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The main topic of this thesis is how to approximate and compute spectra of linear
operators on separable Hilbert spaces. We consider several approaches including the finite
section method, an infinite-dimensional version of the QR algorithm, as well as pseudospec-
tral techniques. Several new theorems about convergence of the finite section method
(and variants of it) for self-adjoint problems are obtained together with a rigorous analy-
sis of the infinite-dimensional QR algorithm for normal operators. To attack (and solve)
the long standing general computational spectral problem we look to the pseudospectral
theory and introduce the complexity index. A generalization of the pseudospectrum is
introduced, namely, the n-pseudospectrum. This set behaves very much like the original
pseudospectrum, but has the advantage that it approximates the spectrum well for large
n. The complexity index is a tool for indicating how complex or difficult it may be to
approximate spectra of operators belonging to a certain class. We establish bounds on
the complexity index and discuss some open problems regarding this new mathematical
entity.

As the approximation framework also gives rise to several computational methods, we
analyze and discuss implementation techniques for algorithms that can be derived from
the theoretical model. In particular, we develop algorithms that can compute spectra of
arbitrary bounded operators on separable Hilbert spaces, and the exposition is followed
by several numerical examples. The thesis also contains a thorough discussion on how
to implement the QR algorithm in infinite dimensions. This is supported by numerical
computations. These examples reveal several surprisingly nice features of the infinite-
dimensional QR algorithm, and this leaves a number of open problems that we debate.
We also include a chapter on how the infinite-dimensional QR algorithm can be improved,
in particular, how to speed it up. This approach is based on adapting the techniques used
in finite dimensions to an infinite-dimensional setting.
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Preface

The question I would like to address in this thesis is how to compute, or approximate,
spectra of arbitrary linear operators on Hilbert spaces. When confronted with this chal-
lenge one does not only meet mathematical obstacles, but one is also faced with the task
of balancing between pure and applied mathematics. As most of the interesting operators
in mathematical physics act on infinite-dimensional Hilbert spaces, one must leave the
classical theory of matrix computations and analysis and enter the more pure discipline
of functional analysis and operator theory. However, as actual computations and design
of algorithms are also important parts of this thesis, one cannot abandon the theory of
matrix computations, but rather mix the two disciplines in the best possible way. This
is a nontrivial task as the audience in the two different areas may have different interests
and emphasis, and more importantly, different mathematical backgrounds and opinions.
As Peter Lax said in his mathematical talk on the occasion of his acceptance of the Abel
prize :“...and the relationship between the two disciplines (pure and applied mathematics)
is delicate.”

In order to please both pure and applied mathematicians I have chosen to give the
two different communities what they appreciate, namely, mathematics written in their
own language. The thesis is therefore organized in two parts; Part I-Theory and Part
II-Applications. Part I contains the results that are intended for cross-disciplinary math-
ematical journals (pure and applied mathematics) and is written in a language expected
for journals such as Journal of the American Mathematical Society or Communications
on Pure and Applied Mathematics. Knowledge of functional analysis at graduate level is
assumed. In Part II the emphasis is on mathematical results in application, where the
design and execution of algorithms are the main topics. These results are intended for
applied mathematical journals such as IMA Journal of Numerical Analysis or Proceedings
of the Royal Society A. In this part graduate level functional analysis is not assumed, how-
ever, the reader is expected to know graduate level numerical linear algebra and numerical
analysis.

I must emphasize that this does not mean that all the theory is presented in Part I,
whereas the numerical examples are shown in Part II. The second part of the thesis contains
theorems and proofs as well as theoretical mathematical discussions, but the emphasis is
on mathematics in applications and theorems are often motivated by the desire to analyze
algorithms. Even though the material in both parts is intimately connected, both Part I
and Part II are self contained and can be read independently of the other.

This dissertation is the result of my own work and includes nothing which is the
outcome of work done in collaboration except where specifically indicated in the text.
Every lemma, proposition or theorem followed by a proof is original. There are quotes
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vi Preface

from other work, however, in those cases there are references to either the original paper or
book and no proofs are displayed. The thesis is based on a series of articles, in particular:

Part I-Theory

• On the approximation of spectra of linear operators on Hilbert spaces (Han08).

• On the complexity index, the n-pseudospectrum and construction of spectra of linear
operators (Han11).

Part II-Applications

• Infinite-dimensional numerical linear algebra; theory and applications (Han10).

• The infinite-dimensional QR algorithm (Hanb).

• Hessenberg reduction and the infinite-dimensional QR algorithm (Hana).
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Chapter 1

Introduction

The main theme of Part I is how to construct and approximate spectra of arbitrary closed
operators on separable Hilbert spaces. This task is a fascinating pure mathematical prob-
lem, but it is strongly motivated by applications. The reason is as follows. After the
triumph of quantum mechanics, operator and spectral theory became indispensable math-
ematical disciplines in order to support quantum theory and also to secure its mathematical
foundations. There is a vast literature on how to analyze spectra of linear operators and
the field is still very much active.

So far, so good, the only problem is that the theoretical physicist may not only want
theorems about structural properties of spectra, one may actually want to determine the
spectra completely. When faced with this problem the mathematician may first recall that
even if the dimension of the Hilbert space is finite, this is not trivial. One quickly realizes
that, due to Abel’s contribution on the unsolvability of the quintic using radicals, one is
doomed to fail if one tries to construct the spectrum in terms of finitely many arithmetic
operations and radicals of the matrix elements of the operator. However, in finite dimen-
sions, there is a vast theory on how to obtain sequences of sets, whose construction only
require finitely many arithmetic operations and radicals of the matrix elements, such that
the sequence converges to the spectrum of the desired operator. Thus, at least in finite
dimensions, one can construct the spectrum, and this construction automatically yields a
method for approximating the spectrum. Even though this may be difficult in practice,
one has a mathematical theory that guarantees that up to an arbitrarily small error, one
can determine the spectra of operators on finite dimensional Hilbert spaces.

There is no automatic extension from the finite dimensional case, and the problem
is therefore; what can be done in infinite dimensions? Moreover, how does one handle
the case of an unbounded operator? Keeping the Schrödinger and Dirac operators in
mind, one realizes that the unbounded cases may be the most important ones. We must
emphasize that quite a lot is known about how to approximate spectra of Schrödinger and
Dirac operators, but, as far as we know, even in the self-adjoint case, one still only knows
how to deal with special cases, and current methods lack generality. To illustrate the
present situation on how how to construct and approximate spectra of arbitrary operators
we have chosen quotes from two of the leading authorities in operator and spectral theory.
Bill Arveson points out that “Unfortunately, there is a dearth of literature on this basic
problem, and so far as we have been able to tell, there are no proven techniques”(Arv94a).
Also, Brian Davies (Dav05) has expressed his concern due to the following example. Let
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4 Chapter 1. Introduction

Aε : l2(Z) → l2(Z) be defined by

(Aεf)(n) =

{
εf(n+ 1) n = 0
f(n+ 1) n 6= 0.

Now for ε 6= 0 we have σ(Aε) = {z : |z| = 1} but for ε = 0 then σ(A0) = {z : |z| ≤ 1}.
Davies argues as follows: “If ε is a very small constructively defined real number and
one is not able to determine whether or not ε = 0, then the spectrum of Aε cannot be
computed even approximately even though Aε is well-defined constructively. This implies
that there exist straightforward bounded operators whose spectrum will probably never
be determined.”

We will emphasize that these quotes are concerned with the general problem, and if one
has more structure available e.g. self-adjointness, then much more can be said. However,
during the last two decades the importance of non-normal operators and their spectra has
become increasingly evident. In particular, the growing interest in non-Hermitian quantum
mechanics (HN97), (HN96), non-self-adjoint differential operators (Dav02), (DSZ04) and
in general non-normal phenomena (TC04), (TE05) has made non-self-adjoint operators
and pseudospectral theory indispensable. This emphasizes the importance of the general
problem and poses a slightly philosophical problem, namely, could there be operators
whose spectra we can never determine. If such operators are indispensable in areas of
mathematical physics it may lead to serious restrictions to our possible understanding of
some physical systems.

In Chapter 2 we will discuss two well known approaches, namely, the finite section
method and the infinite dimensional QR-algorithm. There is a vast literature on the finite
section method, and we will only give reference to a selection of the written work on this
topic (Arv91), (Arv93b), (Arv93a), (Arv94a), (Arv94b), (Bro06), (Bro07a). Our approach
is very much inspired by the work of Arveson and Brown.

The infinite dimensional QR algorithm occurred first in the paper “Toda Flows with
Infinitely Many Variables” (DLT85) by Deift, Li and Tomei. The Toda Flow is normally
associated with tridiagonal self-adjoint matrices, and therefore, the emphasis in (DLT85)
is on self-adjoint problems. In Chapter 2 we will show some new results regarding the
convergence of the infinite dimensional QR algorithm for normal operators. Also, it should
be pointed out that even though the results presented here are very close in spirit to the
theory presented in (DLT85), the mathematical approaches deviate substantially.

Chapter 3 is devoted to the general non-normal spectral problem, and the most im-
portant tool used is the Complexity Index. The Complexity Index is meant as a device for
classification of spectral problems. To be more explicit one would like to determine how
difficult it is to approximate spectra of operators in a certain class, e.g. it may be easier to
approximate spectra of compact operators than non-compact, and the Complexity Index
is suited for these issues.

The last chapter in Part I is devoted to Szegő-type theorems (Sze20) on convergence
of densities, where we start by extending some of the results by Arveson in (Arv93a),
(Arv94a), (Arv94b) to unbounded operators. These results are exclusive to self-adjoint
operators, but by using some very intriguing developments by Haagerup and Shultz (HS07)
we are able to introduce some non-normal Szegő-type theorems. The crucial ingredient in
this framework is the Brown measure (Bro86).



1.1 Background and Notation 5

1.1 Background and Notation

We will in this section review some basic definition and introduce the notation used in the
dissertation. Throughout the thesis H will always denote a separable Hilbert space, B(H)
the set of bounded linear operators, C(H) the set of densely defined closed linear operators
and SA(H) the set of self-adjoint operators on H. For T ∈ C(H) the domain of T will be
denoted by D(T ) and the spectrum by σ(T ). Also, if T − z is invertible, for z ∈ C, we
use the notation R(z, T ) = (T − z)−1. We will denote orthonormal basis elements of H
by ej , and if {ej}j∈N is a basis and ξ ∈ H then ξj = 〈ξ, ej〉. The word basis will always
refer to an orthonormal basis. If H is a finite-dimensional Hilbert space with a basis {ej}
then LTpos(H) will denote the set of lower triangular matrices (with respect to {ej}) with
positive elements on the diagonal. The closure of a set Ω ∈ C will be denoted by Ω or
cl(Ω). Throughout the thesis we will only consider operators T such that σ(T ) 6= C and
σ(T ) 6= ∅, hence this assumption will not be specified in any of the upcoming theorems.

Convergence of sets in the complex plane will be quite crucial in our analysis and hence
we need the Hausdorff metric as defined by the following.

Definition 1.1.1. (i) For a set Σ ⊂ C and δ > 0 we will let ωδ(Σ) denote the δ-
neighborhood of Σ (i.e. the union of all δ-balls centered at points of Σ).

(ii) Given two sets Σ,Λ ⊂ C we say that Σ is δ-contained in Λ if Σ ⊂ ωδ(Λ).

(iii) Given two compact sets Σ,Λ ⊂ C their Hausdorff distance is

dH(Σ,Λ) = max{sup
λ∈Σ

d(λ,Λ), sup
λ∈Λ

d(λ,Σ)}

where d(λ,Λ) = infρ∈Λ |ρ− λ|.

If {Λn}n∈N is a sequence of compact subsets of C and Λ ⊂ C is compact such that
dH(Λn,Λ) → 0 as n→∞ we may use the notation Λn −→ Λ.

As for the convergence of operators we follow the notation in (Kat95). Let E ⊂ B and
F ⊂ B be closed subspaces of a Banach space B. Define

δ(E,F ) = sup
x∈E

‖x‖=1

inf
y∈F

‖x− y‖

and
δ̂(E,F ) = max[δ(E,F ), δ(F,E)].

If A and B are two closed operators, with domains D(A) and D(B), their graphs

G(A) = {(ξ, η) ∈ H ×H : ξ ∈ D(A), η = Aξ} (1.1.1)

and G(B) are closed subspaces of H×H. We can therefore define (with a slight abuse of
notation) the distance between A and B by

δ̂(A,B) = δ̂(G(A), G(B)).

If {Tn}n∈N is a sequence of closed operators converging in the distance suggested above to
a closed operator T then we may sometimes use the notation

Tn
δ̂−→ T, n→∞.
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Note that δ̂ is not a metric. To define a metric on C(H) there are several possibilities.
We will discuss two approaches here that will be useful later on in the paper. For closed
operators A and B define

d(A,B) = max

[
sup
ξ∈SA

dist(ξ, SB), sup
ξ∈SB

dist(ξ, SA)

]
,

where dist(ξ, SA) = infη∈SA
‖ξ − η‖ and SA and SB are the unit spheres of G(A) and

G(B), respectively. As shown in (Kat95) d is a metric on C(H) with the property that

δ̂(A,B) ≤ d(A,B) ≤ 2δ̂(A,B).

A more practical metric for our purpose is the one suggested in (CL63). The definition is
as follows

p(A,B) = [‖RA −RB‖2 + ‖RA∗ −RB∗‖2 + 2‖ARA −BRB‖2]1/2,

where RA = (1 +A∗A)−1. For our purposes it is important to link p to δ̂ and that follows
from the fact, as proved in (CL63), that p and d are equivalent as metrics on C(H) . In
particular we have

d(A,B) ≤
√

2p(A,B) ≤ 2d(A,B).

The following fact will be useful in the later developments.

Theorem 1.1.2. ((Kat95) p.204) Let T, S ∈ C(H) and A ∈ B(H). Then

δ̂(S +A, T +A) ≤ 2(1 + ‖A‖2)δ̂(S, T ).



Chapter 2

Finite Sections and Infinite QR

This chapter follows up on the ideas initiated by Arveson in (Arv94a) and (Arv91),
(Arv93b), (Arv93a), (Arv94b) on how to approximate spectra of linear operators on sep-
arable Hilbert spaces using the finite section method. We extend several of the theorems
initiated by Arveson and also introduce some new variants of the finite section method
that are beneficial for some special structured problems. These new ideas come from well
known techniques in matrix analysis and we show how to extend these approaches to in-
finite dimensions. We also investigate the method introduced by Deift, Li and Tomei in
(DLT85), namely, the infinite-dimensional QR algorithm. The work done here was devel-
oped independently of the work in (DLT85), and the author is indebted to Percy Deift
for pointing out the connection. However, Deift et al. should be credited for being the
first to discover the surprisingly useful infinite-dimensional version of the QR algorithm.
Our techniques involve normal operators whereas the theory in (DLT85) focuses on the
self-adjoint case, and thus our frameworks deviate substantially.

2.1 Quasidiagonality and the Finite-Section Method

The finite-section method for approximating the spectrum of bounded self-adjoint opera-
tors on Hilbert spaces is a well-known technique and has been studied in several articles
and monographs (Arv94a), (Bro07a), (BS99), (HRS01). The approach is to first find a
sequence of finite rank projections {Pn} such that Pn+1 ≥ Pn and Pn → I strongly, and
then use known techniques to find the spectrum of the compression An = PnAPn.

The most obvious approach is to use some orthonormal basis {en} for the Hilbert space
H and then let Pn be the projection onto sp{e1, . . . en}. Given a self-adjoint A ∈ B(H)
and {en} we may consider the associate infinite matrix (aij)

aij = 〈Aej , ei〉, i, j = 1, 2, . . . .

In this case the compression becomes An ∈ B(Hn), where Hn = PnH, An = PnAdHn ,
where the matrix with respect to {e1, . . . , en} is

An =


a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
. . .

...
an1 an2 . . . ann

 .

7



8 Chapter 2. Finite Sections and Infinite QR

The operator-theoretical question is to analyze how the spectrum σ(PnAdPnH) evolves as
n→∞.

Definition 2.1.1. Given a sequence {An} ⊂ B(H), define

Λ = {λ ∈ R : ∃λn ∈ σ(An), λn → λ}.

Also, for every set S of real numbers let Nn(S) (and Ñn(S)) denote the number of eigen-
values counting multiplicity (and not counting multiplicity respectively) of An which belong
to S.

Definition 2.1.2. (i) A point λ ∈ R is called essential if, for every open set U ⊂ R
containing λ, we have

lim
n→∞

Nn(U) = ∞.

The set of essential points is denoted Λe

(ii) λ ∈ R is called transient if there is an open set U ⊂ R containing λ such that

sup
n≥1

Nn(U) <∞.

Theorem 2.1.3. (Arveson)(Arv94a) Let A ∈ B(H) and let {Pn} be a sequence of projec-
tions converging strongly to the identity such that Pn+1 ≥ Pn. Define An = PnAdPnH and
let Λ and Λe be as in definitions 2.1.1 and 2.1.2. Then σ(A) ⊂ Λ and σe(A) ⊂ Λe.

Definition 2.1.4. (i) A filtration of H is a sequence F = {H1,H2, . . .} of finite dimen-
sional subspaces of H such that Hn ⊂ Hn+1 and

∞⋃
n=1

Hn = H

(ii) Let F = {Hn} be a filtration of H and let Pn be the projection onto Hn. The degree
of an operator A ∈ B(H) is defined by

deg(A) = sup
n≥1

rank(PnA−APn).

Arveson gave in (Arv94a), (Arv94b) a complete theory of the finite-section method
applied to operators of finite degree, which is an abstraction of band-limited infinite ma-
trices. We will not discuss that theory here, but refer the reader to the original articles.
We will however present the following theorem, which is a special case of Theorem 3.8 in
(Arv94a), to give the reader an impression of what one can expect to get when using the
finite-section method.

Theorem 2.1.5. (Arveson)(Arv94a) Let A ∈ B(H) be self-adjoint and

F = {H1,H2, . . .}

be a filtration with corresponding projections {Pn}. Define An = PnAdPnH and let Λ and
Λe be as in definitions 2.1.1 and 2.1.2. Suppose that A has finite degree with respect to F .
Then
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(i) σe(A) = Λe

(ii) Every point of Λ is either transient or essential.

In this section we will investigate how the finite section method can be applied to
quasi-diagonal operators. First we recall some basic definitions as well as some well know
results.

Definition 2.1.6. An operator A on a separable Hilbert space is diagonal if there exists
a complete orthonormal set of eigenvectors of A.

Definition 2.1.7. An operator A on a separable Hilbert space is quasi-diagonal if there
exists an increasing sequence {Pn} of finite rank projections such that PnH ⊂ D(A),
Pn → I, strongly, and ‖PnA−APn‖ → 0. The sequence {Pn} is said to quasi-diagonalize
A.

Before the next definition we need to recall that an unbounded operator A is said to
commute with the bounded operator T if

TA ⊂ AT.

This means that whenever ξ ∈ D(A), then Tξ also belongs to D(A) and ATξ = TAξ.

Definition 2.1.8. An operator A on a separable Hilbert space is said to be block diagonal
with respect to an increasing sequence {Pn} of finite-dimensional projections converging
strongly to I if A commutes with Pn+1 − Pn for all n.

Note that if A is self-adjoint and PnH ⊂ D(A) then Definition 2.1.8 is equivalent to
each of the assertions

(i) Pn commutes with A for every n.

(ii) APnH ⊂ PnH.

The following theorem assures us the existence of a vast set of quasi-diagonal operators.

Theorem 2.1.9. (Weyl,von Neumann, Berg)(Ber71) Let A be a (not necessarily bounded)
normal operator on the separable Hilbert space H. Then for ε > 0 there exist a diagonal
operator D and a compact operator C such that ‖C‖ < ε and A = D + C.

Corollary 2.1.10. Every normal operator is quasi-diagonal.

We will need a couple of basic lemmas.

Lemma 2.1.11. (Davies, Plum)(DP04) Let A ∈ B(H) be self-adjoint, P be a projection
and ε > 0 such that ‖PAP −AP‖ ≤ ε. If λ ∈ σ(PAP ) then (λ− ε, λ+ ε) ∩ σ(A) 6= ∅.

Lemma 2.1.12. Let A ∈ B(H) be self-adjoint and compact. Let {Pn} be a sequence of
finite-dimensional projections such that Pn → I strongly. Then PnAPn → A in norm.

Proof. Since P⊥n = I−Pn is a sequence of projections tending strongly to zero, ‖AP⊥n ‖ → 0.
Since P⊥n A is the adjoint of AP⊥n , its norm tends to zero as well, so that

‖A− PnAPn‖ = ‖P⊥n A+ PnAP
⊥
n ‖ ≤ ‖P⊥n A‖+ ‖AP⊥n ‖ −→ 0, n→∞.
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Lemma 2.1.13. Let A be a self-adjoint (not necessarily bounded) operator on a separable
Hillbert space H with domain D(A) and a quasidiagonalizing sequence {Pn}. Then A =
D+C where D is self-adjoint with domain D(D) = D(A) and block diagonal with respect
to some subsequence {Pnk

}. Also, C is compact and self-adjoint.

Proof. To see this we can extend Halmos’ proof in (Hal70) to unbounded operators. Now,
by possibly passing to a subsequence, we may assume that

∑
n ‖PnA − APn‖ < ∞. The

fact that Pn ≥ Pn−1 assures us that Pn − Pn−1 is a projection. Thus, we may decompose
H =

⊕∞
n=1(Pn+1 − Pn)H and define D on

D(D) = sp{ξ ∈ H : ξ ∈ (Pn+1 − Pn)H}

in the following way. If ξ ∈ (Pn+1 − Pn)H then Dξ = (Pn+1 − Pn)A(Pn+1 − Pn)ξ. Now D
is densely defined, with D(D) ⊂ D(A), and obviously (by definition) block diagonal with
respect to {Pn}. Define the operator C on D(C) = D(D) by C = A − D. We will show
that C is compact on H. Indeed, by letting

Cn = Pn+1(APn − PnA)Pn − Pn(APn − PnA)Pn+1

we can form the operator C̃ =
∑

nCn since ‖Cn‖ ≤ 2‖APn−PnA‖ and
∑

n ‖PnA−APn‖ <
∞, hence the previous sum is norm convergent. Also, since Cn is finite dimensional and
therefore compact it follows that C̃ is compact. A straightforward calculation shows that
C̃ = C on D(C) which is dense, thus we can extend C to C̃ on H. It is easy to see that
Cn is self-adjoint since A is self-adjoint and hence C is self-adjoint. Let D̃ = A−C. Then
D(D̃) = D(A) and D̃ is a self-adjoint extension of D. Also, since D̃ is an extension of D
(which is block diagonal with respect to {Pn}) it follows that D is block diagonal with
respect to {Pn}.

Theorem 2.1.14. Let A be a self-adjoint operator (not necessary bounded) on the sepa-
rable Hilbert space H and let {Pn} be a sequence of projections that quasi-diagonalizes A.
If K ⊂ R is a compact set such that σ(A) ∩K 6= ∅, then

σ(PnAdPnH) ∩K −→ σ(A) ∩K, n→∞

in the Hausdorff distance.

Proof. To prove the assertion we need to establish the following; given δ > 0 then

σ(PnAdPnH) ∩K ⊂ ωδ(σ(A) ∩K)

and
ωδ(σ(PnAdPnH) ∩K) ⊃ σ(A) ∩K

for all sufficiently large n. The second inclusion follows by Theorem VIII.24 ((RS72), p.
290) if we can show that PnAPn → A in the strong resolvent sense. By Theorem VIII.25
((RS72), p. 292) it suffices to show that PnAPnξ → Aξ for ξ ∈ D(A), which is a common
core for {PnAPn} and A, and this is easily seen. To see the first inclusion note that it will
follow if we can show that

σ(Pnk
AdPnk

H) ∩K ⊂ ωδ/2(σ(A) ∩K) (2.1.1)
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when k is large, for some subsequence {Pnk
}. Indeed, if that is the case we only need to

show that
σ(PmAdPmH) ⊂ ωδ/2(σ(Pnk

AdPnk
H))

for large m and nk where m ≤ nk. Now this is indeed the case because we may assume, by
appealing to Lemma 2.1.13 and possibly passing to another subsequence, that A is block
diagonal with respect to {Pnk

}. Thus,

‖PmPnk
APnk

Pm − Pnk
APnk

Pm‖ = ‖PmAPm −APm‖ −→ 0, m→∞,

by assumption, and hence the desired inclusion follows by appealing to Lemma 2.1.11.
Now we return to the task of showing (2.1.1). Note that by the spectral mapping

theorem, the spectra σ(PnAdPnH) and σ(A) are the images of σ((Pn(A+ i)dPnH)−1) and
σ((A+ i)−1), respectively, under the mapping f(x) = 1/x− i. Note that

f−1(σ(PnAdPnH) ∩K), f−1(ωδ((σ(A) ∩K)))

are both compact and neither contain zero. Thus, by the continuity of f on C \ {0} and
again the spectral mapping theorem, the assertion follows if we can prove that

σ((Pn(A+ i)dPnH)−1) ⊂ ωδ(σ((A+ i)−1)) (2.1.2)

for arbitrary δ > 0 and large n. By Lemma 2.1.13 we have that A = D + C where D is
self-adjoint and block diagonal with respect to some subsequence {Pnk

} and C is compact
and self-adjoint. To simplify the notation we use the initial indexes for the subsequence.
We first observe that

(D + PnCPn + i)−1 → (D + C + i)−1 (2.1.3)

in norm. Indeed, an easy manipulation gives us

‖(D+C + i)−1 − (D + PnCPn + i)−1‖
≤ ‖(D + C + i)−1‖‖C − PnCPn‖‖(D + PnCPn + i)−1‖,

where ‖(D+PnCPn+i)−1‖ is bounded by the spectral mapping theorem since C−PnCPn
is self-adjoint. Since, by Lemma 2.1.12, ‖C−PnCPn‖ → 0, (2.1.3) follows. The normality
of (D + C + i)−1 and (D + PnCPn + i)−1 assures us that for any δ > 0 we have

σ((D + PnCPn + i)−1) ⊂ ωδ(σ((D + C + i)−1))

for sufficiently large n. Hence, to finish the proof we have to show that

σ((Pn(A+ i)dPnH)−1) ⊂ σ((D + PnCPn + i)−1).

