, if Fn,m is the generalized
sampling reconstruction, then κ(Gn,m) ≥ κ(Fn,m).

Proof. Since Gn,m is perfect, we have Gn,m(0) = 0. Setting f = 0 in (2.4), we notice that

κ(Gn,m) ≥ lim
ε→0+

sup
g∈H
ĝ 6=0

‖Gn,m(εg)‖
‖εĝ‖`2

.

Since Dn,m 6= 0, we have that ĝ 6= 0 for g ∈ Tn if and only if g 6= 0. Thus, using the perfectness of
Gn,m once more,

κ(Gn,m) ≥ lim
ε→0+

sup
g∈Tn
g 6=0

‖Gn,m(εg)‖
‖εĝ‖

= lim
ε→0+

sup
g∈Tn
g 6=0

‖g‖
‖ĝ‖

= Dn,m,

as required. The second result follows from Corollary 4.7.

This theorem, which is embarrassingly simple to prove, states the following: any perfect method
for Problem 6.1 must have a worse condition number than that of generalized sampling. We remark
that perfectness is not an unreasonable assumption in practice. In particular, any method which is
quasi-optimal, i.e. µ(Gn,m) <∞, is also perfect.

One can also generalize Theorem 6.2 somewhat to consider a larger class of methods. Indeed, let
Gn,m be a method such that

‖f −Gn,mf‖ ≤ λ‖f‖, ∀f ∈ Tn,
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for some λ ∈ (0, 1). We refer to such methods as contractive. Note that perfect methods are a particular
example of contractive methods with λ = 0. Arguing as in the proof of Theorem 6.2, one can show that

κ(Gn,m) ≥ (1− λ)κ(Fn,m).

Hence, the condition number of generalized sampling can only possibly be improved by a factor of
(1− λ) when using a contractive method.

Beside the imposition of perfectness (or contractiveness), it may appear at first sight that Theorem
6.2 is also restrictive because it deals with a worst case scenario taken over the whole of H. In practice, it
may be the case that our interest does not lie with recovering all f ∈ H, but rather only those f belonging
to some subspace U of H. For example, U could consist of functions with particular smoothness. One
may reasonably ask: is it possible to circumvent this bound if one restricts ones interest to only a small
class of functions? The answer is no. If Tn ⊆ U, then one can just redefine the condition number κ to
be taken as a supremum over U, as opposed to H, and repeat the same argument.

It is also worth observing that Theorem 6.2 can be further weakened by considering the local
condition number κf at a fixed f ∈ H (we refer to (2.5) for the definition of κf ). Indeed, it is clear from
the proof that

κf (Gn,m) ≥ Dn,m ≥ κf (Fn,m), ∀f ∈ Tn.

In some applications, typically where one’s interest lies with recovering only one fixed signal f , the
local condition number is arguably more important. Hence, the fact that condition numbers cannot be
improved, even locally, demonstrates the importance of appropriately scaling m with n.

One can also reformulate the conclusions of Theorem 6.2 in terms of the stable sampling and recon-
struction rates. To this end, suppose that Gn,m is any quasi-optimal reconstruction method, and let
κ(Gn,m) and µ(Gn,m) be its condition number and quasi-optimality constant respectively. Define the
reconstruction constant C(Gn,m) = max {κ(Gn,m), µ(Gn,m)} in the standard way, and let

ΘG(n; θ) = min {m ∈ N : C(Gn,m) ≤ θ} , n ∈ N,

be the stable sampling rate for Gn,m (whenever defined). Theorem 6.2 trivially gives that

ΘG(n; θ) ≥ Θ(n; max{1,
√
c2}θ), (6.1)

where Θ is the stable sampling rate for generalized sampling (one can make a similar statement in terms
of the stable reconstruction rates ΨG and Ψ). This result implies the following: up to a constant on the
order of max{1,√c2}, any reconstruction requires at least the same number of samples as generalized
sampling to guarantee a stable quasi-optimal reconstruction with constant θ. In applications (see §7) one
typically has that Θ(n; θ) ∼ c(θ)g(n) as n→∞ for some increasing function g(n) (typically g(n) = nα

for some α ≥ 1). Hence, (6.1) implies that no perfect method Gn,m can have a stable sampling rate
that grows at a slower asymptotic rate than that of generalized sampling, although the constant can
potentially be improved whenever the sampling frame has c2 > 1.

6.2 An optimality result for problems with linear stable sampling rates

Suppose that the stable sampling rate Θ(n; θ) is linear in n for a particular example of Problem 6.1. This
means that there is, up to a constant, a one-to-one correspondence between samples and reconstructed
coefficients, which suggests that generalized sampling can only be outperformed by a constant factor in
terms of the convergence of the reconstruction. Another method for the problem (perfect or otherwise)
might obtain a slightly smaller error, but the asymptotic rate of convergence should be equal. This is
formalized in the following theorem:

Theorem 6.3. Let {ψj}j∈N be a frame for H, and let {Tn}n∈N a sequence of finite-dimensional sub-
spaces satisfying (2.6) and (2.7). Suppose that the corresponding stable sampling rate Θ(n; θ) is linear
in n. Let f ∈ H be fixed, and suppose that there exists a sequence of mappings

Gm : {f̂j}mj=1 7→ Gm(f) ∈ TΨf (m),
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where Ψf : N → N with Ψf (m) ≤ cm for some c > 0. Suppose also that there exist constants
c1(f), c2(f), αf > 0 such that

c1(f)n−αf ≤ ‖f −Qnf‖ ≤ c2(f)n−αf , ∀n ∈ N. (6.2)

Then, given θ ∈
(

max{1,√c2}√
c1

sec(θTS),∞
)

, there exists a constant cf (θ) > 0 such that

‖f − FΨ(m;θ),m(f)‖ ≤ cf (θ)‖f −Gm(f)‖, ∀m ∈ N, (6.3)

where Fn,m corresponds to generalized sampling and Ψ(m; θ) is the stable reconstruction rate (5.2).

Proof. Since generalized sampling is quasi-optimal,

‖f − FΨ(m;θ),m(f)‖ ≤ θ‖f −QΨ(m;θ)f‖.

Using (6.2) we deduce that

‖f − FΨ(m;θ),m(f)‖ ≤ θ c2(f)

c1(f)

(
Ψf (m)

Ψ(m; θ)

)αf
‖f −QΨf (m)f‖.

The orthogonal projection Qnf is the best approximation to f from the subspace Tn. Therefore

‖f − FΨ(m;θ),m(f)‖ ≤ θ c2(f)

c1(f)

(
Ψf (m)

Ψ(m; θ)

)αf
‖f −Gm(f)‖.

The result now follows from the fact that Ψ(m; θ) = O (m) and Ψf (m) ≤ cm.

This theorem states that, in the case of a linear stable sampling rate, and for functions with algebraic
decay of ‖f −Qnf‖, generalized sampling can only be improved upon by a constant factor. As shown
by (6.3), the error of generalized sampling decays at the same (or better) asymptotic rate as any other
reconstruction method Gm. Note that the stipulation of algebraic convergence (6.2) is reasonable in
practice. In the next section we shall see several examples for which this condition holds.

Unlike the case of generalized sampling, the method Gm in the above theorem can depend in a
completely nontrivial manner on the function f . However, even with this added flexibility, this theorem
shows that it is only possible to improve on generalized sampling by a constant factor. An example
of such a method is an oracle. Suppose there was some method that, for a particular f satisfying
(6.2), could recover the orthogonal projection Qmf exactly (i.e. with no error) from m samples. The
conclusion of the above corollary is that generalized sampling commits an error that is at worst a
constant factor larger than that of this method.

Remark 6.4 The fact that the stable sampling rate is linear is key to Theorem 6.3. In situations where
Θ(n; θ) is superlinear (for an example, see the next section), it is possible to devise methods, albeit
typically unstable methods, with asymptotically faster rates of convergence.