In fact we have

σ((D + PnCPn + i)−1) = σ((Pn(A+ i)dPnH)−1) ∪ σ(((D + i)dP⊥n H)−1).

Indeed,
(D + PnCPn + i) = ((D + PnCPn + i)dPnH)⊕ (D + i)dP⊥n H.

So

(D + PnCPn + i)−1 = ((D + PnCPn + i)dPnH)−1 ⊕ ((D + i)dP⊥n H)−1

= (Pn(A+ i)dPnH)−1 ⊕ ((D + i)dP⊥n H)−1,

implying the assertion.
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As for the convergence of eigenvectors of the finite-section method, very little has been
investigated, however we have the following:

Proposition 2.1.15. Let {An} be a sequence of self-adjoint bounded operators on H
such that An → A strongly. Then if {λn} is a sequence of eigenvalues of An such that
λn → λ ∈ σ(A), and if {ξn} is a sequence of unit eigenvectors corresponding to {λn}, such
that {ξn} does not converge weakly to zero, then there is a subsequence {ξnk

} such that
ξnk

w→ ξ where Aξ = λξ

Proof. Since {ξn} does not converge weakly to zero and by weak compactness of the unit
ball in H we can find a weakly convergent subsequence such that ξnk

w−→ ξ 6= 0. To see
that Aξ = λξ we observe that this will follow if we can show that λnk

ξ
w−→ Aξ. But

the latter follows easily if we can show that λnk
ξnk

− λnk
ξ

w−→ 0, Ank
ξ − Aξ

w−→ 0 and
Ank

ξ−Ank
ξnk

w−→ 0. The first two are obvious and the last follows from the fact that for
η ∈ H we have

〈Ank
(ξ − ξnk

), η〉 = 〈ξ − ξnk
, Ank

η〉
= 〈ξ − ξnk

, Aη〉+ 〈ξ − ξnk
, (Ank

−A)η〉 −→ 0,

as k →∞.

2.2 Divide and conquer

The divide-and-conquer technique has its origin in finite-dimensional matrix analysis. The
idea was originally to divide the problem into smaller problems for simplicity reasons, a
concept we will not discuss here. Since the crucial assumption for the procedure is that
the operator acts on a finite dimensional space, we can not use it directly and we will not
discuss its details here, but refer the reader to (Cup81). However, one can use the concept
of the method to improve the results of Theorem 2.1.5 for tridiagonal infinite matrices.
How to reduce the original spectral problem to a spectral problem for tridiagonal operators
is discussed in section 2.4.

Definition 2.2.1. Let A ∈ B(H) and {ej} be an orthonormal basis for H. A is said to be
tridiagonal with respect to {ej} if 〈Aej , ei〉 = 0 for |i− j| ≥ 2.

Let A ∈ B(H) be self-adjoint and {ej} be an orthonormal basis for H. Suppose that A
is tridiagonal with respect to {ej} and suppose that aij = 〈Aej , ei〉 for i, j = 1, 2, . . . is real.
It is easy to see that this is no restriction. Let Pn be the projection onto sp{e1, . . . , en}.
In the finite-section method one decomposes A into

A = PnAPn ⊕ P⊥n AP
⊥
n + T, T ∈ B(H),

and then computes the spectrum of PnAPn. The idea of the divide-and-conquer approach
is to decompose A into

A = A1,n ⊕A2,n + βη ⊗ η, η ∈ H,

where A1,n ∈ B(PnH), A2,n ∈ B(P⊥n H), η = en + en+1 and then compute σ(A1,n). It is
easy to see that the divide and conquer technique is very close to the finite-section method
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i.e. we have 〈PnAPnej , ei〉 = 〈A1,nej , ei〉 for all i, j except for i = j = n. The goal is to
improve the results in Theorem 2.1.5.

In finite dimensions one has the following theorem (Cup81) which gave us the idea to
a more general theorem in infinite dimensions.

Theorem 2.2.2. (Cuppen) Let D be a diagonal (real) matrix,

D = diag(d1, . . . , dn)

where n ≥ 2 and d1 < d2 < . . . < dn. Let η ∈ Rn with ηi 6= 0 for i = 1, . . . , n and β > 0 be
a scalar. Then the eigenvalues {λ1, . . . , λn} of the matrix D + βη ⊗ η satisfy

d1 < λ1 < d2 < λ2 < . . . < dn < λn < dn + β‖η‖2.

Some of the techniques in the proof of the next theorem are inspired by the proof
of Theorem 2.2.2 which can be found in (Cup81). Before we can state and prove the
main theorem we need to introduce the concept of Householder reflections in an infinite-
dimensional setting.

Definition 2.2.3. A Householder reflection is an operator S ∈ B(H) of the form

S = I − 2
‖ξ‖2

ξ ⊗ ξ̄, ξ ∈ H.

In the case where H = H1 ⊕H2 and Ii is the identity on Hi then

U = I1 ⊕
(
I2 −

2
‖ξ‖2

ξ ⊗ ξ̄

)
ξ ∈ H2.

will be called a Householder transformation.

A straightforward calculation shows that S∗ = S−1 = S and thus also U∗ = U−1 = U.
An important property of the operator S is that if {ej} is an orthonormal basis for H and
η ∈ H then one can choose ξ ∈ H such that

〈Sη, ej〉 = 〈(I − 2
‖ξ‖2

ξ ⊗ ξ̄)η, ej〉 = 0, j 6= 1.

Indeed, if η1 = 〈η, e1〉 6= 0 one may choose ξ = η±‖η‖ζ, where ζ = η1/|η1|e1 and if if η1 = 0
choose ξ = η ± ‖η‖e1, The verification of the assertion is a straightforward calculation.

Theorem 2.2.4. Let A1,n be defined as above and let {dj}kj=1 = σ(A1,n) be arranged such
that dj < dj+1.

(i) If dl, dl+1 /∈ σ(A), for some l < k, then there is a λ ∈ σ(A) such that dl < λ < dl+1.

(ii) If dj ∈ σ(A1,n) has multiplicity m ≥ 2 then dj ∈ σ(A) and dj is an eigenvalue. Also,
mA1,n(dj) ≤ mA(dj) + 1, where mA1,n(dj) and mA(dj) denote the multiplicity of dj
as an element of σ(A1,n) and σ(A) respectively.
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Proof. We will start with (i). Suppose that dl, dl+1 /∈ σ(A). We will show that σ(A) ∩
(dl, dl+1) 6= ∅. We argue as follows. Let ε > 0, Ia = (−a, a] be an interval contain-
ing σ(A2,n) and let g be a step function on Ia of the form g =

∑m
j=1 χ(aj ,bj ] such that

supx∈Ia |x−g(x)| < ε. Let Ã2,n = g(A2,n). Then σ(Ã2,n) contains only isolated eigenvalues
and ‖Ã2,n −A2,n‖ < ε. Also, let

Ã = A1,n ⊕ Ã2,n + βη ⊗ η.

Then Ã is self-adjoint and ‖Ã−A‖ < ε so

dH(σ(Ã), σ(A)) < ε

where dH denotes the Hausdorff metric. Also, by choosing ε small enough we have
dl, dl+1 /∈ σ(Ã). Note that, since ε is arbitrary and σ(A) is closed, the assertion that
σ(A) ∩ (dl, dl+1) 6= ∅ will follow if we can show that σ(Ã) ∩ (dl, dl+1) 6= ∅.

Let Pn be the projection onto sp{ej}nj=1. Now, choose a unitary operator Q1 on PnH
such that Q1A1,nQ

∗ = D1 where D1 is diagonal with respect to {ej}nj=1. Since σ(Ã2,n)
contains only finitely many eigenvalues we may choose a unitary Q2 on ranP⊥n such that
Q2Ã2,nQ

∗
2 = D2 is diagonal with respect to {ej}∞j=n+1. Thus,

(Q1 ⊕Q2)(A1,n ⊕ Ã2,n + βη ⊗ η)(Q∗1 ⊕Q∗2) = D1 ⊕D2 + βξ ⊗ ξ̄,

where a straightforward calculation shows that ξ = Q1en ⊕Q2en+1. Let D = D1 ⊕D2.
Claim1: There exists a unitary operator U and an integer N such that

〈Uξ, ei〉 = 0

for i ≥ N + 1 and 〈Uξ, ei〉 6= 0 for i ≤ N, and also that UDU∗ is diagonal with respect
to {ej}. Note that the claim will follow if we can show that there is a unitary operator V
such that 〈V ξ, ej〉 6= 0 only for finitely many js and that V DV ∗ = D. Indeed, if we have
such a V then we can find a unitary operator Ṽ that permutes {ej} such that U = Ṽ V is
the desired unitary operator mentioned above.

To construct V we first note that, since D is diagonal with respect to {ej}, the spectral
projections χλ(D), λ ∈ σ(D) are also diagonal with respect to {ej}. Note that

D =
⊕

λ∈σ(D)

λχλ(D).

We will use this decomposition to construct V. Let

iλ = inf{j : χλ(D)ej 6= 0}.

If χλ(D)ξ = 0 let Vλ = I on χλ(D)H. If not, choose a Householder reflection on χλ(D)H,

S = I − 2
‖ζ‖2

ζ ⊗ ζ̄, ζ ∈ χλ(D)H,

such that
〈Sχλ(D)ξ, eiλ〉 6= 0 and 〈Sχλ(D)ξ, ei〉 = 0, i ≥ iλ + 1. (2.2.1)
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Let Vλ = S. The fact that χλ(D) for λ ∈ σ(D) is diagonal with respect to {ej} gives
Vλχλ(D)V ∗

λ = χλ(D). Letting
V =

⊕
λ∈σ(D)

Vλ (2.2.2)

we get V DV ∗ = D and thus we have constructed the desired unitary operator V whose
existence we asserted. As argued above, this yields existence of the unitary operator U
asserted in Claim1. Let N = max{j : 〈Uξ, ej〉 6= 0}, let PN be the projection onto
sp{ej}Nj=1 and D̃ = UDU∗.

Claim2: If λ ∈ σ(PND̃dPNH) then λ has multiplicity one. We argue by contradiction.
Suppose that λ ∈ σ(PND̃dPNH) has multiplicity greater than one. Then 〈D̃ep, ep〉 =
〈D̃eq, eq〉 = λ for some p, q ≤ N. Also, 〈Uξ, ep〉 6= 0 and 〈Uξ, eq〉 6= 0. Thus, it follows from
the construction of U that 〈Dep̃, ep̃〉 = 〈Deq̃, eq̃〉 = λ for some integers p̃ and q̃, and hence
ep̃, eq̃ ∈ ranχλ(D). Also 〈V ξ, ep̃〉 6= 0 and 〈V ξ, eq̃〉 6= 0 and thus it follows that

〈Vλχλ(D)ξ, ej〉 = 〈
⊕

λ∈σ(D)

Vλξ, ej〉 6= 0, j = p̃, q̃,

and this contradicts (2.2.1). Armed with the results from Claim1 and Claim2 we can now
continue with the proof.

Let ζ = Uξ. We then have

U(D + βξ ⊗ ξ̄)U∗ = (PND̃PN + βPNζ ⊗ PNζ)dPNH⊕P
⊥
N D̃dP⊥NH,

since P⊥N (ζ ⊗ ζ̄) = (ζ ⊗ ζ̄)P⊥N = 0. So, with a slight abuse of notation we will denote PNζ
just by ζ. Note that

σ(Ã) = σ((PND̃PN + βζ ⊗ ζ̄)dPNH) ∪ σ(P⊥N D̃dP⊥NH) (2.2.3)

and hence our primary goal to prove that σ(Ã)∩(dl, dl+1) 6= ∅ has been reduced to showing
that

σ((PND̃PN + βζ ⊗ ζ̄)dP⊥NH) ∩ (dl, dl+1) 6= ∅. (2.2.4)

Before continuing with that task note that

dl, dl+1 ∈ σ(PND̃dPNH). (2.2.5)

Indeed, it is true, by the construction of D̃, that dl, dl+1 ∈ σ(D̃). But by (2.2.3) it follows
that σ(P⊥N D̃P

⊥
N ) ⊂ σ(Ã) and since dl, dl+1 /∈ σ(Ã) the assertion follows. This observation

will be useful later in the proof.
Now returning to the task of showing (2.2.4), let D̂ = PND̃dPNH and then let λ be an

eigenvalue of D̂ + βζ ⊗ ζ̄ with corresponding nonzero eigenvector η. Here ζ ⊗ ζ̄ denotes,
with a slight abuse of notation, the operator (ζ ⊗ ζ̄)dPNH. Then we have

(D̂ + βζ ⊗ ζ̄)η = λη so (D̂ − λI)η = −β〈η, ζ〉ζ. (2.2.6)

Note that D̂− λI is nonsingular. Indeed, had it been singular, we would have had λ = d̂i
for some i ≤ N, where {d̂j}Nj=1 = σ(D̂). Hence, by (2.2.6), we have

〈(D̂ − λI)η, ei〉 = −β〈η, ζ〉〈ζ, ei〉 = 0.
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But, since ζ = Uξ and by Claim1, it is true that 〈ζ, ei〉 6= 0, so 〈η, ζ〉 = 0. Thus, by (2.2.6),
it follows that (D̂−λI)η = 0, so 〈(D̂−λ)η, ej〉 = 0 for j ≤ N. Note that, by Claim2, σ(D̂)
contains only eigenvalues with multiplicity one, thus we have λ = d̂i only for one such i.
Thus, 〈η, ej〉 = 0 for j 6= i, so

〈η, ζ〉 = 〈ζ, ei〉〈η, ei〉 = 0.

But we have assumed that η 6= 0 so 〈η, ei〉 6= 0 and therefore 〈ζ, ei〉 = 0, a contradiction.
We therefore deduce that D̂−λI is nonsingular and 〈η, ζ〉 6= 0. Thus, by (2.2.6), it follows
that

η = −β〈η, ζ〉(D̂ − λI)−1ζ

and
〈η, ζ〉(1 + β〈(D − λI)−1ζ, ζ〉) = 〈η, ζ〉f(λ) = 0,

where

f(λ) = 1 + β

N∑
j=1

|ζj |2

d̂j − λ
, ζj = 〈ζ, ej〉.

Since 〈η, ζ〉 6= 0 it follows that f(λ) = 0. Note that, by (2.2.5), it is true that dl, dl+1 ∈
{d̂j}Nj=1 and so by the properties of f it follows that there is at least one

λ ∈ σ(D̂ + βζ ⊗ ζ̄)

such that dl < λ < dl+1, proving (2.2.4).
To show (ii) we need to prove that if σ(A1,n) has an eigenvalue d with multiplicity

m > 1 then d ∈ σ(A) and mA1,n(d) ≤ mA(d)+1. To prove that we proceed as in the proof
of (i). Let Pn be the projection onto sp{ej}nj=1. Now, choose a unitary operator Q1 on
PnH such that Q1A1,nQ

∗
1 = D1 where D1 is diagonal with respect to {ej}nj=1 so that

(Q1 ⊕ I2)(A1,n ⊕A2,n+βη ⊗ η)(Q∗1 ⊕ I2)
= D1 ⊕A2,n + β(ζ ⊕ en+1)⊗ (ζ̄ ⊕ en+1),

where I2 is the identity on P⊥n H and ζ = Q1en. For any set S let #S denote the number
of elements in S. Note that the assertion will follow if we can show that there is a unitary
operator V on PnH, such that V D1V

∗ = D1, and that

#{ej : 〈χd(D1)V ζ, ej〉 6= 0, 1 ≤ j ≤ n} ≤ 1. (2.2.7)

Indeed, if so is true, we have that

D1 ⊕A2,n + β(ζ ⊕ en+1)⊗ (ζ̄ ⊕ en+1)

is unitarily equivalent to

B = D1 ⊕A2,n + β(V ζ ⊕ en+1)⊗ (V ζ ⊕ en+1),

and Λ = {ej : 〈V ζ, ej〉 = 0} are all eigenvectors of B. Also, the eigenvalue corresponding
to the set

Λ̃ = {ej ∈ Λ : χd(D1)ej 6= 0}
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is d. Thus, by (2.2.7), we get the following estimate

mA(d) ≥ #Λ̃
≥ dim(ranχd(D1))−#{ej : 〈χd(D1)V ζ, ej〉 6= 0, 1 ≤ j ≤ n}
≥ mA1,n(d)− 1,

and this proves the assertion. The existence of V follows by exactly the same construction
as done in the proof of Claim1 in the proof (i) by using Householder reflections.

Note that the following theorem is similar to Theorem 2.3 and Theorem 3.8 in (Arv94a)
and the proof requires similar techniques. Since the divide-and-conquer method is different
form the finite-section method, we cannot use the theorems in (Arv94a) directly. However,
one should note that the following theorem gives much stronger estimates on the behavior
of the false eigenvalues that may occur.

Theorem 2.2.5. Let {A1,n} be the sequence obtained from A as in Theorem 2.2.4 (recall
also definitions 2.1.1 and 2.1.2).

(i) σ(A) ⊂ Λ.

(ii) Let a ∈ σe(A)c. Then a is transient.

(iii) If U ⊂ R is an open interval such that U ∩ σ(A) = ∅ then Nn(U) ≤ 1. If U ∩ σ(A)
contains only one point then Ñn(U) ≤ 3.

(iv) Let λ be an isolated eigenvalue of A with multiplicity m. If U ⊂ R is an open interval
containing λ such that U \ {λ} ∩ σ(A) = ∅ then Ñn(U) ≤ m+ 3.

(v) σe(A) = Λe,

(vi) Every point of R is either transient or essential.

Proof. Now, (i) follows from the fact that A1,n → A strongly (see Theorem VIII.24 in
(RS72), p. 290), which is easy to see. Also, (iii) follows immediately by Theorem 2.2.4
and (ii) follows by (iii) and (iv). Indeed, assuming (iv) we only have to show that if
a ∈ σ(A)c then a is transient and this follows from (iii). Hence, we only have to prove
(iv). Let λ be an isolated eigenvalue of A with multiplicity m. If U ⊂ R is an open interval
containing λ such that U \ {λ} ∩ σ(A) = ∅ then, by (iii), we have Ñn(U) ≤ 3. But, by
Theorem 2.2.4, we can have Ñn(U) ≤ 3 and Nn(U) > 3 only if λ ∈ σ(A1,n). Also, by
Theorem 2.2.4, mA1,n(λ) ≤ m+ 1, and this yields the assertion.

To get (v) and (vi) we only have to show that σe(A) ⊂ Λe. Indeed, by (ii), we have
σe(A)c ⊂ Λce, so if σe(A) ⊂ Λe then (v) follows. But then R \ Λe = R \ σ(A)e and the
left hand side of the equality is, by (ii), contained in the set of transient points, thus we
obtain (vi).

To show that σe(A) ⊂ Λe we will show that Λce ⊂ σe(A)c. Let λ ∈ Λce. We will show
that λ ∈ σe(A)c. Note that, by the definition of the essential spectrum, this follows if we
can show that there is an operator T ∈ B(H) such that T (A− λI) = (A− λI)T = I + C,
where C is compact.

Since λ ∈ Λce there is a subsequence {nk} ⊂ N, an ε > 0, and an integer K such that
for Ω = (λ − ε, λ + ε) then Nnk

(Ω) ≤ K. Let Pk be the projection onto sp{ej}nk
j=1 and
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Ek = χΩ(A1,nk
). Then A1,nk

, Pk and Ek all commute, so we can let Bk = (A1,nk
− λI)|Hk

whereHk = ran(PkE⊥k ). Note that Bk must be invertible with ‖B−1
k ‖ ≤ ε−1. Since PkE⊥k =

Pk − Ek, we deduce that

(A1,nk
− λI)B−1

k (Pk − Ek) = B−1
k (Pk − Ek)(A1,nk

− λI) = Pk − Ek. (2.2.8)

Since {B−1
k } is bounded and norm closed, while bounded sets of B(H) are weakly sequen-

tially compact, we may assume, by possibly passing to a new subsequence that

WOT lim
k→∞

B−1
k (Pk − Ek) = T ∈ B(H), WOT lim

k→∞
Ek = C ∈ B(H).

The fact that A1,n −→ A strongly together with the uniform boundedness of B−1
k (Pk−Ek)

allow us to take weak limits in (2.2.8) and we get T (A− λI) = (A− λI)T = I + C.
Note that C is compact, in fact it is trace class. For dimEk ≤ K so trace(Ek) ≤ K

and {H ∈ B(H) : trace(H) ≤ K} is weakly closed.

Corollary 2.2.6. Let λ ∈ σe(A) be an isolated eigenvalue. Then λ ∈ σ(A1,n) for all
sufficiently large n. Moreover, mn(λ) −→ ∞, where mn(λ) is the multiplicity of λ as an
element of σ(A1,n).

Proof. Since, by Theorem 2.2.5, σe(A) = Λe, for any open neighborhood U around λ we
have Nn(U) →∞. Let U be an open interval containing λ such that (U \{λ})∩σ(A) = ∅.
Then, by Theorem 2.2.4, U ∩ σ(A1,n) cannot contain more that three distinct points, and
since Nn(U) →∞ it follows that A1,n must have eigenvalues in U with multiplicity larger
than two. Using Theorem 2.2.4 again it follows that λ ∈ σ(A1,n) for all sufficiently large
n. The last assertion of the corollary follows by similar reasoning.

2.3 Detecting false eigenvalues

Let A ∈ B(H) be self-adjoint. The fact that both the finite-section method and the divide
and conquer method may produce points that are not in the spectrum of A poses the
question; can one detect false eigenvalues? The phenomenon of false eigenvalues is well
known and is often referred to as spectral pollution.

Let λ ∈ R. The easiest way to determine whether λ ∈ σ(A) is to estimate

dist(λ, σ(A)) = inf
ξ∈H,‖ξ‖=1

〈(A− λ)2ξ, ξ〉.

Let {Pn} be an increasing sequence of finite-dimensional projections converging strongly
to the identity. Let γ(λ) = dist(λ, σ(A)) and

γn(λ) = inf
ξ∈PnH,‖ξ‖=1

〈(A− λ)2ξ, ξ〉.

It is easy to show that γ and γn are Lipchitz continuous with Lipchitz constant bounded
by one. This implies that γn → γ locally uniformly and hence one can use γn(λ) as an
approximation to dist(λ, σ(A)). Obtaining γn(λ) is done by finding the smallest eigenvalue
of a self-adjoint (finite rank) matrix. In fact γn can be used alone to estimate σ(A) and
that has been investigated in (DP04). However, it seems that a combination of the finite-
section method or the divide-and-conquer method, accompanied by estimates as in the
previous sections and in (Arv94a), with some computed values of γn will give more efficient
computational algorithms, especially for detecting isolated eigenvalues.
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2.4 Tridiagonalization

In the previous section the crucial assumption was that the operator was tridiagonal
with respect to some basis. We will in this section show how we can reduce the general
problem to a tridiagonal one. In the finite-dimensional case every self-adjoint matrix is
tridiagonalizable. This is not the case in infinite dimensions, however, it is well known
that if a self-adjoint operator A ∈ B(H) has a cyclic vector ξ then A is tridiagonal with
respect to the basis {ej} constructed by using the Gram-Schmidt procedure to {Anξ}∞n=0.
The problem is that our operator may not have a cyclic vector, however the following
lemma is well known.

Lemma 2.4.1. Let A ∈ B(H) and let A be the complex algebra generated by A, A∗ and
the identity. Then there is a (finite or infinite) sequence of nonzero A-invariant subspaces
H1,H2 . . . such that:

(i) H = H1 ⊕H2 ⊕ · · ·

(ii) Each Hn contains a cyclic vector ξn for A: Hn = Aξn, n = 1, 2, . . . .

Thus, if we knew the decomposition above we could decompose our operator A into
A = H1 ⊕H2 ⊕ · · · where Hn would have a cyclic vector and hence be tridiagonalizable.
Also, we would have σ(A) =

⋃
j σ(Hj). The problem is: how do we compute Hn? This is

what we will discuss in this section.

Definition 2.4.2. Let A ∈ B(H) and let {ej} be an orthonormal basis for H. A is said to
be Hessenberg with respect to {ej} if 〈Aej , ei〉 = 0 for i ≥ j + 2.

Theorem 2.4.3. Let A be a bounded operator on a separable Hilbert space H and let {ej}
be an orthonormal basis for H. Then there exists an isometry V such that V ∗AV = H
where H is Hessenberg with respect to {ej}. Moreover V = SOT-lim

n→∞
Vn where Vn =

U1 · · ·Un and Uj is a Householder transformation. Also, the projection P = V V ∗ satisfies
PAP = AP.

Proof. We will obtain H as the strong limit of a sequence {V ∗
nAVn} where Vn = U1 · · ·Un

is a unitary operator and Uj is a Householder transformation. The procedure is as follows:
Let Pn be the projection onto sp{e1, . . . , en}. Suppose that we have the n elements in
the sequence and that the n-th element is an operator Hn = V ∗

nAVn that with respect to
H = PnH⊕ P⊥n H has the form

Hn =
(
H̃n Bn
Cn Nn

)
, H̃n = PnHnPn, Bn = PnHnP

⊥
n , Cn = P⊥n HnPn,

where Nn = P⊥n HnP
⊥
n , H̃n is Hessenberg and Cnej = 0 for j < n. Let ζ = Cnen. Choose

ξ ∈ P⊥n H such that the Householder reflection S ∈ B(P⊥n H) defined by

S = I − 2
‖ξ‖2

ξ ⊗ ξ̄, and Un = Pn ⊕ S, (2.4.1)

gives Sζ = {ζ̃1, 0, 0, . . .}, and let Hn+1 = UnHnUn. Hence,

Hn+1 = UnHnUn =
(
H̃n BnS
SCn SNnS

)
=

(
H̃n+1 Bn+1

Cn+1 Nn+1

)
, (2.4.2)
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where the last matrix is understood to be with respect to the decomposition H = Pn+1H⊕
P⊥n+1H. Note that, by the choice of S, it is true that H̃n+1 is Hessenberg and Cn+1ej = 0 for
j < n+1. Defining H1 = A and letting Vn = U1 · · ·Un we have completed the construction
of the sequence {V ∗

nAVn}.
Note that Hn = V ∗

nAVn is bounded, since Vn is unitary (since Uj is unitary). And
since a closed ball in B(H) is weakly sequentially compact, there is an H ∈ B(H) and a
subsequence {Hnk

} such that Hnk

WOT−→ H. But by (2.4.2) it is clear that for any j we
have Hnej = Hmej for sufficiently large m and n. It follows that SOT-limnHn = H.
Also, by(2.4.2) H is Hessenberg. By similar reasoning, using the previous compactness
argument (since Vn is bounded) and the fact that, by (2.4.1), Vnej = Vmej for any j and
m and n sufficiently large, we deduce that there exists a V ∈ B(H) such that

SOT-lim
n→∞

Vn = V, WOT-lim
n→∞

V ∗
n = V ∗.

Since V is the strong limit of a sequence of unitary operators, it follows that V is an
isometry. We claim that V ∗AV = H. Indeed, since multiplication is jointly continuous
in the strong operator topology on bounded sets and Hn = V ∗

nAVn so VnHn = AVn we
have AV = V H. Since V is an isometry the assertion follows. Note that PAP = AP also
follows since PAP = V V ∗AV V ∗ = V HV ∗ = AP.

Corollary 2.4.4. Suppose that the assumptions in Theorem 2.4.3 are true, and suppose
also that A is self-adjoint. Then there exists an isometry V such that V ∗AV = H where H
is tridiagonal with respect to {ej}. Moreover V = SOT-lim

n→∞
Vn where Vn = U1 · · ·Un and

Uj is a Householder transformation. Also, the projection P = V V ∗ satisfies PA = AP.

Proof. Follows immediately from the previous theorem.

In the case where A is self-adjoint, by the previous corollary we have that PA = AP,
where P = V V ∗. Now, the “part” of A, namely P⊥A, that we do not capture with the
construction in the proof of Theorem 2.4.3 can be computed by the already constructed
operators i.e. we have

P⊥A = A− V HV ∗.

Thus, we may apply Theorem 2.4.3 again to P⊥A. And, of course this can be applied
recursively. In other words; consider V ∗

1 AV1 = H1, where H1 is tridiagonal w.r.t {ej}. Let
P1 = V1V

∗
1 . Then P1A = AP1 and P⊥1 A = A− V ∗

1 H1V1. Let H2 = V ∗
2 P

⊥
1 AV2. In general

we have
Hn+1 = V ∗

n+1(A− V1H1V
∗
1 − · · · − VnHnV

∗
n )Vn+1.

Using the previous construction we can actually recover the whole spectrum of A. More
precisely we have the following:

Theorem 2.4.5. Let A be self-adjoint and let

Hn+1 = V ∗
n+1(A− V1H1V

∗
1 − · · · − VnHnV

∗
n )Vn+1

be defined as above. Then

σ(A) =
⋃
n∈N

σ(Hn).
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Proposition 2.4.6. Let {Pj} be a sequence of projections described above i.e. Pj = V ∗
j Vj.

Then sp{e1, . . . , en} ⊂ ran(Pm) for m ≥ n.

Proof. The proof is an easy induction using the fact that e1 ∈ ran(P1), which follows by
the construction of V1.

Proof. Proof of Theorem 2.4.5 Let Pj = V ∗
j Vj and recall that by the construction of Hn

we have
Hn = V ∗

nP
⊥
n−1 · · ·P⊥1 AVn, (2.4.3)

where we have defined recursively

P⊥n−1 · · ·P⊥1 A = A− V1H1V
∗
1 − · · · − Vn−1Hn−1V

∗
n−1,

and by Corollary 2.4.4 it follows that

PnP
⊥
n−1 · · ·P⊥1 A = P⊥n−1 · · ·P⊥1 APn. (2.4.4)

Note that σ(Hn) = σ(P⊥n−1 · · ·P⊥1 AdPnH). Indeed, by Corollary 2.4.4, Vn is an isometry
onto PnH, thus {Vnej} is a basis for PnH, so for

Ã = (P⊥n−1 · · ·P⊥1 A)dPnH

it follows, by (2.4.3), that

〈ÃVnej , Vnei〉 = 〈P⊥n−1 · · ·P⊥1 AVnej , Vnei〉 = 〈Hnej , ei〉,

yielding that σ(Hn) = σ(P⊥n−1 · · ·P⊥1 AdPnH). Let us define the projection

En = Pn ∧ P⊥n−1 ∧ · · · ∧ P⊥1 , E1 = P1,

and note that Ej ⊥ Ei for i 6= j. Now the theorem will follow if we can show that
AEn = EnA,

A =
⊕
n∈N

EnA

and
PnP

⊥
n−1 · · ·P⊥1 A = EnA.

We will start with the former assertion (this is immediate for n = 1 by Corollary 2.4.4).
Indeed, if ξ ∈ ran(En) for n ≥ 2 then, by Corollary 2.4.4,

Aξ = AP⊥1 · · ·P⊥n−1Pnξ = PnP
⊥
n−1 · · ·P⊥1 Aξ = P⊥n−1 · · ·P⊥1 APnξ

= P⊥n−2 · · ·P⊥1 AP⊥n−1Pnξ = · · · etc.
(2.4.5)

Thus, it follows that A ran(En) ⊂ ran(En). Since A is self-adjoint we have that AEn =
EnA. We can now show that A = E1A⊕E2A⊕· · · . First, an easy induction demonstrates
that for any n ∈ N we have

A = E1A⊕ · · · ⊕ EnA⊕ P⊥n · · ·P⊥1 A.
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Note that, by Proposition 2.4.6 and (2.4.4), it follows that P⊥n · · ·P⊥1 Aej = 0 for j ≤ n
thus Aen = (E1A ⊕ · · · ⊕ EnA)en. Also, En+1Aej = 0 for j ≤ n. This gives us that if
T = E1A⊕ E2 ⊕ · · · . Then

Ten = E1A⊕ · · · ⊕ EnAen = Aen

yielding the assertion.
Finally, we will show that PnP⊥n−1 · · ·P⊥1 A = EnA. Note that in (2.4.5) we have also

shown that PnP⊥n−1 · · ·P⊥1 Aξ = Aξ when ξ ∈ ran(En). So, to show that PnP⊥n−1 · · ·P⊥1 A =
EnA, we only have to show that PnP⊥n−1 · · ·P⊥1 Aη = 0 when η ∈ ran(E⊥n ). But, by the
definition of En we have η ∈

⋃n−1
j=1 PjH∪ P⊥n H and an easy application of Corollary 2.4.4

gives

PnP
⊥
n−1 · · ·P⊥1 A = PnP

⊥
n−2 · · ·P⊥1 AP⊥n−1 = PnP

⊥
n−1P

⊥
n−3 · · ·P⊥1 AP⊥n−2 = · · · etc,

which combined with (2.4.5) results in PnP⊥n−1 · · ·P⊥1 Aη = 0.

2.5 The QR algorithm

The crucial assumption in the previous sections has been self-adjointness of the operator.
Even when detecting false eigenvalues the tools we use rely heavily on self-adjointness.
When we do not have self-adjointness the finite-section method may fail dramatically, the
shift operator being a well known example. In fact the finite section method can behave
extremely badly as the following theorem shows. First we need to recall a definition.

Definition 2.5.1. Let A be a bounded operator on a Hilbert space H. Then the numerical
range of A is defined as

W (A) = {〈Aξ, ξ〉 : ‖ξ‖ = 1},

and the essential numerical range is defined as

We(A) =
⋂

K compact

W (A+K)

Theorem 2.5.2. (Pokrzywa)(Pok79) Let A ∈ B(H) and {Pn} be a sequence of finite-
dimensional projections converging strongly to the identity. Suppose that S ⊂We(A) then
there exists a sequence {Qn} of finite-dimensional projections such that Pn < Qn (so
Qn → I) strongly) and

dH(σ(An) ∪ S, σ(Ãn)) → 0, n→∞,

where
An = PnAdPnH, Ãn = QnAdQnH

and dH denotes the Hausdorff metric.

What Theorem 2.5.2 says is that if the essential range of a bounded operator A contains
more than just elements from the spectrum, the finite section method may produce spectral
pollution. As there is no restriction on the set S in Theorem 2.5.2 (e.g. S could be
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isolated points or open sets), there is no hope that the finite section method can give any
information about either the essential spectrum or isolated eigenvalues.

The next question is therefore; is there an alternative to the finite-section method in
the case where the operator is not self-adjoint? Another important question is; can one
find eigenvectors? These are the issues we will address when introducing the QR algorithm
in infinite dimensions.

2.5.1 The QR decomposition

The QR algorithm is the standard tool for finding eigenvalues and eigenvectors in finite
dimensions. We will discuss the method in detail, but first we need to extend the well
known QR decomposition in finite dimensions to infinite dimensions.

Theorem 2.5.3. Let A be a bounded operator on a separable Hilbert space H and let {ej}
be an orthonormal basis for H. Then there exists an isometry Q such that A = QR where
R is upper triangular with respect to {ej}. Moreover

Q = SOT-lim
n→∞

Vn

where Vn = U1 · · ·Un and Uj is a Householder transformation.

Proof. We will obtain R as the weak limit of a sequence {V ∗
nA} where Vn is unitary and

the unitary operator is Q = SOT-limn→∞Vn. The procedure is as follows: Let Pn be the
projection onto {e1, . . . , en} and suppose that we have the n elements in the sequence
and that the n-th element is an operator Rn = V ∗

nA such that, with respect to the
decomposition H = PnH⊕ P⊥n H, we have

Rn =
(
R̃n Bn
Cn Nn

)
, R̃n = PnRnPn, Bn = PnRnP

⊥
n , Cn = P⊥n RnPn,

where Nn = P⊥n RnP
⊥
n and R̃n is upper triangular and Cej = 0 for j ≤ n−1. Let ζ = Cen.

Choose ξ ∈ P⊥n H and define the Householder reflection S ∈ B(P⊥n H),

S = I − 2
‖ξ‖2

ξ ⊗ ξ̄, and Un = Pn ⊕ S, (2.5.1)

such that Sζ = {ζ̃1, 0, 0, . . .}. Finally let Rn+1 = UnRn. Hence,

Rn+1 = UnRn =
(
R̃n Bn
SCn SNn

)
=

(
R̃n+1 Bn+1

Cn+1 Nn+1

)
, (2.5.2)

where the last matrix is understood to be with respect to the decomposition H = Pn+1H⊕
P⊥n+1H. Note that, by the choice of S it is true that R̃n+1 is upper triangular and
Cn+1ej = 0 for j ≤ n. Defining R1 = A and letting Vn = U1 . . . Un, we have completed the
construction of the sequence {V ∗

nA}.
Note that Rn = V ∗

nA is bounded, since Vn is unitary (since Uj is unitary). And
since a closed ball in B(H) is weakly sequentially compact, there is an R ∈ B(H) and a
subsequence {Rnk

} such that Rnk

WOT−→ R. But by (2.5.2) it is clear that for any integer
j we have PjRnPj = PjRmPj for sufficiently large n and m. Hence WOT-limnRn = R.
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Now, by (2.5.2) R is upper triangular with respect to {ej} and also Rej = Rnej for large
n, thus SOT-limnRn = R. By similar reasoning, using the previous compactness argument
(since Vn is bounded) and the fact that, by (2.5.1), for any integer j we have Vnej = Vmej

for sufficiently large m and n, it follows that there is a V ∈ B(H) such that Vn
SOT−→ V

and, being a strong limit of unitary operators; V is an isometry. Let Q = V. Therefore,
A = QR since A = VnRn and multiplication is jointly strongly continuous on bounded
sets.

2.5.2 The QR algorithm

Let A ∈ B(H) be invertible and let {ej} be an orthonormal basis for H. By Theorem
2.5.3 we have A = QR, where Q is unitary and R is upper triangular with respect to {ej}.
Consider the following construction of unitary operators {Q̂k} and upper triangular (w.r.t.
{ej}) operators {R̂k}. Let A = Q1R1 be a QR decomposition of A and define A2 = R1Q1.
Then QR factorize A2 = Q2R2 and define A3 = R2Q2. The recursive procedure becomes

Am−1 = QmRm, Am = RmQm. (2.5.3)

Now define
Q̂m = Q1Q2 . . . Qm, R̂m = RmRm−1 . . . R1. (2.5.4)

Definition 2.5.4. Let A ∈ B(H) be invertible and let {ej} be an orthonormal basis for H.
Sequences {Q̂j} and {R̂j} constructed as in (2.5.3) and (2.5.4) will be called a Q-sequence
and an R-sequence of A with respect to {ej}.

The following observation will be useful in the later developments. From the construc-
tion in (2.5.3) and (2.5.4) we get

A = Q1R1 = Q̂1R̂1,

A2 = Q1R1Q1R1 = Q1Q2R2R1 = Q̂2R̂2,

A3 = Q1R1Q1R1Q1R1 = Q1Q2R2Q2R2R1 = Q1Q2Q3R3R2R1 = Q̂3R̂3.

An easy induction gives us that
Am = Q̂mR̂m.

Note that R̂m must be upper triangular with respect to {ej} since Rj , j ≤ m is upper
triangular with respect to {ej}. Also, by invertibility of A, 〈Rei, ei〉 6= 0. From this it
follows immediately that

sp{Amej}Nj=1 = sp{Q̂mej}Nj=1, N ∈ N. (2.5.5)

In finite dimensions we have the following theorem:

Theorem 2.5.5. Let A ∈ CN×N be a normal matrix with eigenvalues satisfying |λ1| >
. . . > |λN |. Let {Q̂m} be a Q-sequence of unitary operators. Then Q̂mAQ̂

∗
m → D, as

m→∞, where D is diagonal.

We will prove an analogue of this theorem in infinite dimensions, but first we need to
state some presumably well-known results.
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2.5.3 The distance and angle between subspaces

We follow the notation in (Kat95). Let M ⊂ B and N ⊂ B be closed subspaces of a
Banach space B. Define

δ(M,N) = sup
x∈M

‖x‖=1

inf
y∈M

‖x− y‖

and
δ̂(M,N) = max[δ(M,N), δ(M,N)].

Given subspaces M and {Mk} such that δ̂(Mk,M) → 0 as k →∞, we will sometimes use
the notation

Mk
δ̂−→M, k →∞.

If we replace B with a Hilbert space H we can express δ and δ̂ conveniently in terms
of projections and operator norms. In particular, if E and F are the projections onto
subspaces M ⊂ H and N ⊂ H respectively then

δ(M,N) = sup
x∈M

‖x‖=1

inf
y∈N

‖x− y‖ = sup
x∈M

‖x‖=1

‖F⊥x‖ = ‖F⊥E‖.

Since the operator E−F = F⊥E−FE⊥ is essentially the direct sum of operators F⊥E⊕
(−FE⊥), its norm is δ̂(M,N), i.e.

δ̂(M,N) = max(‖F⊥E‖, ‖E⊥F‖) = max(‖F⊥E‖, ‖FE⊥‖) = ‖E − F‖. (2.5.6)

These observations come in handy in the proof of the next proposition.

Proposition 2.5.6. Let {An} be a sequence of N -dimensional subspaces of a Hilbert space
H and let B ⊂ H be an N -dimensional subspace. If δ(An, B) → 0 or δ(B,An) → 0 then
δ̂(An, B) → 0.

Proof. Suppose that δ(An, B) → 0. Let En and F be the projections onto onto An and
B respectively. We need to show that ‖En − F‖ → 0 as n → ∞. Now En and F are
N -dimensional projections such that ‖E⊥n F‖ → 0 as n → ∞. Thus, in view of (2.5.6), it
suffices to show that ‖F⊥En‖ → 0. For the proof, note that

‖F − FEnF‖ = ‖FE⊥n F‖ ≤ ‖E⊥n F‖ −→ 0, n→∞.

Since FE⊥n F can be viewed as a sequence of positive contractions acting on the finite
dimensional space FH, it follows that trace(F − FEnF ) → 0. Hence

‖F⊥En‖2 = ‖En − EnFEn‖ ≤ trace(En − EnFEn)
= N − trace(EnFEn) = N − trace(FEnF )
= trace(F − FEnF ) → 0, n→∞.

The proof that if δ(B,An) → 0 then δ̂(An, B) → 0 is similar to the previous argument.
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Proposition 2.5.7. Let E = E1⊕. . .⊕EM where the Ejs are finite-dimensional subspaces
of a Hilbert space H. Let Fk = E1,k + . . .+ EM,k where δ̂(Ej,k, Ej) → 0 as k →∞. Then

Fk
δ̂−→ E.

Proof. Note that for projections P and Q on a Hilbert space where ‖P −Q‖ < 1 implies
that dimP = dimQ. So writing Ej for the projection onto the space Ej etc., the hypothesis
‖Ej,k − Ej‖ = δ̂(Ej,k, Ej) → 0 implies that dimEj,k = dimEj for large k. The assertion
now follows by Proposition 2.5.6 and the fact that

δ(E,Fk) ≤
M∑
j=1

‖Ej − Ej,k‖ −→ 0, k →∞.

Theorem 2.5.8. Let A ∈ B(H) be an invertible normal operator. Suppose that σ(A) =
ω∪Ω is a disjoint union such that ω = {λi}Ni=1 and the λis are isolated eigenvalues of finite
multiplicity satisfying |λ1| > . . . > |λN |. Suppose further that sup{|γ| : γ ∈ Ω} < |λN |.
Let {ξi}Mi=1 be a collection of linearly independent vectors in H such that {χω(A)ξi}Mi=1 are
linearly independent. The following observations are true.

(i) There exists an M -dimensional subspace B ⊂ ranχω(A) such that

sp{Akξi}Mi=1
δ̂−→ B, k →∞.

(ii) If

sp{Akξi}M−1
i=1

δ̂−→ D ⊂ H, k →∞,

where D is an (M − 1)-dimensional subspace, then

sp{Akξi}Mi=1
δ̂−→ D ⊕ sp{ξ}, k →∞,

where ξ ∈ ranχω(A) is an eigenvector of A.

Proof. We will first prove (i). Consider the following construction of B: Let λ̃1 ∈ {λi}Ni=1

be the largest (in absolute value) element such that

{χλ̃1
(A)ξi}Mi=1 6= {0}.

If {χλ̃1
(A)ξi}Mi=1 are linearly independent letB = {χλ̃1

(A)ξi}Mi=1. If not, then {χλ̃1
(A)ξi}Mi=1

are linearly dependent spanning a space of dimension k1 < M. By taking linear com-
binations of elements in {ξi}Mi=1 we can find a new basis {ξ1,i}Mi=1 for sp{ξi}Mi=1 such
that sp{χλ̃1

(A)ξ1,i}k1i=1 = sp{χλ̃1
(A)ξi}Mi=1 and χλ̃1

(A)ξ1,i = 0, for k1 + 1 ≤ i ≤ M.

Let λ̃2 ∈ {λi}Ni=1 \ {λ̃1} be the largest element such that {χλ̃2
(A)ξ1,i}Mi=k1+1 6= {0}. If

{χλ̃2
(A)ξ1,i}Mi=k1+1 are linearly independent let

B = sp{χλ̃1
(A)ξ1,i}k1i=1 ⊕ sp{χλ̃2

(A)ξ1,i}Mi=k1+1.
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If {χλ̃2
(A)ξ1,i}Mi=k1+1 are linearly dependent, spanning a space of dimension k2, we pro-

ceed exactly as in the previous step. Repeating this process until {χλ̃n+1
(A)ξn,i}Mi=kn+1 is

linearly independent (note that this is possible by the assumption that {χω(A)ξi}Mi=1 are
linearly independent) we get

B =
n⊕
j=1

sp{χλ̃j
(A)ξj,i}

kj

i=kj−1+1 ⊕ sp{χλ̃n+1
(A)ξn,i}Mi=kn+1, n ≤ N − 1,

where k0 = 0. We claim that sp{Akξi}Mi=1
δ̂−→ B as k →∞. Since

dim(sp{Akξi}Mi=1) = M = dim(B),

(recall that A is invertible) and

sp{Akξi}Mi=1 =
n∑
j=1

sp{Akξj,i}
kj

i=kj−1+1 + sp{Akξn,i}Mi=kn+1

by Proposition 2.5.7, we only have to demonstrate that

sp{Akξj,i}
kj

i=kj−1+1
δ̂−→ sp{χλ̃j

(A)ξj,i}
kj

i=kj−1+1, k →∞, j ≤ n, (2.5.7)

and
sp{Akξn,i}Mi=kn+1

δ̂−→ sp{χλ̃n+1
(A)ξn,i}Mi=kn+1. (2.5.8)

To prove (2.5.7), by Proposition 2.5.6, we only need to show that

sup
ζ∈E

‖ζ‖=1

inf
η∈Ek

‖ζ − η‖ = δ(E,Ek) −→ 0, k →∞,

Ek = sp{Akξj,i}
kj

i=kj−1+1, E = sp{χλ̃j
(A)ξj,i}

kj

i=kj−1+1,

(2.5.9)

since dimE = dimEk. It is easy to see that (2.5.9) will follow if for any sequence {ζk} ⊂ E
of unit vectors there exists a sequence {ηk}, where ηk ∈ Ek, such that ‖ζk − ηk‖ → 0. To
show this, note that by compactness of the unit ball in E we can assume, possibly passing
to a subsequence, that ζk → ζ. Thus, the task is reduced to showing that we can find {ηk}
such that ‖ζ − ηk‖ → 0. Now, ζ =

∑
i αiχλ̃j

(A)ξj,i, for some complex numbers {αi}, and
we claim that the right choice of {ηk} is

ηk =
∑
i

αiA
kξj,i/λ̃

k
j .

Indeed, by the previous construction, ξj,i ⊥ ranχλ̃l
(A) for l > j. Thus,

ξj,i = (χλ̃j
(A) + χθ(A))ξj,i, θ = {λ ∈ σ(A) : |λ| < |λ̃j |}.

This gives Akξj,i = λ̃kjχλ̃j
(A)ξj,i +Akχθ(A)ξj,i. Now, by the assumption on σ(A), we have

ρ = sup{|z| : z ∈ θ} < |λ̃j |.
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Thus, since
‖Akχθ(A)ξj,i‖/|λ̃kj | < |ρ/λ̃j |k‖χθ(A)ξj,i‖,

we have

Akξj,i/λ̃
k
j = (λ̃kjχλ̃j

(A)ξj,i +Akχθ(A)ξj,i)/λ̃kj −→ χλ̃j
(A)ξj,i, k →∞,

which yields our claim. Now (2.5.8) follows by a similar argument.
To show (ii), note that, by the argument in the proof of (i) and our assumption, we

have

sp{Akξi}M−1
i=1

δ̂−→ D =
n⊕
j=1

sp{χλ̃j
(A)ξj,i}

kj

i=kj−1+1

⊕ sp{χλ̃n+1
(A)ξn,i}M−1

i=kn+1, k →∞,

(2.5.10)

for n ≤ N −2, where k0 = 0, {λ̃j} and {ξj,i} are constructed as in the proof of (i). Now,
there are two possibilities:

(1) There exists λ ∈ Λ = ω \ {λ̃j}n+1
j=1 such that χλ(A)ξM 6= 0.