7 Uniform resampling with generalized sampling

§1–6 of this paper addressed generalized sampling in its abstract form. We now consider its application
to a particular problem, the so-called uniform resampling (URS) problem. As we show, generalized
sampling leads to an improvement over the standard approach to this problem, which results in an
ill-posed discrete reconstruction.

24



7.1 The uniform resampling problem

In applications such as MRI, radio-astronomy and diffraction tomography [61, 49], the URS problem
concerns the recovery of harmonic Fourier coefficients of a function f ∈ L2(−1, 1)d from nonuniformly-
spaced pointwise samples of its Fourier transform

f̂(ω) = 2−
d
2

∫
(−1,1)d

f(x)e−iωπx dx, ω ∈ R.

This problem is important since typical sampling devices (such as MR scanners) are not best suited to
acquire Fourier data in a uniform pattern (i.e. Fourier coefficients). Indeed, it is often more convenient to
acquire samples along interlacing spirals or radial lines, for example (see [59] and references therein). In
uniform resampling, one seeks to compute Fourier coefficients from these nonharmonic Fourier samples,
and then recover the image via a standard DFT.

Consider the case d = 1, and let ω−n < ω−n+1 < . . . < ωn be a set of 2n+1 nonequispaced points at
which f̂(ω) is sampled. The derivation of the standard URS reconstruction follows from the Shannon
Sampling theorem [49, 50, 61]. Using this theorem, we have

f̂(ω) =
∑
k∈Z

f̂(k)sinc(ω − k), ω ∈ R,

where the right-hand side converges uniformly, and therefore

f̂(ωj) =
∑
k∈Z

f̂(k)sinc(ωj − k), |j| ≤ n. (7.1)

Let αk, k = −n, . . . , n be the values αk ≈ f̂(k) that we seek to compute from the samples {f̂(ωj)}|j|≤n.
It is natural to truncate (7.1) at level n, leading to

f̂(ωj) ≈
∑
|k|≤n

αksinc(ωj − k), |j| ≤ n.

Let U [n,n] ∈ C2n+1,2n+1 be the matrix with (j, k)th entry sinc(ωj − k). The URS method determines
the vector α[n,n] = {αk}|k|≤n as the solution to the linear system

U [n,n]α[n,n] = f̂ [n], (7.2)

where f̂ [n] = {f̂(ωj)}|j|≤n.
Suppose now that the finite set {ωj}|j|≤n extends to an infinite set {ωj}j∈Z such that the system

ψj(x) =
1√
2

eiωjπx, j ∈ Z,

is a frame for L2(−1, 1). Let φj(x) = 1√
2
eijπx, so that

Tn = span {φj : |j| ≤ n} , (7.3)

is the space of trigonometric polynomials of degree n. Then the URS method (7.2) is nothing more
than a specific instance of the consistent sampling framework described in §3.

It has been widely reported that the URS method (7.2) may be very ill-conditioned in practice
[49, 61]. Various strategies have been applied to the linear system (7.4) to try to overcome this issue,
with the most common involving first manually computing a singular value decomposition and then
applying standard regularization techniques from the literature on discrete ill-posed problems [49, 61].
However, this approach is both computationally expensive and remains susceptible to noise (see [50]
and references therein).
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Although the effect of noise can be somewhat mitigated [50], it can never truly be removed, since the
underlying discrete problem is ill-posed. However, the interpretation of URS as an example of consistent
sampling means that this ill-posedness – which is merely another instance of that seen in the consistent
reconstructions of §3 – is completely artificial. The key theorems presented in §4 demonstrate that by
replacing (7.2) with an overdetermined the least squares (i.e. generalized sampling)

U [n,m]α[n,n] ≈ f̂ [m], (7.4)

and by increasing m suitably (or decreasing n suitably) we will be able to obtain a stable reconstruction.
Hence, rather than performing regularization on a discrete ill-posed problem, we discretize differently
so as to obtain a well-posed discrete problem (recall the operator-theoretic interpretation of §3.7)

Remark 7.1 Of course, Theorem 6.2 states that if the uniform resampling (7.2) is ill-conditioned (for
a given n) then so is any other perfect method. In other words, there is in essence no stable way to
obtain n Fourier coefficients from n nonuniformly spaced Fourier samples. Hence, increasing m (or, if m
is considered fixed, decreasing n) is not just a good way to proceed, in this sense it is the only possible
way to obtain a stable reconstruction.