(2) We have that χΛ(A)ξM = 0.

Starting with Case 1 we may argue as in the proof of (i) to deduce that

sp{Akξi}Mi=1
δ̂−→

n⊕
j=1

sp{χλ̃j
(A)ξj,i}

kj

i=kj−1+1

⊕ sp{χλ̃n+1
(A)ξn,i}M−1

i=kn+1 ⊕ sp{χλ̃n+2
(A)ξM}, k →∞,

where λ̃n+2 ∈ ω \ {λ̃j}n+1
j=1 is the largest element such that χλ̃n+2

(A)ξM 6= 0, (note that

the existence of λ̃n+2 is guaranteed by the assumption that {χω(A)ξi}Mi=1 are linearly
independent) and this yields the assertion.

Note that Case 2 has two subcases, namely,

(I) χΛ(A)ξM = 0, but {χλ̃n+1
(A)ξn+1,i}M−1

i=kn+1 and χλ̃n+1
(A)ξM are linearly independent.

(II) χΛ(A)ξM = 0 and {χλ̃n+1
(A)ξn+1,i}M−1

i=kn+1 and χλ̃n+1
(A)ξM are linearly dependent,

but there exists a λ̃l, the largest eigenvalue in {λ̃j}n+1
j=1 such that {χλ̃l

(A)ξl,i}kl
i=kl−1+1

and χλ̃l
(A)ξM are linearly independent.

Note that we cannot have χΛ(A)ξM = 0 and also have that

{χλ̃j
(A)ξj,i}

kj

i=kj−1+1 and χλ̃j
(A)ξM , j ≤ n,

are linearly dependent as well as {χλ̃n+1
(A)ξn,i}M−1

i=kn+1 and χλ̃n+1
(A)ξM are linearly de-

pendent at the same time because that would violate the linear independence assumption
on {χω(A)ξi}Mi=1.
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To prove (II) we may argue as in the proof of (i) and deduce that

sp{Akξl,i}kl
i=kl−1+1

δ̂−→ sp{χλ̃l
(A)ξl,i}kl

i=kl−1+1, k →∞

and

sp{Akξl,i}kl
i=kl−1+1+sp{AkχΓ(A)ξM}

δ̂−→ sp{χλ̃l
(A)ξl,i}kl

i=kl−1+1 + sp{χλ̃l
(A)ξM}, k →∞

where Γ = ω \ {λ̃j}l−1
j=1. Thus, using (2.5.10), it is easy to see that this gives

sp{Akξi}Mi=1
δ̂−→

l−1⊕
j=1

sp{χλ̃j
(A)ξj,i}

kj

i=kj−1+1

⊕
(
sp{χλ̃l

(A)ξl,i}kl
i=kl−1+1 + sp{χλ̃l

(A)ξM
)
}

n⊕
j=l+1

sp{χλ̃j
(A)ξj,i}

kj

i=kj−1+1 ⊕ sp{χλ̃n+1
(A)ξn,i}M−1

i=kn+1.

Thus, letting P be the projection onto sp{χλ̃l
(A)ξl,i}kl

i=kl−1+1, it follows that

sp{Akξi}Mi=1
δ̂−→

l−1⊕
j=1

sp{χλ̃j
(A)ξj,i}

kj

i=kj−1+1

⊕ sp{χλ̃l
(A)ξl,i}kl

i=kl−1+1 ⊕ P⊥sp{χλ̃l
(A)ξM}

n⊕
j=l+1

sp{χλ̃j
(A)ξj,i}

kj

i=kj−1+1 ⊕ sp{χλ̃n+1
(A)ξn,i}M−1

i=kn+1.

Now Case (I) follows by similar reasoning.

Theorem 2.5.9. Let A ∈ B(H) be an invertible normal operator and let {ej} be an
orthonormal basis for H. Let {Qk} and {Rk} be a Q- and R-sequences of A with respect
to {ej}. Suppose also that σ(A) = ω ∪ Ω such that ω ∩ Ω = ∅ and ω = {λi}Ni=1, where the
λis are isolated eigenvalues with finite multiplicity satisfying |λ1| > . . . > |λN |. Suppose
further that sup{|θ| : θ ∈ Ω} < |λN |. Then there is a subset {êj}Mj=1 ⊂ {ej} such that
sp{Qkêj} → sp{q̂j} where q̂j is an eigenvector of A and M = dim(ranχω(A)). Moreover,
sp{q̂j}Mj=1 = ranχω(A). Also, if ej /∈ {êj}Mj=1, then χω(A)Qkej → 0.

The theorem will be proven in several steps. First we need a definition.

Definition 2.5.10. Suppose that the hypotheses in Theorem 2.5.9 are true and let K be
the smallest integer such that dim(sp{χω(A)ej}Kj=1) = M. Define

Λω = {ej : χω(A)ej 6= 0, j ≤ K} ΛΩ = {ej : χω(A)ej = 0, j ≤ K}

and Λ̃ω = {ej ∈ Λω : χω(A)ej ∈ sp{χω(A)ei}j−1
i=1}.
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The decomposition of A into

A =

 M∑
j=1

λj ξj ⊗ ξ̄j

⊕ χΩ(A)A, λj ∈ ω.

where {ξj}mj=1 is an orthonormal set of eigenvectors of A as well as the following two
technical lemmas will be useful in the proof.

Lemma 2.5.11. Let {ê1, . . . , êM} = Λω \ Λ̃ω. If em ∈ ΛΩ ∪ Λ̃ω, then

sp{χω(A)qk,j}mj=1 = sp{χω(A)q̂k,j}
s(m)
j=1 , qk,j = Qkej , q̂k,j = Qkêj ,

where s(m) is the largest integer such that {êj}s(m)
j=1 ⊂ {ej}mj=1.

Proof. We will show this by induction on the set {ẽ1, . . . , ẽp} = ΛΩ ∪ Λ̃ω. Consider
ẽµ ∈ {ẽ1, . . . , ẽp}. Then ẽµ = em̃ for some integer m̃. Suppose that sp{χω(A)qk,j}m̃j=1 =

sp{χω(A)q̂k,j}
s(m̃)
j=1 . We will show that

sp{χω(A)qk,j}mj=1 = sp{χω(A)q̂k,j}
s(m)
j=1 ,

where em = ẽµ+1.

First, note that sp{χω(A)qk,j}m−1
j=1 = sp{χω(A)q̂k,j}

s(m)
j=1 follows from the induction

hypothesis. Indeed, let β be the largest integer such that β < m and eβ ∈ Λω \ Λ̃ω i.e.
if êt = eβ then t = s(m). Observe that since em̃ = ẽµ and em = ẽµ+1, it follows that if
m̃ < α < m then eα ∈ Λω \ Λ̃ω. So if β < m− 1 then there is no eα ∈ Λω \ Λ̃ω such that
m̃ < α < m. Thus, m̃ = m− 1 and so t = s(m) = s(m̃), yielding the assertion.

If β = m − 1 then for every ej where m̃ < j ≤ m − 1 we have ej ∈ Λω \ Λ̃ω. So
em̃+ν = ês(m̃)+ν for m̃+ν ≤ m−1 and ν ≥ 1, hence, qk,m̃+ν = q̂k,s(m̃)+ν for m̃+ν ≤ m−1.
Also, em−1 = ês(m) so qk,m−1 = q̂k,s(m). Thus,

sp{χω(A)qk,j}m−1
j=1 = sp{χω(A)qk,j}m̃j=1 + sp{χω(A)qk,j}m−1

j=m̃+1

= sp{χω(A)qk,j}m̃j=1 + sp{χω(A)q̂k,j}
s(m)
j=s(m̃)+1,

and by recalling the induction hypothesis this yields the assertion. Thus, we only need to
prove that χω(A)qk,m ∈ sp{χω(A)qk,j}m−1

j=1 . To show this, note that

χω(A)Akem =
m∑
j=1

rk,jχω(A)qk,j , rk,j = 〈Rkem, ej〉.

Note further that, since A is invertible, we have rk,m 6= 0. In the case em ∈ ΛΩ we have
χω(A)Akem = 0. So, since rk,m 6= 0, it follows that χω(A)qk,m is a linear combination
of elements in sp{χω(A)qk,j}m−1

j=1 . In the case em ∈ Λ̃ω note that, by again using the
fact that χω(A)Akem =

∑m
j=1 rk,jχω(A)qk,j and rk,m 6= 0, we only have to show that

χω(A)Akem ∈ sp{χω(A)qk,j}m−1
j=1 . Now, this is indeed the case. Since em ∈ Λ̃ω we have

that χω(A)em ∈ sp{χω(A)ej}m−1
j=1 . Thus, since A is invertible

χω(A)Akem ∈ sp{χω(A)Akej}m−1
j=1 .
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Also, observe that, by (2.5.5),

sp{Akej}m−1
j=1 = sp{qk,j}m−1

j=1 .

Hence,
sp{χω(A)Akej}m−1

j=1 = sp{χω(A)qk,j}m−1
j=1 ,

and this yields the assertion.
The initial induction step follows from a similar argument and we are done.

Lemma 2.5.12. Let {ê1, . . . , êM} = Λω \ Λ̃ω. Suppose that sp{q̂k,j} → sp{q̂j} for all
j ≤ µ for some µ < M, where q̂k,j = Qkêj and q̂j is an eigenvector of

∑M
j=1 λj ξj ⊗ ξ̄j . Let

el = êµ+1. If em ∈ ΛΩ ∪ Λ̃ω, where m < l then

χω(A)qk,m → 0, k →∞, qk,m = Qkem.

Proof. Arguing by contradiction, suppose that χω(A)qk,m 9 0. Since χω(A) has finite
rank we may assume that χω(A)qk,m → q. Note that by using the assumptions stated and
the fact that Qk is unitary (since A is invertible) it is straightforward to show that

sp{χω(A)q̂k,j}µj=1
δ̂−→ sp{χω(A)q̂j}µj=1, k →∞.

Also, by using the notation and results from Lemma 2.5.11 we have that s(m) = µ and

sp{χω(A)qk,j}mj=1 = sp{χω(A)q̂k,j}
s(m)
j=1 ,

and thus it follows that
q ∈ sp{χω(A)q̂j}µj=1.

Now
|〈χω(A)qk,m, q̂k,j〉| → |〈χω(A)q, q̂j〉|, k →∞, j ≤ µ.

Also, observe that
〈χω(A)qk,m, q̂k,j〉 → 0, k →∞, j ≤ µ.

Indeed, this is true by the facts that qk,m ⊥ q̂k,j and 〈χΩ(A)qk,m, q̂k,j〉 → 0 for all j ≤ µ,
where the latter follows since sp{q̂k,j} → sp{q̂j} and χΩ(A)q̂j = 0. Hence, it follows that
〈χω(A)q, q̂j〉 = 0 for j ≤ µ. So since q ∈ sp{χω(A)q̂j}µj=1, we have that q = 0, and we have
reached the contradiction.

Proof. Proof of Theorem 2.5.9 Let {ê1, . . . , êM} = Λω \ Λ̃ω. We claim that this is the
desired subset of {ej} described in the theorem, i.e. we claim that for êj ∈ Λω \ Λ̃ω it is
true that sp{q̂k,j} → sp{q̂j}, where q̂k,j = Qkêj and q̂j is an eigenvector of

∑M
j=1 λj ξj⊗ ξ̄j .

We will prove this by induction.
Suppose that sp{q̂k,j} → sp{q̂j} for j ≤ µ. Suppose also that

sp{Akêi}µi=1
δ̂−→ sp{q̂i}µi=1, k →∞. (2.5.11)
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We will show that sp{q̂k,µ+1} → sp{q̂µ+1} and sp{Akêi}µ+1
i=1

δ̂→ sp{q̂i}µ+1
i=1 where q̂µ+1 is

the desired eigenvector of
∑M

j=1 λj ξj ⊗ ξ̄j . By using (2.5.11) and appealing to Theorem
2.5.8 it follows that

sp{Akêi}µ+1
i=1

δ̂−→ sp{q̂i}µi=1 ⊕ sp{ξ}, ξ ∈ ranχω(A), (2.5.12)

where ξ is an eigenvector of A. Hence, to prove the induction assertion we need to show
that sp{q̂µ+1,k} → sp{ξ}.

Let el = êµ+1. Note that δ̂(sp{q̂i}µi=1 ⊕ sp{ξ}, sp{Akêi}µ+1
i=1 ) → 0 implies

δ(sp{q̂i}µi=1 ⊕ sp{ξ}, sp{Akei}li=1) → 0,

since sp{Akêi}µ+1
i=1 ⊂ sp{Akei}li=1. Thus, it follows that

δ(sp{q̂i}µi=1⊕sp{ξ}, sp{qk,i}li=1)

= δ(sp{q̂i}µi=1 ⊕ sp{ξ}, sp{Akei}li=1) −→ 0, k →∞,
(2.5.13)

since A is invertible, Ak = QkRk and Rk is upper triangular with respect to {ej}. We will
use this to prove that sp{q̂µ+1,k} = sp{ql,k} → sp{ξ}. Note that this, by Proposition 2.5.6,
is equivalent to proving δ(sp{ξ}, sp{ql,k}) → 0, which we henceforth do. Note also that

sup
ζ∈sp{ξ}
‖ζ‖=1

inf
η∈sp{ql,k}

‖ζ − η‖ = δ(sp{ξ}, sp{ql,k}),

thus the latter assertion follows if we can show that for any sequence {ζk} of unit vectors
in sp{ξ} there exists a sequence {ηk} of vectors in sp{ql,k} such that ‖ζk − ηk‖ → 0. We
will demonstrate this. It is easy to see that we can, without loss of generality, assume
that ζk = ζ where ζ ∈ sp{ξ} is a unit vector. Let ε > 0. By (2.5.13) we can find
η̃k ∈ sp{qi,k}li=1 such that ‖ζ − η̃k‖ < ε/2 for sufficiently large k. Now, η̃k =

∑l
i=1 αi,kqi,k

where
∑l

i=1 |αi,k|2 = 1. So

‖ζ − η̃k‖2 = ‖ζ − αl,kql,k‖2 − 2Re〈ζ − αl,kql,k,

l−1∑
i=1

αi,kqi,k〉+
l−1∑
i=1

|αi,k|2

= ‖ζ − αl,kql,k‖2 − 2Re〈ζ,
l−1∑
i=1

αi,kqi,k〉+
l−1∑
i=1

|αi,k|2.

Now ζ ⊥ q̂i for i ≤ µ and also ζ ∈ ranχω(A). These observations together with the
induction hypothesis sp{q̂k,i} → sp{q̂i} for i ≤ µ and the fact that, by Lemma 2.5.12, if
em ∈ ΛΩ ∪ Λ̃ω, where m < l then χω(A)qk,m → 0, imply that 〈ζ,

∑l−1
i=1 αi,kqi,k〉 becomes

arbitrarily small for large k. Thus for sufficiently large k we have

‖ζ − αl,kql,k‖2 +
l−1∑
i=1

|αi,k|2 < ε2.

By choosing ηk = αl,kqk,l ∈ sp{qk,l}, we have proved the assertion and hence the induction
hypothesis. The initial step is straightforward.
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We are left with two things to prove. Firstly we demonstrate that sp{q̂j}Mj=1 =
sp{ξj}Mj=1. It is easily seen, from orthonormality of {q̂k,i}Mi=1, that {q̂i}Mi=1 are all orthonor-
mal. Hence, since they are eigenvectors of

∑M
j=1 λj ξj ⊗ ξ̄j it follows that sp{q̂j}Mj=1 =

sp{ξj}Mj=1 = ranχω(A). Finally, we need to show that ej /∈ {êj}Mj=1, then χω(A)Qkej → 0,
and this follows easily from Lemma 2.5.12.

As mentioned in the beginning of this chapter, the infinite dimensional QR algorithm
occurred first in the paper “Toda Flows with Infinitely Many Variables” (DLT85) by Deift,
Li and Tomei. Theorem 2.5.9 is related to Theorem 1 in section 4 of (DLT85), however,
the techniques used in (DLT85) deviate quite substantially from the framework used in
this paper. This is natural since one considers only self-adjoint operators in (DLT85).
Further connections between our results and (DLT85) are currently being investigated.





Chapter 3

The Complexity Index

The previous chapter considered self-adjoint and normal cases, while in this chapter we
will be focusing on non-normal operators. In the non-normal case very little has been done
and even the monumental “Spectra and Pseudospectra” by Trefethen and Embree (TE05)
leaves the question on how to approximate spectra of arbitrary non-normal operators
open. Obviously, special cases have been considered e.g. several types of non-self-adjoint
Schrödinger operators have been investigated in (TE05) and one has been able to success-
fully determine their spectra and pseudospectra via approximation techniques. However,
these techniques are not suited for generality.

Now returning to the main question, namely, can one determine or compute spectra
of arbitrary operators, we need to be more precise regarding the mathematical meaning.
Given a closed operator T on a separable Hilbert space H with domain D(T ), we suppose
that {ej}j∈N is a basis for H such that span{ej}j∈N ⊂ D(T ), and thus we can form the
matrix elements xij = 〈Tej , ei〉. Is it possible to recover the spectrum of T through a
construction only using arithmetic operations and radicals of the matrix elements? (Much
more precise definitions of this will be discussed in Section 3.1.) This obviously has to be
a construction that involves some limit operation, but in finite dimensions this is certainly
possible. For a finite-dimensional matrix one may deduce that all its spectral information
can be revealed through a construction using only arithmetic operations and radicals of
the matrix elements. More precisely, for a matrix {aij}ij≤N one can form {Ωn}n∈N, where
Ωn ⊂ C can be constructed using only finitely many arithmetic operations and radicals of
the matrix elements {aij}ij≤N , and Ωn → σ({aij}ij≤N ) in the Hausdorff metric as n→∞.
For a compact operator C we may let Pm be the projection onto span{ej}j≤m and observe
that σ(PmCdPmH) → σ(C) in the Hausdorff metric as m→∞. Thus, as we are now faced
with a finite dimensional problem that we can solve (at least as sketched above), we may
deduce that, yes, we can construct and determine the spectrum of a compact operator
using only its matrix elements. The question is: can this be done in general?

Another issue is the following. Supposing that one is able to construct the spectrum of
a class of operators as suggested above, it would be interesting to determine if such a con-
struction would be optimal in some sense. Now, suppose that one is interested in applying
such a construction in applications, such a tool for determining the optimality would be
useful. It turns out that the Complexity Index is a convenient tool for determining how dif-
ficult it is to construct or approximate spectra of a certain class of operators. For selected
papers related to this topic we refer to (DLT85)(DVV94)(Sha00)(Sze20) (BCN01).
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3.1 Defining the Complexity Index

Recall the example from Chapter 1 that causes some headache when considering the
general non-normal problem. In particular, let Aε : l2(Z) → l2(Z) be defined by

(Aεf)(n) =

{
εf(n+ 1) n = 0
f(n+ 1) n 6= 0.

Now for ε 6= 0 we have σ(Aε) = {z : |z| = 1} but for ε = 0 then σ(A0) = {z : |z| ≤ 1}.
Davies argues as follows in (Dav05): “If ε is a very small constructively defined real number
and one is not able to determine whether or not ε = 0, then the spectrum of Aε cannot be
computed even approximately even though Aε is well-defined constructively. This implies
that there exists straightforward bounded operators whose spectrum will probably never
be determined.”

A numerical analyst may express the same concern. One can argue that if one should
do a computation of the spectrum on a computer, the fact that the arithmetic opera-
tions carried out are not exact may lead to the result that one gets the true solution to
a slightly perturbed problem. As suggested in the previous example this could be disas-
trous. The problem above does not occur (in the bounded case) if we are considering the
pseudospectrum.

Definition 3.1.1. Let T be a closed operator on a Hilbert space H such that σ(T ) 6= C,
and let ε > 0. The ε-pseudospectrum of T is defined as the set

σε(T ) = σ(T ) ∪ {z /∈ σ(T ) : ‖(z − T )−1‖ > ε−1}.

The reason is that the pseudospectrum varies continuously with the operator T if T
is bounded (we will be more specific regarding the continuity below.) One may argue
that the pseudospectrum may give a lot of information about the operator and one should
therefore estimate that instead, however, we are interested in getting a complete spectral
understanding of the operator and will therefore estimate both the spectrum and the
pseudospectrum. We would thus like to introduce a set which has the continuity property
of the pseudospectrum but approximates the spectrum. For this we introduce the n-
pseudospectrum.

Definition 3.1.2. Let T be a closed operator on a Hilbert space H such that σ(T ) 6= C,
and let n ∈ Z+ and ε > 0. The (n, ε)-pseudospectrum of T is defined as the set

σn,ε(T ) = σ(T ) ∪ {z /∈ σ(T ) : ‖R(z, T )2
n‖1/2n

> ε−1}.

As we will see in Section 3.3, the n-pseudospectrum has all the nice continuity prop-
erties that the pseudospectrum has, but it also approximates the spectrum arbitrary well
for large n.

We will in this section give the precise definition of what kind of approximating con-
structions for the spectrum we will be using. The motivation for such definitions are
discussed in Example 3.1.5.

Definition 3.1.3. Let H be a Hilbert space spanned by {ej}j∈N and let

Υ = {T ∈ C(H) : span{ej}n∈N ⊂ D(T )}. (3.1.1)
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Let ∆ ⊂ Υ and Ξ : ∆ → Ω, where Ω denotes the collection of closed subsets of C. Let

Π∆ = {{xij}i,j∈N : ∃T ∈ ∆, xij = 〈Tej , ei〉}.

A set of estimating functions of order k for Ξ is a family of functions

Γn1 : Π∆ → Ω,Γn1,n2 : Π∆ → Ω, . . . ,Γn1,...,nk−1
: Π∆ → Ω,

Γn1,...,nk
: {{xij}i,j≤N(n1,...,nk) : {xij}i,j∈N ∈ Π∆} → Ω,

where N(n1, . . . , nk) <∞ depends on n1, . . . , nk, with the following properties:

(i) The evaluation of Γn1,...,nk
({xij}) requires only finitely many arithmetic operations

and radicals of the elements {xij}i,j≤N(n1,...,nk).

(ii) Also, we have the following relation between the limits

Ξ(T ) = lim
n1→∞

Γn1({xij}),

Γn1({xij}) = lim
n2→∞

Γn1,n2({xij}),

...
Γn1,...,nk−1

({xij}) = lim
nk→∞

Γn1,...,nk
({xij}).

The limit is defined as follows, for ω ∈ Ω then ω = limn→∞ ωn if and only if, for any
compact ball K such that ω ∩Ko 6= ∅ we have dH(ω ∩K,ωn ∩K) → 0, when n→∞.

Definition 3.1.4. Let H be a Hilbert space spanned by {ej}j∈N, define Υ as in (3.1.1),
and let ∆ ⊂ Υ. A set valued function

Ξ : ∆ ⊂ C(H) → Ω

is said to have complexity index k if k is the smallest integer for which there exists a set
of estimating functions of order k for Ξ. Also, Ξ is said to have infinite complexity index
if no set of estimating functions exists. If there is a function

Γ : {{xij} : ∃T ∈ ∆, xij = 〈Tej , ei〉} → Ω

such that Γ({xij}) = Ξ(T ), and the evaluation of Γ({xij}) requires only finitely many arith-
metic operations and radicals of a finite subset of {xij}, then Ξ is said to have complexity
index zero. The complexity index of a function Ξ will be denoted by Cind(Ξ).

Example 3.1.5. Let H be a Hilbert space with basis {ej}, ∆ = B(H) and Ξ(T ) = σ(T )
for T ∈ B(H). Suppose that dim(H) ≤ 4. Then Ξ must have complexity index zero, since
one can obviously express the eigenvalues of T using finitely many arithmetic operations
and radicals of the matrix elements xij = 〈Tej , ei〉.

For dim(H) ≥ 5 then obviously Cind(Ξ) > 0, by the much celebrated theory of Abel
on the unsolvability of the quintic using radicals.

Now, what about compact operators? Suppose for a moment that we can show that
Cind(Ξ) = 1 if dim(H) < ∞. (We consider this as a problem in matrix analysis and shall
not discuss it any further, nor will any of the upcoming theorems rely on such a result.)
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A standard way of determining the spectrum of a compact operator T is to let Pn be
the projection onto span{ej}j≤n and compute the spectrum of PnAdPnH. This approach
is justified since σ(PnAdPnH) → σ(T ) as n → ∞. By the assumption on the complexity
index in finite dimensions, it follows that if ∆ denotes the set of compact operators then
Cind(Ξ) ≤ 2.

The reasoning in the example does not say anything about what the complexity index
of spectra of compact operators is, it only suggest that the standard way of approximating
spectra of such operators will normally make use of a construction requiring two limits.
We will in this article discuss only upper bounds on the complexity index, as we consider
that the most important question to solve first, since as of today there is no general
approach to estimate the spectrum of an arbitrary bounded operator. Now, after having
established upper bounds, an important problem to solve would be to actually determine
the complexity index of spectra of subclasses of operators. These questions are left for
future work.

3.2 The Main Theorems

The main theorems in this chapter state that indeed it is possible to estimate spectra and
pseudospectra of all bounded operators given the matrix elements. For the unbounded
case this is also possible if one also has access to the matrix elements of the adjoint. In
this case the choice of bases is not arbitrary. We would like to emphasize that even though
determining spectra and pseudospectra is the mathematical goal, another set that may be
of practical interest is ωδ(σ(T )) (the δ-neighborhood) for T ∈ C(H) and δ > 0. The reason
is that σ(T ) may contain parts that have Lebesgue measure zero, and therefore may be
quite hard to detect. An easier alternative may then be ωδ(σ(T )), although mathematically
this set reveals less information about the operator.

Definition 3.2.1. Let {en}n∈N be a basis for the Hilbert space H. By a weighted shift on
H we mean an operator W ∈ C(H) with D(W ) ⊃ span{en}n∈N with the property that there
is a sequence of complex numbers {αj}j∈N and an integer k such that for ξ ∈ D(W ) we
have (Wξ)j = αjξk+j . The set of weighted shifts on H (with respect to {en}n∈N) will be
denoted by WS(H).

Theorem 3.2.2. Let {ej}j∈N be a basis for the Hilbert space H and let

∆ = {T ∈ C(H) : T = W +A, W ∈WS(H), A ∈ B(H)

∩ {T ∈ C(H) : ‖R(T, ·)2n‖1/2n
is never constant for anyn}.

Define, for n ∈ Z+, ε > 0, the set valued functions Ξ1,Ξ2,Ξ3 : ∆ → Ω is defined by
Ξ1(T ) = σn,ε(T ), Ξ2(T ) = ωε(σ(T )) and Ξ3(T ) = σ(T ). Then

Cind(Ξ1) ≤ 3, Cind(Ξ2) ≤ 4, Cind(Ξ3) ≤ 4.

Also, if ∆ = B(H) then Cind(Ξ1) ≤ 2, Cind(Ξ2) ≤ 3 and Cind(Ξ3) ≤ 3.

Theorem 3.2.3. Let {ej}j∈N be a basis for the Hilbert space H, Pm be the projection onto
span{ej}mj=1 and d be some positive integer. Let ∆ ⊂ C(H) have the following properties:
For T ∈ ∆ we have
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(i)
⋃
m PmH ⊂ D(T ),

⋃
m PmH ⊂ D(T ∗).

(ii) 〈Tej+l, ej〉 = 〈Tej , ej+l〉 = 0, for l > d.

(iii) TPmξ → Tξ, T ∗Pmη → T ∗η, as m→∞ for ξ ∈ D(T ) and η ∈ D(T ∗).

Let ε > 0 and n ∈ Z+ and Ξ1,Ξ2,Ξ3 : ∆ → Ω be defined by Ξ1(T ) = σn,ε(T ),
Ξ2(T ) = ωε(σ(T )) and Ξ3(T ) = σ(T ). Then

Cind(Ξ1) = 1, Cind(Ξ2) ≤ 2, Cind(Ξ3) ≤ 2.

Theorem 3.2.4. Let {ej}j∈N and {ẽj}j∈N be bases for the Hilbert space H and let

∆̃ = {T ∈ C(H⊕H) : T = T1 ⊕ T2, T1, T2 ∈ C(H), T ∗1 = T2}
∆ = {T ∈ ∆̃ : span{ej}j∈N is a core for T1, span{ẽj} is a core for T2}.

Let ε > 0, Ξ1 : ∆ → Ω and Ξ2 : ∆ → Ω be defined by Ξ1(T ) = σε(T1) and Ξ2(T ) = σ(T1).
Then Cind(Ξ1) ≤ 2 and Cind(Ξ2) ≤ 3.

Corollary 3.2.5. Let {ej}j∈N be a basis for the Hilbert space H and let

∆ = {A ∈ SA(H) : span{ej}j∈N is a core forA}.

Let ε > 0 and Ξ1,Ξ2 : ∆ → Ω be defined by Ξ1(T ) = σ(T ) and Ξ2(T ) = ωε(σ(T )). Then
Cind(Ξ1) ≤ 3 and Cind(Ξ2) ≤ 2.

Remark 3.2.6. What Theorem 3.2.4 essentially says is that given the matrix elements
of the operator and its adjoint, where the matrix elements come from a reasonable choice
of bases, one can estimate the pseudospectra and the spectrum. Also, estimating the
pseudospectrum of an unbounded operator is on the same level of difficulty as estimating
the spectrum of a compact operator.

3.3 Properties of the n-pseudospectra of Bounded Opera-
tors

We will prove some of the properties of the n-pseudospectrum, but before doing that we
need a couple of propositions and theorems that will come in handy.

Proposition 3.3.1. Let γ : C → [0,∞) be continuous and let {γk}k∈N be a sequence of
functions such that γk : C → [0,∞) and γk → γ locally uniformly. Suppose that one of the
two following properties are satisfied.

(i) γk → γ monotonically from above.

(ii) For ε > 0, then cl({z : γ(z) < ε}) = {z : γ(z) ≤ ε}.

Then for any compact ball K such that {z : γ(z) < ε} ∩Ko 6= ∅ it follows that

cl({z : γk(z) < ε}) ∩K −→ cl({z : γ(z) < ε}) ∩K, k →∞.
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Proof. Let ε > 0. We first claim that, in each case, for any ν > 0 there exists an α > 0
such that

ων(cl({z : γ(z) < ε− α}) ∩K) ⊃ cl({z : γ(z) < ε}) ∩K. (3.3.1)

Arguing by contradiction and supposing the latter statement is false we deduce that there
must be a sequence {ζα} ⊂ cl({z : γ(z) < ε})∩K such that ζα /∈ ων(cl({z : γ(z) < ε−α})∩
K). By compactness, we may assume without loss of generality that ζα → ζ as α→ 0. By
continuity we have that γ(ζα) → γ(ζ) and since ζα /∈ ων(cl({z : γ(z) < ε − α}) ∩ K) it
follows that γ(ζ) = ε. Note that we must have

ζ ∈
⋂
α>0

C \ ων(cl({z : γ(z) < ε− α}) ∩K). (3.3.2)

But there is a ξ ∈ {z : γ(z) < ε} ∩ K such that |ξ − ζ| < ν. Now let α1 = γ(ζ) − γ(ξ).
Then γ(ξ) = ε−α1 and hence ζ ∈ ων({z : γ(z) < ε−α2}), for some α2 < α1 contradicting
(3.3.2). We are now ready to prove the proposition, which will follow if we can show that
for any ν > 0 we have

cl({z : γ(z) < ε}) ∩K ⊂ ων(cl({z : γk(z) < ε}) ∩K)

and ων(cl({z : γ(z) < ε}) ∩K) ⊃ cl({z : γk(z) < ε}) ∩K, for all sufficiently large k.
Note that the first inclusion follows by using the claim in the first part of the proof

and the locally uniform convergence of γk. Indeed, by the locally uniform convergence it
follows that, for any α > 0, we have

cl({z : γk(z) < ε}) ∩K ⊃ cl({z : γ(z) < ε− α}) ∩K

for large k, thus by appealing to (3.3.1), we obtain the desired inclusion. To see the
second inclusion, we first assume (i). Then {z : γk(z) < ε} ⊂ {z : γ(z) < ε} and hence the
inclusion follows. As for the second case we assume (ii). By arguing by contradiction, we
suppose the statement is false and deduce that there is a sequence {zk} such that

zk ∈ cl({z : γk(z) < ε}) ∩K

and zk /∈ ων(cl({z : γ(z) < ε}) ∩ K). By compactness we may assume that zk → z and
then (by (ii)) γ(z) > ε which contradicts the fact that γk(zk) → γ(z) which follows by
continuity of γ and the local uniform convergence of {γk}.

Theorem 3.3.2. (Sha08) Let Ω be an open subset of C, X be a Banach space and Y be a
uniformly convex Banach space. Suppose A : Ω → B(X,Y ) is an analytic operator valued
function such that A′(z) is invertible for all z ∈ Ω. If ‖A(z)‖ ≤ M for all z ∈ Ω then
‖A(z)‖ < M for all z ∈ Ω.

Before we continue let us define some functions that will be crucial throughout the
paper.

Definition 3.3.3. Let {Pm} be an increasing sequence of projections converging strongly
to the identity. Define, for n ∈ Z+ and m ∈ N, the function Φn,m : B(H)× C → R by

Φn,m(S, z) = min
{
λ1/2n+1

: λ ∈ σ
(
Pm((S − z)∗)2

n
(S − z)2

n
⌈
PmH

)}
.
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Define also
Φn(S, z) = lim

m→∞
Φn,m(S, z),

and for T ∈ B(H)
γn(z) = min[Φn(T, z),Φn(T ∗, z̄)]. (3.3.3)

Theorem 3.3.4. Let T ∈ B(H), γn be defined as in (3.3.3) and ε > 0. Then the following
is true

(i) σn+1,ε(T ) ⊂ σn,ε(T ).

(ii) σn,ε(T ) = {z ∈ C : γn(z) < ε}.

(iii) cl({z : γn(z) < ε}) = {z : γn(z) ≤ ε}.

(iv) Let ωε(σ(T )) denote the ε-neighborhood around σ(T ). Then

dH(σn,ε(T ), ωε(σ(T ))) −→ 0, n→∞.

(v) If {Tk} ⊂ B(H) and Tk → T in norm, it follows that

dH(σn,ε(Tk), σn,ε(T )) −→ 0, k →∞.

Proof. Now (i) follows by the definition of σn,ε(T ) and the fact that

1/‖R(z, T )2
n+1‖1/2n+1 ≥ 1/(‖R(z, T )2

n‖1/2n+1‖R(z, T )2
n‖1/2n+1

)

= 1/‖R(z, T )2
n‖1/2n

.
(3.3.4)

To prove (ii) we have to show that γn(z) = 1/‖R(z, T )2
n‖1/2n

when z /∈ σ(T ) and that
γn(z) = 0 when z ∈ σ(T ). The former is clear, so to see the latter we need to show that
when z ∈ σ(T ) then either |(T − z)2

n | or |((T − z)2
n
)∗| is not invertible. To see that, we

need to consider three cases: (1) (T − z)2n
is not one to one, (2) (T − z)2n

is not onto, but
the range of (T − z)2

n
is dense in H or (3) (T − z)2

n
is not onto and ran((T − z)2n 6= H.

Case (1): Now, by the polar decomposition, we have (T −z)2n
= U |(T −z)2n | where U

is a partial isometry, and it is easy to see that |(T − z)2n | is not invertible when (T − z)2n

is not one to one.
Case (2): Recall that U is unitary if and only if ((T − z)2

n
)∗ is one to one. Thus,

since ran((T − z)2n) = H and ker(((T − z)2
n
)∗) = ran((T − z)2

n
)⊥, we have that U must

be unitary. But that implies that |(T − z)2
n | cannot be invertible since (T − z)2

n
is not

invertible.
Case (3): If ran((T − z)2n 6= H it follows that ker(((T − z)2

n
)∗) is nonzero, and since

((T − z)2
n
)∗ = U∗|((T − z)2

n
)∗|

we may argue as in Case (1) to deduce that |((T − z)2n
)∗| is not invertible and this proves

the claim.
To see (iii) we argue by contradiction and assume that cl({z : γn(z) < ε}) = {z :

γn(z) ≤ ε}. is false. Then there exists a z̃ ∈ σ(T )c such that γn(z̃) = ε and also a
neighborhood θ around z̃ such that γn(z) ≥ ε for z ∈ θ. Now, for z ∈ θ, it follows that
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1/γn(z) = ‖R(z, T )2
n‖1/2n

. Thus, ‖R(z̃, T )2
n‖ = 1/ε2

n
and ‖R(z̃, T )2

n‖ ≤ 1/ε2
n

for z ∈ θ.
But z 7→ R(z, T )2

n
is obviously holomorphic and d

dzR(z, T )2
n

is easily seen to be invertible
for all z ∈ θ. Thus, by Theorem 3.3.2, it follows that ‖R(z̃, T )2

n‖ < 1/ε2
n

for all z ∈ θ,
contradicting ‖R(z̃, T )2

n‖ = 1/ε2
n
.

It is easy to see that to prove (iv) it suffices to show that γn → γ locally uniformly,
where

γ(z) = dist(z, σ(T )).

To see the latter, let δ > 0 and let ωδ denote the open δ-neighborhood around σ(T ). Let
also Ω be a compact set such σ(T ) ⊂ Ωo and Ωδ = Ω \ ωδ. Note that for z ∈ Ω \ σ(T ) we
have

γ(z) = 1/ρ(R(z, T )),

where ρ(R(z, T )) denotes the spectral radius of R(z, T ), and also by (3.3.4) it follows that
γn+1(z) ≥ γn(z). Thus, by the continuity of γ and γn together with the spectral radius
formula we may appeal to Dini’s Theorem to deduce that γn → γ locally uniformly on
Ωδ. By choosing n large enough we can guarantee that |γn(z) − γ(z)| ≤ δ when z ∈ Ωδ.
Also, since γn(z) ≤ γ(z) for z ∈ Ω \ σ(T ) and γ(z) = dist(z, σ(T )) ≤ δ for z ∈ ωδ we
have that |γn(z) − dist(z, σ(T ))| ≤ δ when z ∈ Ω \ σ(T ) Since, by (ii), it is true that
γn(z) = dist(z, σ(T )) = γ(z) = 0 when z ∈ σ(T ) we are done with (iv).

To see that (v) is true let γn,k(z) = min[Φn(Tk, z),Φn(T ∗k , z̄)]. Then, by (ii), σn,ε(Tk) =
{z ∈ C : γn,k(z) < ε}. Also, since T is bounded and Tk → T in norm, there is a compact set
K ⊂ C containing both σn,ε(T ) and σn,ε(Tk). Thus, by appealing to (iii) and Proposition
3.3.1 we conclude that to prove (v) we only need to show that γn,k → γn locally uniformly
as k →. It suffices to show that γ2n+1

n,k → γ2n+1

n locally uniformly. Now

|Φn(Tk, z)2
n+1 − Φn(T, z)2

n+1 |
≤ dH

(
σ

(
((Tk − z)∗)2

n
(Tk − z)2

n)
, σ

(
((T − z)∗)2

n
(T − z)2

n))
≤ ‖((Tk − z)∗)2

n
(Tk − z)2

n − ((T − z)∗)2
n
(T − z)2

n‖ −→ 0,

(3.3.5)

locally uniformly as k → ∞. Similar estimate holds for |Φn(T ∗k , z̄)
2n+1 − Φn(T ∗, z̄)2

n+1 |
and this yields the assertion.

Remark 3.3.5. The advantage of the (n, ε)-pseudospectrum is that in addition to the
continuity property stated above, we now have two parameters n and ε to tweak in order
to estimate the spectrum. It is quite easy to construct examples (even 2-by-2 matrices) of
operators {Tn} for which σ1,ε(Tn) ⊂ σε/10n(Tn). And of course, in the self-adjoint case it
would not make sense to take n > 0 as σn,ε(A) = σε(A) for self-adjoint A.

3.4 Properties of the n-pseudospectra of Unbounded Oper-
ators

The theory of n-pseudospectra for unbounded operators has a lot in common with the
theory of n-pseudospectra for bounded operators, however, there is a major difference; the
n-pseudospectrum of an unbounded operator can “jump”. We will be more specific about
this below.
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Theorem 3.4.1. Let T ∈ C(H), n ∈ Z+, ε > 0 and let K ⊂ C be a compact ball such that
σε(T ) ∩Ko 6= ∅. Then the following is true

(i) σn+1,ε(T ) ⊂ σn,ε(T ).

(ii) Let ωε(σ(T )) denote the ε neighborhood around σ(T ). Then

dH(σn,ε(T ) ∩K,ωε(σ(T )) ∩K) −→ 0, n→∞.

Proof. Follows by almost identical arguments as in the proof of Theorem 3.3.4.

The difference between the bounded and the unbounded case is that if T ∈ C(H),
z ∈ C and we define

γn(z) =

{
0 z ∈ σ(T )

1
‖R(z,T )2n‖1/2n z ∈ σ(T )c,

(3.4.1)

then we might have that cl({z : γn(z) < ε}) 6= {z : γn(z) ≤ ε}. The reason is that there
exists unbounded operators for where the norm of the resolvent is constant on an open set
in C (Sha08). However, we have the following.

Theorem 3.4.2. Let T ∈ C(H) and let γn be defined as in (3.4.1). Suppose that ‖R(·, T )2
n‖

can never be constant on an open set, then cl({z : γn(z) < ε}) = {z : γn(z) ≤ ε}.

Proof. Follows by arguing similar to the argument in the proof of Theorem 3.3.4 (iii).

Theorem 3.4.3. Let T ∈ C(H) with domain D(T ) and let {Tk} ⊂ C(H) be a sequence

such that Tk
δ̂−→ T. Define, for z ∈ C

ζ(z) =

{
0 z ∈ σ(T )

1
‖R(z,T )‖ z ∈ σ(T )c,

ζk(z) =

{
0 z ∈ σ(Tk)

1
‖R(z,Tk)‖ z ∈ σ(Tk)c, k ∈ N.

(i) If z ∈ K, where K is compact, it follows that there is a CK > 0 depending on K
such that

|ζ(z)2 − ζk(z)2| ≤ CK(1 + |z|2)δ̂(Tk, T )

for sufficiently large k.

(ii) Suppose that ‖R(·, T )2
n‖ can never be constant on an open set. Then if K ⊂ C is a

compact ball such that Ko ∩ σn,ε(T ) 6= ∅, then

dH(σn,ε(Tk) ∩K,σn,ε(T ) ∩K) −→ 0, k →∞, ε > 0.

Proof. To show (i) we first claim that

ζ(z) = min
[
inf{

√
λ : λ ∈ σ((T − z)∗(T − z))},

inf{
√
λ : λ ∈ σ((T − z)(T − z)∗)}

]
ζk(z) = min

[
inf{

√
λ : λ ∈ σ((Tk − z)∗(Tk − z))},

inf{
√
λ : λ ∈ σ((Tk − z)(Tk − z)∗)}

]
.

(3.4.2)
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We will show this for ζ, and the argument is identical for ζk. Indeed, for z /∈ σ(T ) this is
quite straightforward and hence we are left to show that either |T − z| or |(T − z)∗| is not
invertible for z ∈ σ(T ). This is essentially the same argument as in Theorem 3.3.4, but
we include it for completeness and to make sure that the same conclusions can be drawn
using the polar decomposition of unbounded operators. We need to consider three cases.
(1), (T − z) is not one to one, (2), (T − z) is not onto, but the range of (T − z) is dense
in H or (3), (T − z) is not onto and ran((T − z)) 6= H.

Case (1): Now, by the polar decomposition, we have (T − z) = U |(T − z)| where U is
a partial isometry. Note that ker(T − z) = ker(|T − z|) and |T − z| is not invertible.

Case (2): Note that (T − z)∗ is one to one if and only if U is unitary and so U must
be unitary since ran((T − z) = H and ker((T − z)∗) = ran(T − z)⊥. But that implies that
|(T − z)| cannot be invertible since (T − z) is not invertible.

Case (3): If ran((T − z) 6= H it follows that ker((T − z)∗) is nonzero, and since
(T − z)∗ = U∗|(T − z)∗| we may argue as in Case (1) to deduce that |(T − z)∗| is not
invertible, and thus we have shown (3.4.2).

Note that by the spectral mapping theorem we have that

σ((T − z)∗(T − z)) = ψ(σ(R(T−z)), σ((T − z)(T − z)∗) = ψ(σ(R(T−z)∗))

where ψ(x) = 1/x − 1 (recall that R(T−z) is short for (1 + (T − z)∗(T − z))−1). Now let
ζ2(z) = ζ(z)2 and ζ2

k(z) = ζk(z)2. Then it follows that

ζ2(z) = min
(
inf{ψ(λ) : λ ∈ σ(R(T−z))}, inf{ψ(λ) : λ ∈ σ(R(T−z)∗)}

)
= min

(
ψ(‖R(T−z)‖), ψ(‖R(T−z)∗‖)

)
,

by self-adjointness of (T − z)∗(T − z) and (T − z)(T − z)∗. Similarly,

ζ2
k(z) = min

(
{ψ(‖R(Tk−z)‖), ψ(‖R(Tk−z)∗‖)

)
.

Recall from the definition of p and Theorem 1.1.2 that for z ∈ C we have

‖RTk−z −RT−z‖2 + ‖R(Tk−z)∗ −R(T−z)∗‖2 ≤ p(Tk − z, T − z)2

≤ 8δ̂(Tk − z, T − z)2

≤ 24(1 + |z|2)2δ̂(Tk, T )2.

(3.4.3)

Also, since K is compact, there is a δ > 0 such that

0 /∈ Ω = ωδ({ψ−1 ◦ ζ2(z) : z ∈ K}),

where ωδ({ψ−1◦ζ2(z) : z ∈ K}) denotes the δ-neighborhood around {ψ−1◦ζ2(z) : z ∈ K},
and by (3.4.3) it follows that

{ψ−1 ◦ ζ2
k(z) : z ∈ K} ⊂ ωδ({ψ−1 ◦ ζ2(z) : z ∈ K})

for sufficiently large k. Let C be the Lipschitz constant of ψdΩ. Then if z ∈ C \ σ(T ) we
have that ψ(‖R(T−z)‖) = ψ(‖R(T−z)∗‖) so by (3.4.3)

|ζ(z)2 − ζ̃2
k(z)| ≤ C

√
24(1 + |z|2)δ̂(Tk, T ). (3.4.4)
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If z ∈ σ(T ) then at least one of ‖R(T−z)‖ and ‖R(T−z)∗‖ is equal to one. Now, suppose
that ‖R(T−z)‖ = 1. If ζ2

k(z) = ψ(‖R(Tk−z)‖) then (3.4.4) follows, so suppose that ζ2
k(z) =

ψ(‖R(Tk−z)∗‖) then ‖R(Tk−z)∗‖ > ‖R(Tk−z)‖ so

|ζ(z)2 − ζ2
k(z)| ≤ C(1− ‖R(Tk−z)∗‖) ≤ C(‖R(T−z)‖ − ‖R(Tk−z)‖),

and hence (3.4.4) follows by (3.4.3). Similar reasoning gives the same result for

ζ2
k(z) = ψ(‖R(Tk−z)∗‖)

and ‖R(T−z)∗‖ = 1 and we deduce that (3.4.4) holds for all z ∈ K.
To show that

dH(σn,ε(Tk) ∩K,σn,ε(T ) ∩K) −→ 0, k →∞, ε > 0

in order to deduce (ii), we will deviate substantially from the techniques used in the proof
of Theorem 3.3.4 (v). Before getting to the argument note that, since for any z0 ∈ C we
have

σn,ε(T + z0) = {z + z0 : z ∈ σn,ε(T )},

we may assume that T is invertible. For m ∈ N consider the operator Tm defined induc-
tively on

D(Tm) = {ξ : ξ ∈ D(Tm−1), Tm−1ξ ∈ D(T )},

by Tmξ = T (Tm−1ξ). Then Tm is a closed operator (DS88). Also, since T is invertible
and T is densely defined, T−1 has dense range and so has T−m which yields that Tm is
densely defined. Note also that since D(Tm) ⊂ D(Tm−1) it follows that p(T ) is closed
and densely defined for any polynomial p and D(p(T )) = D(T d) where d is the degree of
the polynomial p. Thus for any z ∈ C we can define the adjoint ((T − z)m)∗. We can now
continue with the argument. The reasoning above allows us to define

γn,k(z) =min
[
inf{λ1/2n

: λ ∈ σ(|(Tk − z)2
n |)},

inf{λ1/2n
: λ ∈ σ(|((Tk − z)∗)2

n |)}
]
.

Appealing to Proposition 3.3.1 and Theorem 3.4.2 (and recalling the assumption in (ii)),
it suffices to show that γn,k → γn locally uniformly, where

γn(z) =

{
0 z ∈ σ(T )

1
‖R(z,T )2n‖1/2n z ∈ σ(T )c.

ClaimI: We claim that γn,k → γn locally uniformly on σ(T ). To see that, note that for
z ∈ σ(T ) then, by the spectral mapping theorem for polynomials of unbounded operators
(DS88), (T − z)2

n
is not invertible. Hence, by reasoning similar to what we did in the

proof of (i), either

( inf
‖ξ‖=1, ξ∈D(T 2n

)
‖(T − z)2

n
ξ‖)1/2n

= 0,

or ( inf
‖ξ‖=1, ξ∈D((T 2n

)∗)
‖((T − z)2

n
)∗ξ‖)1/2n

= 0,
(3.4.5)
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(or both are equal to zero). Suppose that the first part of (3.4.5) is true. Then, for δ > 0, we
can find for any z0 ∈ σ(T )∩K a vector ξz0 ∈ D(T 2n

) such that ‖(T − z0)2
n
ξz0‖1/2n ≤ δ/3.