We also remark that overdetermined least squares of the form (7.4) has been used in the past for
the uniform resampling problem. However, it is still reported as resulting in an ill-conditioned problem
[49, 61]. This is unsurprising in the results of this paper: m needs to not only be larger than n to ensure
stability, but also above the critical threshold of the stable sampling rate Θ(n; θ).

Remark 7.2 There are a number of alternatives to uniform resampling, such as convolutional gridding
techniques [40, 46, 49, 61], which is quite popular in practice. However, URS provides an optimal
solution to the problem, and consequently often provides better results [49] (in particular, it can lead to
a significant decrease in artifacts [59] over gridding). Gridding has the advantage of being more efficient
[49] than the standard URS algorithm. However, modifications such at the block uniform resampling
(BURS) [49] possess improved efficiency.

7.2 Generalized sampling for the URS problem

To ensure a stable, quasi-optimal reconstruction, it is critical to determine the stable sampling rate
Θ(n; θ), or equivalently, the stable reconstruction rate Ψ(n; θ). Our main result below demonstrates
that Θ(n; θ) is linear in n for (almost) all nonuniform sampling patterns arising as Fourier frames.

First we require the following definition [31]:

Definition 7.3. A sequence {ωj}j∈Z is a balanced sampling sequence if the following conditions hold:

(i) Ω = {eiωjπ· : j ∈ Z} is a frame for L2(−1, 1),
(ii) {ωj}j∈Z is δ-separated, i.e. there exists δ > 0 such that |ωj − ωk| > δ, ∀j 6= k,

(iii) {ωj}j∈Z is increasing, i.e. ωj < ωj+1, ∀j ∈ Z,
(iv) {ωj}j∈Z is balanced, i.e. ωj ≥ 0 if j ≥ 0 and ωj < 0 if j < 0.

Note conditions (iii) and (iv) can always be guaranteed by reordering. Condition (iv) is also reason-
able in practice since sampling strategies are typically symmetric. Although (ii) does not hold for all
Fourier frames, we shall assume it for simplicity in the presentation that follows. It is possible in what
follows to derive a fully general result on the stable sampling rate for arbitrary Fourier frames using
[41, Lem. 2] (see also [31, Thm. 3]). However, for simplicity we shall not do this.

Theorem 7.4. Suppose that {ωj}j∈Z is a balanced sampling sequence. Then the stable sampling rate
Θ(n; θ) = O (n). Specifically, let τ : N → (0,∞) be given by τ(m) = min{ωm,−ω−m}, and define
τ−1 : (0,∞)→ N by

τ−1(c) = min{m ∈ N : τ(m) > c}.
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Then τ−1(c) < d cδ e, ∀c > 0, and we have the upper bound

Θ(n; θ) ≤ τ−1

(
g(θ)

g(θ)− 1
+
g(θ) + 1

g(θ)− 1
n

)
,

where g(θ) = exp
(
π2δ
2 (c1 −max{1, c2}θ−2)

)
.