Recall that, for any m ∈ N we have δ̂(Tmk , T
m) = δ̂(T−mk , T−m) and that R(Tmk ) → R(Tm)

if and only if δ̂(Tmk , T
m) → 0, and since R(Tk) → R(T ) so R(Tk)m → R(T )m we get that

δ̂(Tmk , T
m) → 0. Hence, by the definition of δ̂, it follows that

sup
ξ∈D(Tm)

‖ξ‖+‖Tmξ‖=1

inf
η∈D(Tm

k )
‖ξ − η‖+ ‖Tmξ − Tmk η‖ −→ 0, k →∞.

Thus, there exists a sequence of unit vectors {ηz0,k} in D(Tmk ) such that ηz0,k → ξz0 and
Tmk ηz0,k → Tmξz0 as k → ∞. Now, since for any integer r we have T−rk → T−r in norm,
it follows that

T lkηz0,k = T
−(m−l)
k Tmk ηz0,k −→ T−(m−l)Tmξz0 = T lξz0 , k →∞.

for all l ≤ m. In particular, it is true that z 7→ (Tk − z)2
n
ηz0,k → z 7→ (T − z)2

n
ξz0

locally uniformly as k → ∞. Note that z 7→ ‖(T − z)2
n
ξz0‖ is continuous. Thus, there

is a neighborhood Θz0 around z0 such that ‖(T − z)2
n
ξz0‖ ≤ 2

3δ for z ∈ Θz0 and hence
‖(Tk − z)2

n
ηz0,k‖ ≤ δ for z ∈ Θz0 and sufficiently large k. Covering σ(T )∩K with finitely

many neighborhoods {Θzj}Mj=1, of the type just described, for some {zj}Mj=1 ⊂ σ(T ) ∩K
and some M ∈ N, we deduce that there are sequences {ηzj ,k} and an integer k0 such that

max
j≤M

sup
z∈Θzj

‖(Tk − z)2
n
ηzj ,k‖ ≤ δ2

n
, k ≥ k0.

And hence it follows that that for z ∈
⋃
zj

Θzj

inf{λ1/2n
: λ ∈ σ(|(Tk − z)2

n |)} = ( inf
‖ξ‖=1, ξ∈H

‖(Tk − z)2
n
ξ‖)1/2n ≤ δ, k ≥ k0.

Similar reasoning holds for the second part of (3.4.5) and hence we deduce that γn,k → γn
locally uniformly on σ(T ).

Note that we have actually proved more than what we claimed, namely that if δ > 0,
z0 ∈ ∂σ(T ) and ω is a neighborhood around z0 such that γn(z) ≤ δ/2 for z ∈ ω, then

γn,k(z) ≤ δ, z ∈ ω, k ≥ K, (3.4.6)

for some K.
ClaimII: We claim that γn,k → γn locally uniformly on C\σ(T ).Note that z 7→ R(z, T )

is analytic on C \ σ(T ) and also, since

Tk
δ̂−→ T

and σ(T )c 6= ∅, it follows that if Br(a) is an open disc with center a ∈ C, radius r and
Br(a) ⊂ C\ων(σ(T )) for some ν > 0 (recall that ων(Ω) denotes the ν-neighborhood around
Ω ⊂ C), then R(z, Tk) exist and is bounded on a neighborhood of Br(a) for sufficiently
large k and hence z 7→ R(z, Tk) is analytic there. Now,

R(z, Tk) −→ R(z, T ), k →∞, z ∈ Br(a) (3.4.7)
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pointwise. Let fk(z) = R(z, Tk) then, by Cauchy’s formula, we have for z ∈ Br(a)

‖fk(a)− fk(z)‖ ≤
1
2π

∥∥∥∥∥
∫
∂Br(a)

fk(ω)(a− z)
(ω − a)(ω − z)

dω

∥∥∥∥∥
≤ 4M

R
|a− z|,

where M is the bound on fk on Br(a). Hence, {fk} is locally uniformly Lipschitz and
therefore the convergence in (3.4.7) must be locally uniform. Using the reasoning above,
the fact that we have γn,k(z) = 1/‖R(z, Tk)2

n‖1/2n
for z ∈ C \ ων(σ(T )) and sufficiently

large k, and the reasoning leading to (3.4.6), then ClaimII easily follows.
By adding Claim I and Claim II we deduce (ii).

3.5 Proofs of the Main Theorems

We are now ready to prove the main theorems, but before we do that we need a couple of
preliminary results.

Proposition 3.5.1. T ∈ B(H) and {Pm} is an increasing sequence of finite rank projec-
tions converging strongly to the identity. Let Φn,m be as in Definition 3.3.3. Define, for
k ∈ N, the functions γn,m, γn,m,k : C → R by

γn,m(z) = min[Φn,m(T, z),Φn,m(T ∗, z̄)],
γn,m,k(z) = min[Φn,m(PkTPk, z),Φn,m(PkT ∗Pk, z̄)],

(3.5.1)

and let γn be defined as in (3.3.3). Then γn,m → γn as m → ∞ and γn,m,k → γn,m as
k →∞ locally uniformly. The convergence γn,m → γn is monotonically from above.

Proof. To see that γn,m → γn monotonically from above and locally uniformly as m →
∞, define γ1

n(z) = Φn(T, z), γ2
n(z) = Φn(T ∗, z̄), γ1

n,m(z) = Φn,m(T, z) and γ2
n,m(z) =

Φn,m(T ∗, z̄), where Φn and Φn,m are defined as in Definition 3.3.3. It follows, by the
definition of γn,m, that to prove the claim it suffices to show that γ1

n,m → γ1
n and γ2

n,m →
γ2
n monotonically from above and locally uniformly as m → ∞. Now, γjn,m is obviously

continuous as well as γjn and also, since Pn+1 ≥ Pn and Pn → I, we have that γjn,m+1(z) ≤
γjn,m(z) and limm→∞ γjn,m(z) = γjn(z) for z ∈ C. Thus, by appealing to Dini’s Theorem,
we deduce that γjn,m → γjn locally uniformly.

To see that γn,m,k → γn,m as k → ∞, locally uniformly we argue as follows. Using
self-adjointness of

Tm(z) = Pm((T − z)∗)2
n
(T − z)2

n
⌈
PmH

Tm,k(z) = Pm((Pk(T − z)Pk)∗)2
n
(Pk(T − z)Pk)2

n
⌈
PmH

,

T̃m(z) = Pm(T − z)2
n
((T − z)∗)2

n
⌈
PmH

T̃m,k(z) = Pm(Pk(T − z)Pk)2
n
((Pk(T − z)Pk)∗)2

n
⌈
PmH

(3.5.2)
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and the fact that for self-adjoint A,B ∈ B(H) we have dH(σ(A), σ(B)) ≤ ‖A − B‖ it
suffices to show that Tm,k(z) → Tm(z) and T̃m,k(z) → T̃m(z), as k →∞, uniformly for all
z in a compact set. To see that we observe that

SOT-lim
k→∞

Pk(T − z)Pk = T − z, SOT-lim
k→∞

(Pk(T − z)Pk)∗ = (T − z)∗,

so since multiplication is strongly continuous on bounded sets and the fact Pm has finite
rank it follows that the strong convergence implies norm convergence and we deduce that
Tm,k → Tm and T̃m,k → T̃m pointwise as k →∞.

A closer examination shows that the operator valued functions z 7→ Tm,k(z) and z 7→
T̃m,k(z) are Lipschitz continuous on compact sets with a uniformly bounded Lipschitz
constant, thus the convergence asserted is locally uniform.

Theorem 3.5.2. (Tre04) Let H1 and H2 be Hilbert spaces and let H∞
H1→H2

denote the set
of all bounded analytic function on the open unit disk D whose values are in B(H1,H2).
Let F ∈ H∞

H1→H2
and suppose that there is a δ > 0 such that F ∗(z)F (z) ≥ δI for all

z ∈ D. If there is a constant operator A ∈ B(H1,H2) such that

sup
z∈D

‖A− F ∗(z)F (z)‖1 <∞,

where ‖ · ‖1 denotes the trace-norm, then there is a G ∈ H∞
H2→H1

such that G(z)F (z) = I
for all z ∈ D.

Theorem 3.5.3. (Sha08) Let Ω0 be a connected open subset of C and Z a Banach space.
Suppose that F : Ω0 → Z is an analytic vector valued function, ‖F (z)‖ ≤ M for all z in
an open subset Ω ⊂ Ω0, and ‖F (z0)‖ < M for some z0 ∈ Ω0. Then ‖F (z)‖ < M for all
z ∈ Ω.

We are now ready to prove the main theorems.

Theorem 3.5.4. Let {ej}j∈N be a basis for the Hilbert space H and let

∆ = {T ∈ C(H) : T = W +A, W ∈WS(H), A ∈ B(H)

∩ {T ∈ C(H) : ‖R(T, ·)2n‖1/2n
is never constant for anyn}.

(3.5.3)

Define, for n ∈ N, ε > 0, the set valued functions Ξ1,Ξ2,Ξ3 : ∆ → Ω by Ξ1(T ) = σn,ε(T ),
Ξ2(T ) = ωε(σ(T )) and Ξ3(T ) = σ(T ). Then

Cind(Ξ1) ≤ 3, Cind(Ξ2) ≤ 4, Cind(Ξ3) ≤ 4.

Also, if ∆ = B(H) then Cind(Ξ1) ≤ 2, Cind(Ξ2) ≤ 3 and Cind(Ξ3) ≤ 3.

Proof. Note that if T ∈ ∆ it follows that, for a compact ball K ⊂ C with Ko intersecting
σn,ε(T ) or σ(T ) we have

σ(T ) ∩K = lim
ε→0

σn,ε(T ) ∩K, ωε(σ(T )) ∩K = lim
n→∞

σn,ε(T ) ∩K,

(the first assertion is obvious and the second follows from Theorem 3.4.1) thus, it suffices
to show, in both cases, the bound on Cind(Ξ1). We will first show that if ∆ = B(H) then
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Cind(Ξ1) ≤ 2, and then use this to show that if ∆ is defined as in (3.5.3) then Cind(Ξ1) ≤ 3.
Let Pn be the projection onto span{e1, . . . , en} and xij = 〈Tej , ei〉 for T ∈ B(H). Also,
define the set

Θk = {z ∈ C : <z,=z = rδ, r ∈ Z, |r| ≤ k}, δ =

√
1
k
, (3.5.4)

and define the set of estimating functions Γn1,n2 and Γn1 in the following way. Let

Γn1,n2({xij}) = {z ∈ Θn2 : @L ∈ LTpos(Pn1H), Tε,n1,n2(z) = LL∗}

∪ {z ∈ Θn2 : @L ∈ LTpos(Pn1H), T̃ε,n1,n2(z) = LL∗},
Γn1({xij}) = {z ∈ C : (−∞, 0] ∩ σ(Tε,n1(z)) 6= ∅}

∪ {z ∈ C : (−∞, 0] ∩ σ(T̃ε,n1(z)) 6= ∅},

(3.5.5)

where LTpos(PmH) denotes the set of lower triangular matrices in B(PmH) (with respect
to {ej}) with strictly positive diagonal elements and

Tε,n1,n2(z) = Tn1,n2(z)− ε2
n+1

I,

T̃ε,n1,n2(z) = T̃n1,n2(z)− ε2
n+1

I,

Tε,n1(z) = Tn1(z)− ε2
n+1

I,

Tε,n1(z) = Tn1(z)− ε2
n+1

I,

(3.5.6)

where Tn1,n2 , T̃n1,n2 , Tn1 and T̃n1 are defined as in (3.5.2). Note that, clearly, from the
definition, Γn1,n2 depends only on {xij}i,j≤n2 .We claim that Γn1,n2({xij}) can be evaluated
using only finitely many arithmetic operations and radicals of elements in {xij}i,j≤n2 .

Indeed, Tε,n1,n2(z) and T̃ε,n1,n2(z) are both in B(Pn1H). Also, aij = 〈Tε,n1,n2(z)ej , ei〉 and
ãij = 〈T̃ε,n1,n2(z)ej , ei〉, for i, j ≤ n1, are, by the definition of Tε,n1,n2(z) and T̃ε,n1,n2(z),
polynomials in {xij}i,j≤n2 . Since the existence of L ∈ LTpos(Pn1) such that Tε,n1,n2(z) =
LL∗ can be determined using finitely many arithmetic operations and radicals of {aij}i,j≤n1

(this is known as the Cholesky decomposition), similar reasoning holds for T̃ε,n1,n2(z) and
the fact that Θn2 is finite, the assertion follows.

Step I: We will show that for any compact ballK ⊂ C such that Γn1,n2({xij})∩Ko 6= ∅,
then

dH(Γn1,n2({xij}) ∩K,Γn1({xij}) ∩K) −→ 0, n2 →∞.

Note that since dH(Θn2∩K,K) → 0, as n2 →∞, and by the observations that for n2 ≥ n1

we have

{z ∈ C : @L ∈ LTpos(Pn1H), Tε,n1,n2(z) = LL∗}

∪ {z ∈ C : @L ∈ LTpos(Pn1H), T̃ε,n1,n2(z) = LL∗}

= {z ∈ C : (−∞, 0] ∩ σ(Tε,n1,n2(z)) 6= ∅} ∪ {z ∈ C : (−∞, 0] ∩ σ(T̃ε,n1,n2(z)) 6= ∅}
= {z ∈ C : γn,n1,n2(z) ≤ ε},

where γn,n1,n2 is defined in (3.5.1), and

{z ∈ C : γn,n1(z) ≤ ε} = {z ∈ C : (−∞, 0] ∩ σ(Tε,n1(z)) 6= ∅}

∪ {z ∈ C : (−∞, 0]∩ ∈ σ(T̃ε,n1(z)) 6= ∅}
(3.5.7)
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where γn,n1 is defined in (3.5.1), the assertion will follow if we can demonstrate that

dH({z ∈ C : γn,n1,n2(z) ≤ ε} ∩K, {z ∈ C : γn,n1(z) ≤ ε} ∩K) −→ 0, (3.5.8)

as n2 → ∞. Now, by Proposition 3.5.1 it follows that γn,n1,n2 → γn,n1 locally uniformly
hence, by Proposition 3.3.1, (3.5.8) will follow if we can prove the following.

Claim: We claim that

cl({z ∈ C : γn,n1(z) < ε}) = {z ∈ C : γn,n1(z) ≤ ε}. (3.5.9)

Now, letting ζ1,n1 and ζ2,n1 be defined by ζ1,n1(z) = Φn,n1(T, z) and ζ2,n1(z) = Φn,n1(T
∗, z̄),

where Φn,n1 is defined as in Definition 3.3.3. Then γn,n1 = min[ζ1,n1 , ζ2,n1 ]. Thus, (3.5.9)
will follow if we can show that

cl({z ∈ C : ζj,n1(z) < ε}) = {z ∈ C : ζj,n1(z) ≤ ε}, j = 1, 2. (3.5.10)

We will demonstrate the latter, but before we do so we need to establish some facts about
the set of points where ζ1,n1 does not vanish. Let

Ω = {z ∈ C : ζ1,n1(z) 6= 0},

then Ω is obviously open and we claim that C \ Ω is finite. To see that we argue by
contradiction and suppose that ζ1,n1 vanishes at infinitely many points. If that was the
case we would have

inf
‖ξ‖=1,ξ∈H

‖(T − z)2
n
Pn1ξ‖ = 0, (3.5.11)

for infinitely many zs. This is indeed impossible because, since Pn1 has finite rank, there
is a finite dimensional subspace H1 ⊂ H such that ran(T − z)2

n−1Pn1 ⊂ H1 for all z ∈ C.
Thus , if E is the projection onto H1 then, by (3.5.11), infη∈H1 ‖(ETE − zE)η‖ = 0 for
infinitely many zs. But the infimum in the equation above is actually attained since H1

is finite dimensional and hence the finite rank operator ETE must have infinitely many
eigenvalues and this is impossible. Armed with this fact we return to the task of showing
(3.5.10). To do this for j = 1 we argue by contradiction and suppose that there is a

z0 /∈ cl({z ∈ C : ζ1,n1(z) < ε}) (3.5.12)

such that ζ1,n1(z0) = ε. This implies that there is a neighborhood θ around z0 such that
ζ1,n1(z) ≥ ε for z ∈ θ. We will now demonstrate that this is impossible. First note that
by the definition of ζ1,n1 we can make ζ1,n1(z) arbitrary large for large |z|. In particular,
we can find an open set θ̃ ⊂ Ω such that ζ1,n1(z) > ε for z ∈ θ̃. Now choose a simply
connected open set Ω0 ⊂ Ω such that θ∪ θ̃ ⊂ Ω0 and ζ1,n1 does not vanish on cl(Ω0). Note
that this is possible by the fact that C \ Ω is finite. Now define, for z ∈ Ω0, the operator

F (z) : Pn1H → H, F (z) = (T − z)2
n
Pn1 .

Now, obviously F is holomorphic. Note that, by continuity of ζ1,n1 and the choice of Ω0,
there is a δ > 0 such that

inf
z∈Ω0

ζ1,n1(z) ≥ δ.
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By possibly composing F with a holomorphic function we may assume that Ω0 = D, the
open disk with radius one centered at the origin. Hence we get that F ∈ H∞

Pn1H→H and
F ∗(z)F (z) ≥ δI, for all z ∈ D, where I is the identity on Pn1H. Obviously, since Pn1 is a
finite rank projection, it follows that

sup
z∈D

‖F ∗(z)F (z)‖1 <∞,

where ‖ · ‖1 denotes the trace norm. Thus, we may appeal to Theorem 3.5.2 and deduce
that there is a G ∈ H∞

H→Pn1H
such that G(z)F (z) = I for all z ∈ D. Again, by possibly

composing with another holomorphic function (and with a slight abuse of notation) we
have a holomorphic function G on Ω0 such that G(z) : H → Pn1H and

1/ζ1,n1(z) = 1/( inf
ξ∈Pn1H,‖ξ‖=1

‖F (z)ξ‖) = ‖G(z)‖, z ∈ Ω0.

Then, by the reasoning above, it follows that ‖G(z)‖ ≤ 1/ε for z ∈ θ and ‖G(z)‖ < 1/ε
for z ∈ θ̃. This implies, by Theorem 3.5.3, that ‖G(z)‖ < 1/ε for z ∈ θ, but ‖G(z0)‖ = 1/ε
and z0 ∈ θ (recall (3.5.12)) and we have finally reached the desired contradiction. By a
similar argument one can show (3.5.10) for j = 2 and hence we are done with step I.

Step II: We will show that for any compact ball K ⊂ C such that σn,ε(T ) ∩Ko 6= ∅,
then

dH(Γn1({xij}) ∩K,σn,ε(T ) ∩K) −→ 0, n1 →∞.

But, by (3.5.7) and Theorem 3.3.4 (ii), this will follow if

dH({z ∈ C : γn,n1(z) ≤ ε} ∩K, {z ∈ C : γn(z) ≤ ε} ∩K) −→ 0, n1 →∞,

where γn is defined in (3.3.3), and by Theorem 3.3.4 (iii) and Proposition 3.3.1 this is true
if γn,n1 → γn locally uniformly, which in fact was established in Proposition 3.5.1. Now,
adding Step I and Step II together we have shown that Cind(Ξ1) ≤ 2 for Ξ1 : ∆ → Ω when
∆ = B(H), and we will now use this to establish the assertion of the theorem.

Step III: We will now show that if ∆ is defined as in (3.5.3) then Cind(Ξ1) ≤ 3.
Suppose that we have T = W + A, where W is a weighted shift and A is bounded.
Letting xij = 〈Tej , ei〉 we will define the set of estimating functions Γn1,...,n3 , . . . ,Γn1

in the following way. Now, for ξ ∈ H we may without loss of generality assume that
(Wξ)j = xj,j+kξj for some integer k. Define a new set {x̃ij(n)}, depending on an integer
n, in the following way: x̃j,j+k(n) = n if |xj,j+k| > n and x̃ij(n) = xij elsewhere. Note
that {x̃ij(n)} gives rise to a bounded operator Sn whose matrix elements are {x̃ij(n)}.
Thus we can define

Γn1,...,n3({xij}) = Γn2,n3({x̃ij(n1)}),

where Γn2,n3 is defined as in (3.5.5). If we let Γn1({xij}) = Ξ1(Sn1), and since we have
shown above that Γn2,n3 and Γn2 is a set of estimating functions for Ξ1 : B(H) → Ω, it
follows that Γn1,...,n3 , . . . ,Γn1 is a set of estimating functions for Ξ1 if we can show that

lim
n1→∞

Ξ1(Sn1) = Ξ1(T ).

Note that, by Theorem 3.4.3 (and assumption), the latter will follow if we can show that

Sn
δ̂−→ T, n→∞. (3.5.13)
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Define the operator Wn by (Wnξ)j = x̃j,j+k(n)ξj for ξ ∈ H. Then Sn = Wn +A. Thus, by
Theorem 1.1.2, (3.5.13) will follow if we can show that δ(Wn,W ) → 0 and δ(W,Wn) → 0
as n→∞. To show the former we need to demonstrate that

sup
ϕ∈G(Wn),‖ϕ‖≤1

inf
ψ∈G(W )

‖ϕ− ψ‖ −→ 0, n→∞,

where G(W ) denotes the graph of W as defined in (1.1.1). Let ϕ ∈ G(Wn) such that
‖ϕ‖ ≤ 1. Then there is a ξ ∈ H such that ϕ = (ξ,Wnξ) and ‖Wnξ‖+‖ξ‖ ≤ 1. Now, choose
η ∈ D(W ) in the following way:

ηj =

{
ξj if x̃j,j+k(n) = xj,j+k
x̃j,j+k(n)
xj,j+k

ξj if x̃j,j+k(n) 6= xj,j+k.

Let also Θ = {j ∈ N : ηj = ξj} and θ = {j ∈ N : ηj 6= ξj}. Then,

‖ξ − η‖+‖Wnξ −Wη‖

=
∑
j∈Θ

|ξj − ηj |2 +
∑
j∈θ

|ξj − ηj |2

+
∑
j∈Θ

|x̃j,j+k(n)ξj − xj,j+kηj |2 +
∑
j∈θ

|x̃j,j+k(n)ξj − xj,j+kηj |2

=
∑
j∈θ

|ξj − ηj |2 +
∑
j∈θ

|x̃j,j+k(n)ξj − xj,j+kηj |2.

Now
∑

j∈θ |x̃j,j+k(n)|2|ξj |2 ≤ 1 and x̃j,j+k(n) = n for j ∈ θ so
∑

j∈θ |ξj+k|2 ≤ 1/n2. So by
the fact that |x̃j,j+k(n)/xj+k| ≤ 1 and the choice of η it follows that∑

j∈θ
|ξj − ηj |2 ≤ 4/n2.

Also,
∑

j∈θ |x̃j,j+k(n)ξj−xj,j+kηj |2 = 0, by the choice of η, and thus ‖ξ−η‖+‖Wnξ−Wη‖ ≤
2/n. Hence infψ∈G(W ) ‖ϕ− ψ‖ ≤ 2/n and so since ϕ was arbitrary we have

sup
ϕ∈G(AN ),‖ϕ‖≤1

inf
ψ∈G(A)

‖ϕ− ψ‖ ≤ 2/n −→ 0, n→∞.

The fact that δ(W,Wn) → 0 as n→∞ follows by similar reasoning.

Remark 3.5.5. The assumption that ‖R(T, ·)2n‖1/2n
is never constant for any n will be

satisfied e.g. if C\σ(T ) is connected and the numerical range of T is contained in a sector
of the complex plane.

Theorem 3.5.6. Let {ej}j∈N and {ẽj}j∈N be bases for the Hilbert space H and let

∆̃ = {T ∈ C(H⊕H) : T = T1 ⊕ T2, T1, T2 ∈ C(H), T ∗1 = T2}
∆ = {T ∈ ∆̃ : span{ej}j∈N is a core for T1, span{ẽj} is a core for T2}.

Let ε > 0, Ξ1 : ∆ → Ω and Ξ2 : ∆ → Ω be defined by Ξ1(T ) = σε(T1) and Ξ2(T ) = σ(T1).
Then Cind(Ξ1) ≤ 2 and Cind(Ξ2) ≤ 3.
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Proof. Arguing as in the proof of Theorem 3.5.4, it suffices to show that Cind(Ξ1) ≤ 2. Let
Pm and P̃m be the projections onto span{ej}mj=1 and span{ẽj}mj=1 respectively and define

Sm : ∆× C → B(PmH,H), S̃m : ∆× C → B(P̃mH,H)

by
Sm(T, z) = (TE1 − z)Pm, S̃m(T, z) = (TE2 − z̄)P̃m,

where E1 : H⊕H → H and E2 : H⊕H → H are the projections onto the first and second
component, respectively. Also, define

Sm,k : ∆× C → B(PmH,H), S̃m,k : ∆× C → B(P̃mH,H)

by
Sm,k(T, z) = (PkTE1Pk − z)Pm S̃m(T, z) = (P̃kTE2P̃k − z̄)P̃m.