Proof. Let Pmg =
∑
|j|≤m〈g, ψj〉ψj , and suppose that φ ∈ Tn is arbitrary. Then

〈Pmφ, φ〉 = 〈Pφ, φ〉 − 〈(P − Pm)φ, φ〉 ≥ c1‖φ‖2 − 〈(P − Pm)φ, φ〉. (7.5)

Let φ =
∑
|j|≤n αjφj so that ‖φ‖ = ‖α‖`2 . Since

|〈(P − Pm)f, g〉| ≤
√
〈(P − Pm)f, f〉

√
〈(P − Pm)g, g〉, ∀f, g ∈ L2(−1, 1),

it follows that

〈(P − Pm)φ, φ〉 =
∑

|j|,|k|≤n

αjαk〈(P − Pm)φj , φk〉

≤

∑
|j|≤n

|αj |
√
〈(P − Pm)φj , φj〉

2

≤ ‖φ‖2
∑
|j|≤n

〈(P − Pm)φj , φj〉. (7.6)

Let us suppose that m is sufficiently large so that |ωj | > n for |j| > m (i.e. m > n
δ ). Note that

|〈φk, ψj〉| ≤
1

π|ωj − k|
, |j| > m, |k| ≤ n.

Therefore

〈(P − Pm)φk, φk〉 ≤
∑
|j|>m

1

π2|ωj − k|2
=

1

π2

∑
j>m

1

|ωj − k|2
+

1

π2

∑
j>m

1

|ω−j − k|2
.

Consider the first sum. We have∑
j>m

1

|ωj − k|2
≤ 1

δ

∫ ∞
ωm

1

(ω − k)2
dω =

1

δ(ωm − k)
.

Using a similar estimate for the other sum, we obtain

〈(P − Pm)φk, φk〉 ≤
1

π2δ

(
1

ωm − k
+

1

k − ω−m

)
.

Substituting this into (7.6), we obtain

〈(P − Pm)φ, φ〉 ≤ ‖φ‖
2

π2δ

∑
|k|≤n

(
1

ωm − k
+

1

k − ω−m

)
.

Notice that ∑
|k|≤n

1

ωm − k
≤
∫ n+1

−n

1

ωm − x
dx = ln

(
ωm + n

ωm − n− 1

)
.
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Figure 2: The quantity Dn,cn against n for the generalized sampling applied to the uniform resampling problem
for the frames (a)–(c). The values c = 1, 5

4
, 3
2
, 7
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4
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, 13
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, 4 for (b) and (c).

Likewise ∑
|k|≤n

1

k − ω−m
≤
∫ n

−n−1

1

x− ω−m
dx = ln

(
n− ω−m

−ω−m − n− 1

)
.

Hence

〈(P − Pm)φ, φ〉 ≤ 2‖φ‖2

π2δ
ln

(
τ(m) + n

τ(m)− n− 1

)
.

Combining this with (7.5), we obtain

D−2
n,m = inf

φ∈Tn
‖φ‖=1

〈Pmφ, φ〉 ≥ c1 −
2

π2δ
ln

(
τ(m) + n

τ(m)− n− 1

)
.

Recall that C(Fn,m) ≤ max{1,√c2}Dn,m. Hence C(Fn,m) < θ provided

c1 −
2

π2δ
ln

(
τ(m) + n

τ(m)− n− 1

)
> max{1, c2}θ−2.

Rearranging, we obtain

τ(m) + n

τ(m)− n− 1
< g(θ) ⇐⇒ τ(m) >

g(θ)

g(θ)− 1
+
g(θ) + 1

g(θ)− 1
n,

and this gives the result (note that this condition implies that |ωj | > n, |j| > m, which was the
assumption made for the above analysis). Note also that τ(m) = min{ωm,−ω−m} ≥ δm. Thus
τ−1(c) ≤ d cδ e. This completes the proof.

7.3 Numerical results

We now give numerical results for generalized sampling for applied to this problem. We shall consider
the following three sequences

(a) : ωj =
1

2
j, (b) : ωj =

1

4
j, (c) : ωj =

1

4
j + νj ,

where in the last case νj ∈ (− 1
5 ,

1
5 ) is chosen uniformly at random. Note that all three sequences are

frames for L2(−1, 1) [17].
In Figure 2 we plot the quantity Dn,m with various linear scalings of m with n. As is evident,

this constant is exponentially large when m = n (i.e. consistent sampling), and it remains exponentially
large when m = cn for small c below a certain threshold. However, as c increases the rate of exponential
growth decreases, and once c is sufficiently large, there is no exponential growth at all.
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Figure 3: The stable sampling rate Θ̃(n; θ), scaled by n−1, for the frames (a)–(c), where θ = 5
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Figure 4: The error ‖f − f̃n,m‖ against m where n = m (left) and n = 1
2
m (right), f(x) = 1√

2
e8iπx, and f̃n,m is

computed from noisy data {f̂j + ηj}|j|≤n, where |ηj | ≤ η is chosen uniformly at random with η = 0, 10−9, 10−2

(circles, crosses and diamonds respectively). The sampling frame (a) was used.