Now, for T ∈ ∆, let {xij} be some ordering of the matrix elements

{〈T1ej , ei〉} ∪ {〈T2ẽj , ẽi〉}i,j∈N,

and define the estimating functions Γn1,n2 and Γn1 by

Γn1,n2({xij}) = {z ∈ Θn2 : @L ∈ LTpos(Pn1H), Tε,n1,n2(z) = LL∗}

∪ {z ∈ Θn2 : @L ∈ LTpos(P̃n1H), T̃ε,n1,n2(z) = LL∗},
Γn1({xij}) = {z ∈ C : (−∞, 0] ∩ σ(Tε,n1(z)) 6= 0}

∪ {z ∈ C : (−∞, 0] ∩ σ(T̃ε,n1(z)) 6= ∅},

where Θn2 is defined as in (3.5.4) and

Tε,n1,n2(z) = Sn1,n2(z)
∗Sn1,n2(z)− ε2I, T̃ε,n1,n2(z) = S̃n1,n2(z)

∗S̃n1,n2(z)− ε2I

and Tε,n1(z) = Sn1(z)
∗Sn1(z) − ε2I, T̃ε,n1(z) = S̃n1(z)

∗S̃n1(z) − ε2I. As argued in the
proof of Theorem 3.2.2, Γn1,n2 depends on only finitely many elements in {xij}, and its
evaluation requires finitely many arithmetic operations and radicals of the matrix elements
{xij}. We are now ready to prove:

Step I. We will show that

Γn1({xij}) = lim
n2→∞

Γn1,n2({xij}).

Before we can do that, we must establish a couple of facts first. Now, let Φm : ∆×C → R,
Φ̃m : ∆× C → R, Φm,k : ∆× C → R and Φ̃m,k : ∆× C → R be defined by

Φm(T, z) = min{
√
λ : λ ∈ σ(Sm(T, z)∗Sm(T, z))},

Φ̃m(T, z) = min{
√
λ : λ ∈ σ(S̃m(T, z)∗S̃m(T, z))},

Φm,k(T, z) = min{
√
λ : λ ∈ σ(Sm,k(T, z)∗Sm,k(T, z))},

Φ̃m,k(T, z) = min{
√
λ : λ ∈ σ(S̃m,k(T, z)∗S̃m,k(T, z))}.
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Claim: We claim that

{z ∈ C : Φm(T, z) ≤ ε} = cl({z ∈ C : Φm(T, z) < ε}). (3.5.14)

Indeed, this is the case, and the proof is almost identical to the argument used in the proof
of Theorem 3.2.2. Let

Ω = {z ∈ C : Φm(T, z) 6= 0},

then Ω is obviously open and we claim that C \ Ω is finite. To see that, we argue by
contradiction and suppose that Φm(T, ·) vanishes at infinitely many points. If that was
the case we would have

inf
‖ξ‖=1,ξ∈H

‖(T1 − z)Pmξ‖ = 0 (3.5.15)

for infinitely many zs. But the infimum in (3.5.15) is attained since Pm has finite rank, so
this implies that the operator PmT1dPmH has infinitely many eigenvalues. This is, of course,
impossible since Pm has finite rank. Armed with this fact we return to the task of showing
(3.5.14). Observe that since Pm has finite rank we can make inf‖ξ‖=1,ξ∈H ‖(T1 − z)Pmξ‖
arbitrary large for large |z|, and in particular, Φm(T, ·) can be made arbitrary large as
long as |z| is large. Using this we may argue exactly as in the proof of Theorem 3.2.2 and
deduce that if there is a

z0 /∈ cl({z ∈ C : Φm(T, z) < ε})

such that Φm(T, z0) = ε then there is an open connected set Ω0 ⊂ Ω containing z0 and an
operator valued holomorphic function G on Ω0 such that we have G(z) : H → PmH,

1/Φm(T, z) = ‖G(z)‖, z ∈ Ω0,

and ‖G(z1)‖ < 1/ε for some z1 ∈ Ω0. By the assumption on z0, there is a neighborhood θ
around z0 such that

‖G(z)‖ ≤ 1/ε, z ∈ θ

and since ‖G(z1)‖ < 1/ε it follows, by Theorem 3.5.3, that ‖G(z)‖ < 1/ε for all z ∈ θ. But
‖G(z0)‖ = 1/ε and this is a contradiction.

Note that similar reasoning gives that

{z ∈ C : Φ̃m(T, z) ≤ ε} = cl({z ∈ C : Φ̃m(T, z) < ε}). (3.5.16)

So, by observing that

Γn1,n2({xij}) = {z ∈ Θn2 : min[Φn1,n2(T, z), Φ̃n1,n2(T, z)] ≤ ε},

Γn1({xij}) = {z ∈ C : min[Φn1(T, z), Φ̃n1(T, z)] ≤ ε}
(3.5.17)

it suffices to show, by Proposition 3.3.1 that

min[Φn1,n2(T, z), Φ̃n1,n2(T, z)] → min[Φn1(T, z), Φ̃n1(T, z)]

locally uniformly as n2 →∞, which again will follow if we can show that the mappings

z 7→ 〈Sn1,n2(T, z)
∗Sn1,n2(T, z)ej , ei〉 −→ z 7→ 〈Sn1(T, z)

∗Sn1(T, z)ej , ei〉

z 7→ 〈S̃n1,n2(T, z)
∗S̃n1,n2(T, z)ẽj , ẽi〉 −→ z 7→ 〈S̃n1(T, z)

∗S̃n1(T, z)ẽj , ẽi〉
(3.5.18)
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locally uniformly as n2 →∞, where ej , ei ∈ Pn1H and ẽj , ẽi ∈ P̃n1H. Note that for k ≥ m
we have 〈Sn1,n2(T, z)

∗Sn1,n2(T, z)ej , ei〉 = 〈Pn2(T − z)ej , Pn2(T − z)ei〉, yielding the first
part of (3.5.18), and similar reasoning yields the second part.

Step II: We will show that

lim
n1→∞

Γn1({xij}) = σε(T1). (3.5.19)

To do that we will first demonstrate the following;

γ1(z) = lim
n1→∞

Φn1(T, z), γ2(z) = lim
n1→∞

Φ̃n1(T, z)

exist, the convergence is monotonically from above and locally uniform and

σε(T1) = {z ∈ C : min[γ1(z), γ2(z)] < ε}. (3.5.20)

Now, note that

Φn1(T, z) = min
ξ∈Pn1H

‖(T1 − z)ξ‖, Φ̃n1(T, z) = min
ξ∈ ePn1H

‖(T1 − z)∗ξ‖.

So, by the assumption that span{ej}j∈N is a core for T1 and span{ẽj}j∈N is a core for T2,
it follows that the limits exist and that

γ1(z) = inf{λ : λ ∈ σ(|(T1 − z)|}, γ2(z) = inf{λ : λ ∈ σ(|(T1 − z)∗|)}.

By Dini’s theorem it follows that the convergence is as asserted. Using this fact and by
arguing as in the proof of Theorem 3.4.3 we get (3.5.20). The previous reasoning implies
that min[Φn1(T, z), Φ̃n1(T, z)] → min[γ1(z), γ2(z)] monotonically from above and locally
uniformly as n1 → ∞. So, by Proposition 3.3.4 and (3.5.20), it follows that, for compact
ball K such that σε(T1) ∩Ko 6= ∅, we have

cl({z ∈ C : min[Φn1(T, z), Φ̃n1(T, z)] < ε}) ∩K −→ σε(T1) ∩K,

as n1 →∞. But by (3.5.14),(3.5.17) and (3.5.16) it follows that

Γn1({xij}) = cl({z ∈ C : min[Φn1(T, z), Φ̃n1(T, z)] < ε}),

and hence (3.5.19) follows.

Corollary 3.5.7. Let {ej}j∈N be a basis for the Hilbert space H and let

∆ = {A ∈ SA(H) : span{ej}j∈N is a core forA}.

Let ε > 0 and Ξ1,Ξ2 : ∆ → Ω be defined by Ξ1(T ) = σ(T ) and Ξ2(T ) = ωε(σ(T )). Then
Cind(Ξ1) ≤ 3 and Cind(Ξ2) ≤ 2.

Theorem 3.5.8. Let {ej}j∈N be a basis for the Hilbert space H, Pm be the projection onto
span{ej}mj=1 and d be some positive integer. Let ∆ ⊂ C(H) have the following properties:
For T ∈ ∆ we have

(i)
⋃
m PmH ⊂ D(T ),

⋃
m PmH ⊂ D(T ∗).
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(ii) 〈Tej+l, ej〉 = 〈Tej , ej+l〉 = 0, for l > d.

(iii) TPmξ → Tξ, T ∗Pmη → T ∗η, as m→∞ for ξ ∈ D(T ) and η ∈ D(T ∗).

Let ε > 0 and n ∈ Z+ and Ξ1,Ξ2,Ξ3 : ∆ → Ω be defined by Ξ1(T ) = σn,ε(T ), Ξ2(T ) =
ωε(σ(T )) and Ξ3(T ) = σ(T ). Then

Cind(Ξ1) = 1, Cind(Ξ2) ≤ 2, Cind(Ξ3) ≤ 2.

Proof. As in the proof of Theorem 3.2.2 it suffices to demonstrate that Cind(Ξ1) = 1.
Now, obviously we have Cind(Ξ) > 0, so it suffices to show that Cind(Ξ) ≤ 1. We follow
the proof of Theorem 3.2.2 closely. Let Pn be the projection onto span{e1, . . . , en} and
xij = 〈Tej , ei〉 for T ∈ ∆. For k ∈ N define T k inductively by T kξ = T (T k−1ξ) on

D(T k) = {ξ : ξ ∈ D(T k−1), T k−1ξ ∈ D(T )},

and define D((T ∗)k) similarly. Then it is easy to see that
⋃
m PmH ⊂ D(T k), so T k

is densely defined. The fact that T k is closed is well known (DS88)(p. 603), and it
follows (by a straightforward argument using the assumptions (ii) and (iii)) that

⋃
m PmH

is a core for T k. Similarly, we get that (T ∗)k is closed and densely defined and that⋃
m PmH ⊂ D((T ∗)k) is a core for (T ∗)k. Using this, it is easy to see that we can, for

integers m, k, define Tε,m,k(z) = Tm,k(z)− ε2
n+1

I and T̃ε,m,k(z) = T̃m,k(z)− ε2
n+1

I, where
Tm,k(z) and T̃m,k(z) are defined in (3.5.2). Let, for k ∈ N, Θk be defined as in (3.5.4) and

Ψk = {z ∈ C : @L ∈ LTpos(PkH), Tε,k,2nd+k(z) = LL∗}

∪ {z ∈ C : @L ∈ LTpos(PkH), T̃ε,k,2nd+k(z) = LL∗},
(3.5.21)

where LTpos(PmH) denotes the set of lower triangular matrices in PmH (with respect to
{ej}) with strictly positive diagonal elements. Now, define Γk by

Γk({xij}) = Ψk ∩Θk.

By the same reasoning as in the proof of Theorem 3.2.2, it follows that Γn1,n2 depends
only on finitely many of the xijs and requires only finitely many arithmetic operations and
radicals of {xij} for its evaluation. Now, to show that

Ξ(T ) = lim
k→∞

Γk({xij}),

we need to show that for any compact ball K such that σn,ε(T ) ∩Ko 6= ∅ then

dH(σn,ε(T ) ∩K,Γk({xij}) ∩K) −→ 0, k →∞.

But, since obviously dH(Θk ∩K,K) → 0 as k →∞ it suffices to show that

dH(Ψk ∩K,σn,ε(T ) ∩K) −→ 0. (3.5.22)

To prove that, note that by the reasoning in the beginning of the proof we may define
Φn,m : ∆× C → R by

Φn,m(S, z) = min
{
λ1/2n+1

: λ ∈ σ
(
Pm((S − z)∗)2

n
(S − z)2

n
⌈
PmH

)}
.
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Let γn,k = min[Φn,k(T, ·),Φn,k(T ∗, ·)] and γn,k,m = min[Φn,k(PmTPm, ·),Φn,k(PmT ∗Pm, ·)].
Before we can continue with the proof of (3.5.22) we need the following fact.

ClaimI: We claim that Ψk = {z ∈ C : γn,k(z) ≤ ε}. To deduce the claim it suffices to
show that

γn,k(z) = γn,k,2nd+k(z), z ∈ C, (3.5.23)

and why becomes clear after we make the observation that we have

Ψk = {z ∈ C : (−∞, 0] ∩ σ(Tε,k,2nd+k(z)) 6= ∅}

∪ {z ∈ C : (−∞, 0] ∩ σ(T̃ε,k,2nd+k(z)) 6= ∅}
= {z ∈ C : γn,k,2nd+k(z) ≤ ε}.

Now (3.5.23) will follow if we can prove that

〈((T − z)∗)2
n
(T − z)2

n
ξ, η〉

= 〈(P2nd+k(T − z)P2nd+k)∗)2
n
(P2nd+k(T − z)P2nd+k)2

n
ξ, η〉.

〈(T − z)2
n
((T − z)∗)2

n
ξ, η〉

= 〈(P2nd+k(T − z)P2nd+k)2
n
(P2nd+k(T − z)P2nd+k)∗)2

n
ξ, η〉,

for ξ, η ∈ PkH. To show the latter it is easy to see that it suffices to show that

(P2nd+kTP2nd+k)lξ = T lξ, ξ ∈ PkH, l ≤ 2n,

(P2nd+kT
∗P2nd+k)lξ = T lξ, ξ ∈ PkH, l ≤ 2n.

(3.5.24)

To show the first part of (3.5.24), let µ ∈ N such that µ > d, and note that, by assumption,
we can write T dS

m PmH as (with a slight abuse of notation)

T = PµTPµ + P⊥µ TP
⊥
µ +

d−1∑
j=−d

ζj ⊗ eµ−j ,

where ζj ∈ (Pµ+d − Pµ−d)H. Now this gives us that, for l ∈ N,

T l = (PµTPµ)l + terms of the form

(P⊥µ TP
⊥
µ +

d−1∑
j=−d

ζj ⊗ eµ−j)p1 × (PµTPµ)q1

× (P⊥µ TP
⊥
µ +

d−1∑
j=−d

ζj ⊗ eµ−j)p2 × (PµTPµ)q2 × · · ·

× (P⊥µ TP
⊥
µ +

d−1∑
j=−d

ζj ⊗ eµ−j)pt × (PµTPµ)qt ,

where qi ≤ l − 1 and pi ≤ l. Note that since T ∈ ∆ (using assumption (ii)) it is straight-
forward to show that

〈(PµTPµ)qer, ej〉 = 0, r ≤ k, j > qd+ k,
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for any integer q. Hence,

(P⊥2nd+kTP
⊥
2nd+k +

d−1∑
j=−d

ζj ⊗ e2nd+k−j)p × (P2nd+kTP2nd+k)qer = 0, (3.5.25)

for r ≤ k, q ≤ 2n − 1 and p ≤ 2n yielding the first part of (3.5.24). The second part of
(3.5.24) follows by similar reasoning.

Armed with ClaimI we have reduced the problem to showing that if K is a compact
ball and Ko intersects σn,ε(T ), then

lim
k→∞

{z ∈ C : γn,k(z) ≤ ε} ∩K = σn,ε(T ) ∩K. (3.5.26)

Now, the fact that T ∈ ∆ and the reasoning in the beginning of the proof allows us to
define

γn(z) = min
[
inf

{
λ2n+1

: λ ∈ σ
(
|(T − z)2

n |
)}
,

inf
{
λ2n+1

: λ ∈ σ
(
|((T − z)∗)2

n |
)}]

.

Note that, by arguing similarly as in the proof of (ii) and (iii) in Theorem 3.3.4, we deduce
that σn,ε(T ) = {z ∈ C : γn(z) < ε}. By arguing as in Proposition 3.5.1, using the fact
that

⋃
m PmH is a core for T k and (T ∗)k we deduce that γn,k → γn locally uniformly and

monotonically from above. By arguing as in the proof of Theorem 3.5.6 we deduce that

cl({z ∈ C : γn,k(z) < ε}) = {z ∈ C : γn,k(z) ≤ ε}.

Thus, using Proposition 3.3.1 we conclude that (3.5.26) is true, and we are done.

3.6 Other Types of Pseudospectra

The disadvantage of the n-pseudospectrum is that even though one can estimate the
spectrum by taking n very large, n may have to be too large for practical purposes. Thus,
since we only have the estimate for T ∈ C(H), ε > 0 that σ(T ) ⊂ σn,ε(T ), it is important
to get a “lower” bound on σ(T ) i.e. we want to find a set Ω ⊂ C such that Ω ⊂ σ(T ). A
candidate for this is described in the following.

Definition 3.6.1. Let T ∈ B(H) and Φ0 be defined as in Definition 3.3.3. Let ζ1(z) =
Φ0(T, z) ζ2(z) = Φ0(T ∗, z̄). Now let ε > 0 and define the ε-residual pseudospectrum to be
the set

σres,ε(T ) = {z : ζ1(z) > ε, ζ2(z) = 0}

and the adjoint ε-residual pseudospectrum to be the set

σres∗,ε(T ) = {z : ζ1(z) = 0, ζ2(z) > ε}.

Theorem 3.6.2. Let T ∈ B(H) and let {Tk} ⊂ B(H) such that Tk → T in norm, as
k →∞. Then for ε > 0 we have the following,

(i) σ(T ) ⊃
⋃
ε>0 σres,ε(T ) ∪ σres∗,ε(T )



3.6 Other Types of Pseudospectra 59

(ii) cl({z ∈ C : ζ1(z) < ε}) = {z ∈ C : ζ1(z) ≤ ε}

(iii) cl({z ∈ C : ζ2(z) < ε}) = {z ∈ C : ζ2(z) ≤ ε}

(iv) For any compact ball K ⊂ C such that cl(σres,ε(T )) ∩Ko 6= ∅ it follows that

dH(cl(σres,ε(Tk)) ∩K, cl(σres,ε(T )) ∩K) −→ 0, k →∞.

(v) For any compact ball K ⊂ C such that σres∗,ε(T ) ∩Ko 6= ∅ it follows that

dH(cl(σres∗,ε(Tk)) ∩K, cl(σres∗,ε(T ) ∩K)) −→ 0, k →∞.

Proof. Note that (i) follows by arguing as in the proof of Theorem 3.3.4, so we will not
be repeating that reasoning here. Now, we will show (ii), namely, that

{z ∈ C : ζ1(z) ≤ ε} = cl({z ∈ C : ζ1(z) < ε}). (3.6.1)

We argue by contradiction. Suppose that there is a z0 ∈ C \ cl({z ∈ C : ζ1(z) < ε}) such
that ζ1(z0) = ε. Then, there is a neighborhood ω around z0 such that ζ1(z) ≥ ε for z ∈ ω.
We claim that this is impossible. Indeed, let ϕ be defined on ω by ϕ(z) = 1/ζ1(z). Now

ϕ(z) = 1/ inf
‖ξ‖=1,ξ∈H

‖(T − z)ξ‖,

so T − z is bounded from below by ε for z ∈ ω. Let H1 = ran(T − z0) and let H̃ be an
infinite dimensional Hilbert space. Choose an isomorphism V : H̃ → H⊥

1 ⊕ H̃, and define
the following operator

T̃c = (T − z0)⊕ cV : H⊕ H̃ → H1 ⊕H⊥
1 ⊕ H̃, c ∈ R.

Note that T̃c is invertible and for sufficiently large c we have ϕ(z0) = 1/ inf‖ξ‖=1,ξ∈H ‖T̃ ξ‖.
Moreover, for z sufficiently close to z0 it follows that

ϕ(z) = 1/ inf
‖ξ‖=1,ξ∈H

‖T̃c − (z0 − z)ξ‖.

Let G(z) be the inverse of T̃c − (z0 − z) for z in a neighborhood ω̃ around z0. Then
ϕ(z) = ‖G(z)‖. Now ϕ(z0) = 1/ε and ϕ(z) ≤ 1/ε for z ∈ ω̃. But, clearly, G′(z) is invertible
for all z ∈ ω̃ so by Theorem 3.3.2 it follows that ‖G(z)‖ < 1/ε for z ∈ ω̃, contradicting
ϕ(z0) = 1/ε and we have shown (3.6.1). To show (iii) one argues almost exactly as in the
proof of (ii).

We will now prove (iv). Firstly, to see the fact that dH(σres,ε(Tk)∩K,σres,ε(T )∩K) → 0,
as k →∞, define Φ0 as in Definition 3.3.3 and let ζ1,k(z) = Φ0(Tk, z). Note that ζ1,k → ζ1
locally uniformly as k →∞, by reasoning as in (3.3.5). Secondly, note that, for δ ∈ (0, ε),
we have

cl({z ∈ C : ζ1(z) > ε, ζ2(z) ≤ δ}) = cl({z ∈ C : ζ1(z) > ε, ζ2(z) = 0}).

So if we define ζ2,k(z) = Φ0(T ∗k , z̄), it suffices to show that

dH(cl({z ∈ C : ζ1,k(z) > ε}) ∩K, cl({z ∈ C : ζ1(z) > ε}) ∩K) −→ 0, k →∞ (3.6.2)
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and, by (ii), that dH({z ∈ C : ζ2,k(z) ≤ δ} ∩K, {z ∈ C : ζ2(z) ≤ δ} ∩K) → 0 as k → ∞.
The latter follows from arguing similarly to the proof of Theorem 3.2.2, and hence we will
concentrate on the former. Now, it is easy to see, by the definition of the Hausdorff metric
and (ii), that (3.6.2) follows if we can show that

dH({z ∈ C : ζ1,k(z) ≤ ε}, {z ∈ C : ζ1(z) ≤ ε}) −→ 0, k →∞,

but the latter follows by the locally uniform convergence of {ζ1,k} and Proposition 3.3.1.
Also, (v) follows by similar reasoning, and we are done.

Theorem 3.6.3. Let {ej}j∈N be a basis for H and define Ξ1,Ξ2 : B(H) → Ω, for ε > 0,
by Ξ1(T ) = cl(σres,ε(T )) and Ξ2(T ) = cl(σres∗,ε(T )). Then Cind(Ξ1) ≤ 2 and Cind(Ξ2) ≤ 2.

Proof. To show that Cind(Ξ1) ≤ 2 let Θk be defined as in (3.5.4) and define the estimat-
ing functions Γn1,n2 and Γn1 in the following way. Define Pn to be the projection onto
span{e1, . . . , en}, choose δ ∈ (0, ε) and define

Γn1,n2({xij}) = {z ∈ Θn2 : ∃L ∈ LTpos(Pn1H), Tε,n1,n2(z) = LL∗}

∩ {z ∈ Θn2 : @L ∈ LTpos(Pn1H), T̃δ,n1,n2(z) = LL∗},
Γn1({xij}) = cl({z ∈ C : (−∞, 0] ∩ σ(Tε,n1(z)) = ∅})

∩ {z ∈ C : (−∞, 0] ∩ σ(T̃δ,n1(z)) 6= ∅},

where Tε,n1,n2 , T̃δ,n1,n2 , Tε,n1 and T̃δ,n1 as defined as in (3.5.6). As the rest of the proof is
just epsilon away from the proof of Theorem 3.2.2 we will just sketch the ideas. By letting
ζ1,n1(z) = Φ0,n1(T, z), ζ2,n1(z) = Φ0,n1(T

∗, z̄) and

ζ1,n1,n2(z) = Φ0,n1(Pn2TPn2 , z), ζ2,n1,n2(z) = Φ0,n1(Pn2T
∗Pn2 , z̄),

where Φ0 is defined as in Definition 3.3.3, one observes that

{z ∈ Θn2 : ζ1,n1,n2(z) > ε, ζ2,n1,n2(z) ≤ δ}
= {z ∈ C : ∃L ∈ LTpos(Pn1H), Tε,n1,n2(z) = LL∗}

∩ {z ∈ C : @L ∈ LTpos(Pn1H), T̃δ,n1,n2(z) = LL∗},
(3.6.3)

and
Γn1({xij}) = cl({z : ζ1,n1(z) > ε, ζ2,n1(z) ≤ δ}).

Now, let ζ1 and ζ2 be defined as in Definition 3.6.1. By using (ii) in Theorem 3.6.2 and
reasoning as in the proof of Theorem 3.2.2 (StepI and StepII) using arguments similar to
the last part of the proof of Theorem 3.6.2 one deduces that, for compact ball K ⊂ C with
Ko intersecting the appropriate sets,

cl({z ∈ C : ζ1,n1(z) > ε}) ∩K −→ cl({z ∈ C : ζ1(z) > ε}) ∩K
{z ∈ C : ζ2,n1(z) ≤ δ} ∩K −→ {z ∈ C : ζ2(z) ≤ δ} ∩K, n1 →∞,

{z ∈ Θn2 : ζ1,n1,n2(z) > ε} ∩K −→ cl({z ∈ C : ζ1,n1(z) > ε}) ∩K
{z ∈ Θn2 : ζ2,n1,n2(z) ≤ δ} ∩K −→ {z ∈ C : ζ2,n1(z) ≤ δ} ∩K, n2 →∞,
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hence

cl({z ∈ C : ζ1,n1(z) > ε, ζ2,n1(z) ≤ δ}) ∩K −→ cl({z : ζ1(z) > ε, ζ2(z) ≤ δ}) ∩K

as n1 →∞, and

{z ∈ Θn2 : ζ1,n1,n2(z) > ε, ζ2,n1,n2(z) ≤ δ} ∩K
−→ cl({z ∈ C : ζ1,n1(z) > ε, ζ2,n1,n2(z) ≤ δ}) ∩K

as n2 →∞. But

cl({z : ζ1(z) > ε, ζ2(z) ≤ δ}) = cl({z : ζ1(z) > ε, ζ2(z) = 0}) = cl(σres,ε(T )),

and hence we have shown that Cind(Ξ1) ≤ 2. The fact that Cind(Ξ2) ≤ 2 follows by similar
reasoning.