To determine the critical c for which the reconstruction constant is bounded, we compute the stable
sampling rate. This is shown in Figure 3. For the frame (a) this critical value is roughly 2, whereas for
(b) and (c) it is approximately 4. Moreover, the closeness of the graphs indicates that one only needs
to exceed this critical value by a very small amount to get an extremely good reconstruction constant.
This is unsurprising. For (a) and (b) at least, the first n harmonic Fourier coefficients are contained
within the given measurements precisely when m = 2n for (a) and m = 4n for (b).

To illustrate the effectiveness of generalized sampling for this problem, in Figure 4 we consider the
reconstruction from noisy data. As is evident, when m = n, noise is amplified by around 1015. However,
double oversampling, as suggested in Figure 3, renders the reconstruction completely stable.

7.4 Alternatives to uniform resampling

The aim of uniform resampling is to recover the Fourier coefficients of the unknown function f from
its nonuniform Fourier samples. However, it is well known that images and signals (which are typically
nonperiodic) are poorly represented by their Fourier series. In particular, the finite series converges
slowly and is polluted by Gibbs oscillations.

However, there is no reason besides familiarity to actually compute Fourier coefficients from nonuni-
form Fourier samples. With generalized sampling one is able to reconstruct in any subspace Tn; in
particular, one which is better suited to the particular function. Thus, provided such a subspace is
known, we are able to obtain a better reconstruction over the classical Fourier series.

In this final section we consider briefly two alternative choices for Tn besides the Fourier space (7.3).
The first is a spline space of piecewise polynomial functions of fixed degree d ∈ N:

Tn =
{
φ ∈ Cd−1[−1, 1] : φ|[ jn , j+1

n ) ∈ Pd, j = −n, . . . , n− 1
}
, n ∈ N. (7.7)

Note that the sequence of orthogonal projections Qnf of a function f ∈ Cd[−1, 1] converge to f at the
rate n−d−1, without the assumption of periodicity of f . Conversely, the Fourier series (i.e. the URS
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n 8 16 32 64
(a) 8.33e12 7.24e25 2.17e52 3.40e105
(b) 1.51e5 3.14e12 1.37e25 2.69e51
(c) 2.54e6 9.53e11 1.65e23 3.98e45

n 8 16 32 64
(a) 3.14e11 6.68e23 2.25e49 2.16e104
(b) 4.95e4 3.84e10 5.32e22 1.41e48
(c) 2.29e2 4.19e4 2.11e9 1.30e19

Table 1: The quantities Dn,n (left) and Dn,2n (right) for the spaces (a): (7.7) (d = 2), (b): (7.7) (d = 4) and
(c): (7.8). The sampling frame (c) was used.

m Fourier splines (d = 2) splines (d = 4) polynomials
32 2.80e-2 3.64e-3 5.95e-4 1.42e-2
64 1.49e-4 4.15e-4 3.05e-5 3.23e-3
128 1.04e-11 4.89e-5 4.76e-7 3.01e-5
256 3.30e-15 6.04e-6 1.33e-8 5.43e-8
512 4.06e-15 7.55e-7 4.10e-10 5.02e-14
1024 4.79e-15 9.45e-8 1.27e-11 4.86e-14

Table 2: The error ‖f − f̃n,m‖ for the smooth and periodic function f(x) = sin 3πx + 2e
20
π2 (cos 2πx−4 cosπx−5)

,
where the reconstruction space Tn is the Fourier space (7.3), the spline space (7.7) with d = 2, 4, or the
polynomial space (7.8). The parameter n = Ψ(m; 4), and the sampling frame (c) was used.

reconstruction with Tn given by (7.3)) converges like n−
1
2 when f is nonperiodic. Hence, the spaces

Tn are better suited for moderately smooth and nonperiodic functions.
The second choice for Tn is the polynomial space

Tn = Pn. (7.8)

Observe that if f is smooth, i.e. f ∈ C∞[−1, 1], then Qnf converges faster than any power of n−1.
Hence, this space is particularly well suited for smooth functions. Note that the use of this space for
uniform Fourier samples ωj = j was extensively discussed in [5].

As one might expect, both the spaces (7.7) and (7.8) lead to instability in the corresponding con-
sistent reconstruction. This is shown in Table 1. In both cases, the constant Dn,n is exponentially
large in n. Nonetheless, such instability can be overcome by sampling according to the stable sampling
rate. Although we shall not do it in this paper (for the sake of brevity), it is possible to prove that the
stable sampling rate is linear Θ(n; θ) = O (n) for the spaces (7.7) for any fixed d ∈ N, and quadratic
Θ(n; θ) = O

(
n2
)

for (7.8). Note that a similar result for the latter in the case of uniform Fourier
samples was shown previously in [5] and [39].

Instead, we now illustrate the advantage gained from exploiting these different reconstruction spaces.
In Tables 2 and 3 we give numerical results for the three different spaces considered. In each case, the
parameter m (the number of samples) was fixed and n chosen according to the stable reconstruction
rate Ψ(m; θ) with θ = 4. Thus all three reconstruction use the same data, and are guaranteed to have
the same condition number. As can be seen in Table 2, the Fourier space (7.3) is particularly well suited
for periodic functions, and outperforms both the spline (7.7) and polynomial (7.8) spaces. However,
the situation changes completely when the function to be reconstructed is not periodic. In Table 3 we
see that the polynomial space (7.8) gives the best reconstruction, followed by the spline spaces (7.7).
The URS reconstruction, which uses the Fourier space (7.3), suffers from the Gibbs phenomenon and
thus exhibits only low accuracy.

7.5 On optimality

In view of the numerical results for Dn,m (Figure 2), Theorem 6.2 demonstrates that any perfect method
for the uniform resampling problem with be exponentially unstable, unless the stable sampling rate is
adhered to. Moreover, since the stable sampling rate is linear in this case (Theorem 7.4), Theorem 6.3
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m Fourier splines (d = 2) splines (d = 4) polynomials
32 3.13e-1 3.12e-2 4.72e-3 3.62e-2
64 1.53e-1 4.79e-3 1.80e-4 1.56e-3
128 8.65e-2 5.16e-4 1.31e-5 1.79e-6
256 9.27e-2 5.96e-5 4.84e-7 4.41e-11
512 6.21e-2 7.14e-6 1.32e-8 4.33e-14
1024 2.50e-2 8.82e-7 3.94e-10 4.19e-14

Table 3: The error ‖f − f̃n,m‖ for the smooth function f(x) = sin 10x + 2e20(x
2−1), where the reconstruction

space Tn is the Fourier space (7.3), the spline space (7.7) with d = 2, 4, or the polynomial space (7.8). The
parameter n = Ψ(m; 4), and the sampling frame (c) was used.

also applies. We conclude that, for periodic functions of finite smoothness (i.e. functions for which (6.2)
holds), one cannot outperform generalized sampling by more than a constant factor.

The same conclusions also hold in the case of the spline spaces (7.7), in light of the numerics in
Table 1. For the polynomial space (7.8), however, Theorem 6.3 does not apply, since the stable sampling
rate is quadratic. Hence, it is in theory possible to outperform generalized sampling in terms of the
asymptotic rate of convergence. Nonetheless, it transpires that this cannot be done in this case without
compromising stability. For a more thorough analysis of stability and convergence for this reconstruction
problem we refer the reader to [7].
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