3.7 Applications to Schrödinger and Dirac Operators

Non-Hermitian quantum mechanics has been an increasingly popular field in the last
decades (TE05). As the importance of non-hermitian operators in physics has been es-
tablished, the spectral theory of such operators has been given a substantial amount of
attention (Dav99), (Dav02), (DK04). Since the spectral theory of non-hermitian operators
is very different from the self-adjoint case, very little is known in general, and the same
is true for the theory of approximating spectra. In fact it is an open problem how to
approximate the spectrum and the pseudospectrum of an arbitrary Schrödinger operator.
In this section we will show how to use the theory from the previous sections to get some
insight on how to estimate spectra and pseudospectra of non-hermitian Schrödinger and
Dirac operators with bounded potential. Let

Pj = −i ∂
dxj

Qj = multiplication byxj

with their appropriate domains in H = L2(Rd) . Let v ∈ L∞(Rd) be a complex valued,
continuous function, and define the Schrödinger operator

H =
1
2

∑
1≤j≤d

P 2
j + v(Q1, . . . , Qd), D(H) = W2,2(Rd),

where W2,2(Rd) is the Sobolev space of functions whose second derivative (in the distri-
butional sense) is square integrable.

Similarly we can define the Dirac operator. Let H =
⊕4

k=1 L
2(R3) and define (for-

mally) P̃j on H by

P̃j =
4⊕

k=1

Pj , Pj = −i ∂
dxj

, j = 1, 2, 3,

where Pj is formally defined on L2(R3). Let

H0 =
3∑
j=1

αjP̃j + β,
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where αj and β are 4-by-4 matrices satisfying the commutation relation

αjαk + αkαj = 2δjkI, j, k = 1, 2, 3, 4, α4 = β. (3.7.1)

Then it is well known that H0 is self-adjoint on
⊕4

k=1W2,1(R3) where

W2,1(R3) = {f ∈ L2(R3) : Ff ∈ L2
1(R3)}

and L2
1(R3) = {f ∈ L2(R3) : (1 + | · |2)1/2f ∈ L2(R3)}. Let v ∈ L∞(Rd) and define the

Dirac operator

HD = H0 +
4⊕

k=1

v(Q1, Q2, Q3), D(H) =
4⊕

k=1

W2,1(R3).

Note that H is closed since v is bounded. It is easy to see that

H∗ =
1
2

∑
1≤j≤d

P 2
j + v̄(Q1, . . . , Qd), D(H∗) = W2,2(Rd)

and

H∗
D = H0 +

4⊕
k=1

v̄(Q1, Q2, Q3), D(H∗
D) =

4⊕
k=1

W2,1(R3).

Thus, in order to estimate the pseudospectra of H and HD, we may follow the ideas
in the proof of Theorem 3.5.6. We will give a description of this for H and note that the
procedure is exactly the same for HD. Choose an orthonormal basis {ϕj} for W2,2(Rd) and
let Pn be the projection onto span{ϕj}nj=1. Now let {xij} be defined by xij = 〈Hϕj , ϕi〉
and note that if we let x̃ij = 〈H∗ϕj , ϕi〉 then x̃ij = x̄ji. This allows us to define the set of
estimating functions in the following way. Let ε > 0 and define

Γn1,n2({xij}) = {z ∈ Θn2 : @L ∈ LTpos(Pn1H), Tε,n1,n2(z) = LL∗}

∪ {z ∈ Θn2 : @L ∈ LTpos(Pn1H), T̃ε,n1,n2(z) = LL∗}

and

Γn1({xij}) = {z ∈ C : (−∞, 0] ∩ σ(Tε,n1(z)) 6= ∅} ∪ {z ∈ C : (−∞, 0] ∩ σ(T̃ε,n1(z)) 6= ∅},

where where Θn2 is defined as in (3.5.4) and

Tε,n1,n2(z) = Sn1(Pn2HPn2 , z)
∗Sn1(Pn2HPn2 , z)− ε2I,

T̃ε,n1,n2(z) = Sn1(Pn2H
∗Pn2 , z)

∗Sn1(Pn2H
∗Pn2 , z)− ε2I

and Tε,n1(z) = Sn1(H, z)
∗Sn1(H, z) − ε2I, T̃ε,n1(z) = S̃n1(H

∗, z)∗S̃n1(H
∗z) − ε2I, where

Sm : ∆ × C → B(PmH,H) is defined by Sm(T, z) = (T − z)Pm and ∆ denotes the set of
closed operators having W2,2(Rd) as their domain. Arguing as in the proof of Theorem
3.5.6 one deduces that

σε(H) = lim
n1→∞

Γn1({xij}), Γn1({xij}) = lim
n2→∞

Γn1,n2({xij}).

Hence we get the following corollaries to Theorem 3.5.6.
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Corollary 3.7.1. Let {ϕj}j∈N be a (not necessarily orthogonal) basis for W2,2(Rd) that
is orthogonal in L2(Rd) and let ∆ denote the set of Schrödinger operators on L2(Rd) with
potential function in L∞(Rd). Let ε > 0, Ξ1 : ∆ → Ω and Ξ2 : ∆ → Ω be defined by
Ξ1(H) = σε(H) and Ξ2(H) = σ(H). Then Cind(Ξ1) ≤ 2 and Cind(Ξ2) ≤ 3.

Corollary 3.7.2. Let {ϕj}j∈N be a (not necessarily orthogonal) basis for
⊕4

k=1W2,1(R3)
that is orthogonal in

⊕4
k=1 L

2(R3), and let ∆ denote the set of Dirac operators on the
Hilbert space

⊕4
k=1 L

2(R3) with bounded potential function. Let ε > 0, Ξ1 : ∆ → Ω and
Ξ2 : ∆ → Ω be defined by Ξ1(HD) = σε(HD) and Ξ2(T ) = σ(HD). Then Cind(Ξ1) ≤ 2 and
Cind(Ξ2) ≤ 3.

Remark 3.7.3. As the proof of Theorem 3.5.6, and hence also the proofs of Corollaries
3.7.1 and 3.7.2, are constructive, we have a constructive way of recovering spectra and
pseudospectra of a large class of important operators in mathematical physics and hence
the previous results may have impact in applications.





Chapter 4

Convergence of Densities

We finish Part I by extending some of the results in (Arv94a) from bounded to unbounded
operators and also to non-normal operators. In this section we change the point of view
from single operators to algebras of operators. Let us recall some basics and useful facts.

By a state τ on a C∗-algebra A with identity we mean a positive linear functional on
the positive elements of A such that τ(I) = 1 (I denoting the identity). The state τ is
tracial if τ(BB∗) = τ(B∗B) for all positive B ∈ A and faithful if B = 0 when τ(B) = 0.

Let A ⊂ B(H) be a C∗-algebra with a unique tracial state. Then a self-adjoint operator
A ∈ A determines a natural probability measure µA on R by∫

R
f(x) dµA(x) = τ(f(A)), f ∈ C0(R).

Also, if τ is faithful then supp(µA) = σ(A) and one refers to µA as the spectral distribution.
As we have seen above, we can approximate the spectrum of A by using the techniques
demonstrated in Chapter 3. We now turn the attention to the task of approximating µ.

4.1 The Self-Adjoint Case

If A ⊂ B(H) is a C∗-algebra with a unique, faithful tracial state and A ∈ A, then
supp(µA) = σ(A). Thus, if {An} is a sequence of self-adjoint elements in A converging
in some sense to a self-adjoint element A ∈ A and we are interested in determining the
behavior of σ(An) as n → ∞, the behavior of µAn is of great interest. In particular, we
consider under which conditions can we guarantee that∫ ∞

−∞
f(x)dµAn(x) −→

∫ ∞

−∞
f(x)dµA(x),

for all f ∈ C0(R).
As our goal is to extend some of the theorems in (Arv94a) from bounded to unbounded

operators, the C∗-algebra framework sketched above must be modified slightly. Since
collections of unbounded operators can never form a C∗-algebra we have to look at C∗-
algebras affiliated with unbounded operators.

Definition 4.1.1. Let A be a self-adjoint, unbounded operator on H. The operator A is
affiliated with the C∗-algebra A if and only if A ⊃ {f(A) : f ∈ C0(R)}.

65
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We will also be needing some preliminary theory.

Definition 4.1.2. (i) A filtration of H is a sequence F = {H1,H2, . . .} of finite dimen-
sional subspaces of H such that Hn ⊂ Hn+1 and

∞⋃
n=1

Hn = H.

(ii) Let F = {Hn} be a filtration of H and let Pn be the projection onto Hn. The degree
of an operator A ∈ B(H) is defined by

deg(A) = sup
n≥1

rank(PnA−APn).

Definition 4.1.3. Let A ⊂ B(H) be a C∗-algebra. An A-filtration is a filtration of H
such that the ∗-subalgebra of all finite degree operators in A is norm dense in A.

Proposition 4.1.4. (Arveson) Let A ⊂ B(H) be a C∗-algebra with a unique tracial state
τ and suppose that {Hn} is an A-filtration. Let τn be the state of A defined by

τn(A) =
1
dn

trace(PnA), dn = dim(Hn).

Then
τn(A) → τ(A), for all A ∈ A.

Proposition 4.1.5. (Arveson) Let F = {H1,H2, . . .} be a filtration of H, let Pn be the
projection onto Hn and let A1, A2, . . . , Ap be a finite set of operators in B(H). Then for
every n = 1, 2, . . . we have

trace|PnA1A2 . . . ApPn − PnA1PnA2Pn . . . PnApPn| ≤ ‖A1‖ . . . ‖Ap‖
p∑

k=1

degAk.

Now, suppose that A ⊂ B(H) is a C∗-algebra with a unique tracial state τ and {Pn} is
an increasing sequence of finite rank projections on H converging strongly to the identity.
Define the tracial state

τn(B) =
1
dn

trace(PnB), dn = dim(PnH), B ∈ B(H).

Now τn restricts to the normalized trace on PnB(H)Pn and, similar to τ , induces a measure
µPnAdPnH

on R such that∫
R
f(x) dµPnAdPnH

(x) = τn(f(PnAdPnH)), f ∈ C0(R). (4.1.1)

The question is then: what is the relationship between µPnAdPnH
and µA. In particular,

under which assumptions (if any) can one guarantee that

µPnAdPnH
weak∗−→ µA, n→∞.

This has been investigated in (Arv94a)(Béd97)(Han08). In particular using Proposition
4.1.4 and Proposition 4.1.5 Arveson showed that
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Theorem 4.1.6. (Arveson)(Arv94a) Let A ⊂ B(H) be a C∗-algebra and let F = {Hn} be
an A-filtration. For a self-adjoint operator A ∈ A denote the spectral distribution by µA
and let µPnAdPnH

be defined as in (4.1.1). Then

µPnAdPnH
weak∗−→ µA, n→∞.

The next theorem will be crucial in the sequel and replaces Proposition 4.1.5 in our
framework, which deviates from Arveson’s theory in order to include unbounded operators.
Firstly, some notation. We let trace denote the trace on the set of trace class operators
and ‖ · ‖2 denote the Hilbert-Schmidt norm. Let also W 2

∞ denote the Sobolev space of
measurable functions on R with second derivative (in the distributional sense) being L∞.

Theorem 4.1.7. (Laptev, Safarov)(LS96) Let A be a self-adjoint, unbounded operator
on H and let P be projection such that PA is a Hilbert-Schmidt operator. Then for any
ψ ∈W 2

∞ we have that

|tr(Pψ(A)P − Pψ(PAP )P )| ≤ ‖ψ′′‖∞‖PA(I − P )‖2
2.

Note also that, if A ⊂ B(H) is a C∗-algebra with a unique tracial state, the result
discussed in the introduction to this chapter extends to unbounded operators, namely, if
A is self-adjoint and affiliated with A then∫

R
f(x) dµA(x) = τ(f(A)), f ∈ C0(R),

where µA is a probability measure on R. The next theorem is an extension of Theorem
4.1.6 (which is Theorem 4.5 in (Arv94a)) to unbounded operators.

Theorem 4.1.8. Let A be a self-adjoint, unbounded operator with domain D(A) and let A
be a C∗-algebra with a unique tracial state τ. Suppose that {Hn} is an A-filtration, where
Hn ⊂ D(A), and that A is affiliated with A. Let dn = dim(Hn) and λ1, λ2, . . . , λdn be the
eigenvalues of An = PnAdHn , repeated according to multiplicity. Suppose that one of the
following is true.

(i) ‖PnA(I − Pn)‖2/
√
dn → 0, as n→∞.

(ii) A = D + C, where D commutes with Pn and C ∈ Ã ⊂ B(H) and Ã is a C∗-algebra
such that {Hn} is also an Ã-filtration.

Then for every f ∈ C0(R),

lim
n→∞

1
dn

(f(λ1) + f(λ2) + . . .+ f(λdn)) =
∫

R
f(x) dµA(x),

where µA denotes the Borel measure induced by τ.

Proof. Define

τn(T ) =
1
dn

trace(PnT ), T ∈ A.

Since τn restricts to the normalized trace on PnB(H)Pn and since, by Proposition 4.1.4

τn(B) −→ τ(B), n→∞, B ∈ A
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it follows that, in both cases (i) and (ii), it suffices to show that

τn(f(A))− τn(f(PnAPn)) → 0, n→∞. (4.1.2)

To show this for (i), note that we can approximate f in the L∞ norm by elements from
W 2
∞. Combining that fact with the observation that the linear functional

f 7→ τn(f(A))− τn(f(PnAPn))

has norm less than two, we reduce the problem to showing (4.1.2) when f ∈ W 2
∞. Now,

by Theorem 4.1.7,

|τn(f(A))− τn(f(PnAPn))| =
1
dn
|trace(Pnf(A)Pn)− trace(Pnf(PnAPn)Pn)|

≤ 1
2dn

‖f ′′‖∞‖PnA(I − Pn)‖2
2,

where the right hand side of the inequality tends to zero by assumption.
To prove the theorem when (ii) is assumed, note that, by the Stone-Weierstrass the-

orem, polynomials in (x + i)−1 and (x − 1)−1 are dense in C0(R). Thus, by arguing as
above, we can assume that f(x) = (x + i)−k(x − i)−l for some positive integers k, l. It is
not too hard to show that (D+C ± i)−1 − (D+B ± i)−1 is small when ‖C −B‖ is small
and B ∈ B(H) is self-adjoint. Thus, for ε > 0 we have

‖f(Pn(D + C)Pn)− f(Pn(D +B)Pn)‖ ≤ ε, ‖f(D + C)− f(D +B)‖ ≤ ε,

for B ∈ Ã and when ‖C−B‖ is sufficiently small. Hence, since τn is uniformly bounded,
we can assume that C has finite degree. Arguing as above we get

|τn(f(A))− τn(f(PnAPn))| ≤
1

2dn
‖f ′′‖∞‖Pn(D + C)(I − Pn)‖2

2

≤ 1
2dn

‖f ′′‖∞ deg(C)‖C‖2,

and this yields the assertion. The proof of the fact that ‖PnC(I − Pn)‖2
2 ≤ deg(C)‖C‖2

can be found in the proof of Lemma 3.6 in (Arv94a).

4.2 The Non-Normal Case and the Brown Measure

Our next goal is to prove an analogue of Theorem 4.1.6 for non-normal operators. But
as there is no spectral distribution for non-normal operators we first need to introduce
the Brown measure. Let M be a finite von Neumann algebra of operators on H with a
faithful, normal tracial state τ. Let T ∈ M, then the Fuglede-Kadison determinant ∆(T )
(FK52) is defined as

∆(T ) = exp
(∫ ∞

0
log t dµ|T |(t)

)
,

where
µ|T |(ω) = τ(E|T |(ω)), ω ∈ Borel(R),
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and E|T | denotes the spectral projection measure corresponding to |T |. Now define

f(z) = log(∆(T − z)), z ∈ C. (4.2.1)

It can be shown (HS07) that f is subharmonic and therefore gives rise to a measure (see
Section 3 in (HK76))

dµT =
1
2π
∇2f dm,

where m denotes the Lebesgue measure on R2 and ∇2f is understood to be in the dis-
tributional sense i.e.

∫
ϕdµT =

∫
f∇2ϕdm, for ϕ ∈ C∞c (R2). The measure µT satisfies

supp(µT ) ⊂ σ(T ) and is often referred to as Brown’s spectral distribution measure. Now
the inclusion supp(µT ) ⊂ σ(T ) can be proper, but (by Remark 4.4 in (Bro86)) if λ ∈ σ(T )
is isolated then µT ({λ}) 6= 0. Thus, knowing µT would be a nice tool for locating isolated
eigenvalues of T.

Note that if M is normal, then µT = τ ◦ET , and also, if M = Mn(C) for some n ∈ N
then the Fuglede-Kadison determinant and the Brown measure is defined for T ∈M and

∆(T ) = |detT |
1
n , µT =

1
n

n∑
j=1

δλj
,

where δλj
denotes the point measure at λj and λ1, . . . , λn are the eigenvalues of T , repeated

according to multiplicity.
Our approach is to extend Arveson’s ideas regarding approximating the spectral dis-

tribution of self-adjoint operators to Browns spectral distribution. Let F be a filtration
with corresponding projections {Pn}, and define the tracial state

τn(B) =
1
dn

trace(PnB), B ∈ B(H), dn = dim(PnH).

In order to approximate f defined in (4.2.1), it could be tempting to define, for z ∈ C and
T ∈ B(H), a measure by

µ|Pn(T−z)Pn|(ω) = τn(E|Pn(T−z)Pn|(ω)), ω ∈ Borel(R),

but knowing how bad the spectrum of PnTPn may approximate σ(T ) when T is non-self-
adjoint we abandon that idea immediately and instead define the measure µT,z,n by

µT,z,n(ω) = τn(EPn(T−z)∗(T−z)dPnH
(ω)), ω ∈ Borel(R). (4.2.2)

Using this measure we obtain the following results.

Theorem 4.2.1. Let M be a finite Von Neumann algebra with a unique, faithful, normal
tracial state τ. Suppose that A ⊂M is a C∗-alebra and that {Hn} is an A-filtration with
corresponding projections {Pn}. Define the tracial state τn by

τn(B) =
1
dn

trace(PnB), B ∈M, dn = dim(PnH).

For z ∈ C and T ∈ A, define the measure µT,z,n as in (4.2.2). Let

fn(z) =
1
2

∫ ∞

0
log t dµT,z,n(t)
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and d νn = 1
2π∇

2fndm, where m is Lebesgue measure on R2. Then νn defines a positive
Borel measure on R2 satisfying νn(C) ≤ 1. Moreover, there exists a positive Borel measure
ν on R2 with supp(ν) ⊂ σ(T ) and a subsequence {νnk

} such that

νnk

weak∗−→ ν, k →∞.

Theorem 4.2.2. Suppose the assumptions in Theorem 4.2.1 are true and that T ∈ A.

(i) Then, if ρ : C → C defined by

ρ(z) =

{
log(1/‖(T − z)−1‖) z ∈ C \ σ(T )
−∞ z ∈ σ(T )

is locally integrable, the measure ν from Theorem 4.2.1 is equal to the Brown measure
µT , and

νn
weak∗−→ µT , n→∞,

where νn is defined as in Theorem 4.2.1.

(ii) Suppose that ω ⊂ C is an open set such that ω ∩ σ(T ) = {λ1, . . . λk}, where λj is an
isolated eigenvalue. Suppose also that there is an α > 0 such that

inf
z∈∂D(λj ,r)

1/(‖(T − z)−1‖) ≥ rα

for all sufficiently small r, where D(λj , r) denotes the disk with center λj and radius
r. Then

νndω
weak∗−→ µT dω, n→∞.

If one actually wanted to use the Brown measure µT to estimate the position of the
isolated eigenvalues one is faced with the task of evaluating an integral of the form∫

R2

f∇2ϕdm. ϕ ∈ C∞c . (4.2.3)

As we may not know f explicitly this may not be possible. However, an approximation
may help us. Now suppose that we have established that νn → µT (weak∗) as n → ∞,
where νn is defined as in Theorem 4.2.1, we could approximate (4.2.3) by∫

R2

fn∇2ϕdm,=
∫

R2

1
2n

trace(log(Pn(T − z)∗(T − z)Pn)∇2ϕ(z) dm(z). (4.2.4)

Note that as Pn has finite rank, it may be possible to evaluate fn on a discrete set of
points in R2 and use quadrature formulae to approximate (4.2.4).

Proof. (Proof of Theorem 4.2.1) The proof will be done in several steps.
Step I. We first need to show that νn indeed is a positive Borel measure. To prove

that, it suffices, by Lemma 3.6 and Section 3.5 in (HK76), to demonstrate that fn is
subharmonic. To do that, let ε > 0 and define

gn,ε(z) =
1
2
τn(log(Pn(T − z)∗(T − z)Pn + εI)).
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We claim that gn,ε is subharmonic. The method we use here is quite close to the techniques
used in (HS07). Note that gn,ε is infinitely smooth. Indeed, since

z 7→ Pn(T − z)∗(T − z)Pn + εI

is obviously infinitely smooth and so is log on {z : Rez ≥ ε} so

z 7→ trace (log(Pn(T − z)∗(T − z)Pn + εI)dPnH)

is infinitely smooth, thus gn,ε is infinitely smooth. Thus, we need to show that ∇2gn,ε = 0.
This we will do using brute force computations. Using the standard notation

∂

∂λ
=

1
2

(
∂

∂λ1
− i

∂

∂λ2

)
and

∂

∂λ̄
=

1
2

(
∂

∂λ1
+ i

∂

∂λ2

)
and letting z = λ1 + iλ2 we have

∇2gn,ε =
(
∂2

∂λ2
1

+
∂2

∂λ2
2

)
gn,ε = 4

∂2

∂λ̄∂λ
gn,ε.

Let ϕ(z) = Pn(T − z)∗(T − z)Pn + εI. By the definition of the derivative, linearity and
boundedness of τn we have that

∂2gn,ε

∂λ̄∂λ
=

1
2
∂2τn(log ◦ϕ)

∂λ̄∂λ
=

1
2
τn

(
∂2 log ◦ϕ
∂λ̄∂λ

)
so it is straightforward to show that

∂2gn,ε

∂λ̄∂λ
=

1
2
τn

(
−ϕ−1∂ϕ

∂λ̄
ϕ−1∂ϕ

∂λ
+ ϕ−1 ∂

2ϕ

∂λ̄∂λ

)
=

1
2
τn

(
ϕ−1/2

(
−∂ϕ
∂λ̄

ϕ−1∂ϕ

∂λ
+

∂2ϕ

∂λ̄∂λ

)
ϕ−1/2

)
.

Thus, it suffices to show that −∂ϕ
∂λ̄
ϕ−1 ∂ϕ

∂λ + ∂2ϕ
∂λ̄∂λ

is positive. Now,

∂ϕ

∂λ
= −Pn(T − z)∗Pn,

∂ϕ

∂λ̄
= −Pn(T − z)Pn,

∂2ϕ

∂λ̄∂λ
= Pn.

Thus, we can compute

−∂ϕ
∂λ̄

ϕ−1∂ϕ

∂λ
+

∂2ϕ

∂λ̂∂λ
= −Pn(T − z)Pn(Pn(T − z)∗(T − z)Pn + εI)−1Pn(T − z)∗Pn + Pn

= −PnB(B∗B + εI)−1B∗Pn + Pn, B = (T − z)Pn
= −Pn((BB∗ + εI)−1BB∗ + I)Pn
= −Pn(−ε(BB∗ + εI)−1)Pn
= εPn((T − z)Pn(T − z)∗ + εI)−1Pn,

(4.2.5)
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which is clearly positive. Observe also that

fn(z) =
1
2
τn(log(Pn(T − z)∗(T − z)Pn)) =

1
2

∫ ∞

0
log t dµT,z,n(t)

and
gn,ε(z) =

1
2

∫ ∞

0
log(t+ ε) dµT,z,n(t).

In particular gn,ε decreases pointwise to fn as ε → 0. Thus, fn must be subharmonic or
identically −∞. But fn(z) > −∞ for z /∈ σ(T ), and thus fn must be subharmonic.

Step II. We will now show that νn(C) ≤ 1 for all n. Define

ψR(z) =


logR |z| ≤ 1
log( R|z|) 1 < |z| < R

0 |z| ≥ R.

Then, since 1
logRψR increases monotonically to 1, it follows by monotone convergence that

νn(C) = lim
R→∞

∫
C

1
logR

ψR dνn.

Now, by Lemma 2.12 in (HS07) it is true that∫
C

1
logR

ψR dνn =
1

logR

(
1
2π

(
∫ 2π

0
fn(Reiθ) dθ −

∫ 2π

0
fn(eiθ) dθ)

)
.

Thus, it suffices to show that limR→∞
1

2π logR(
∫ 2π
0 fn(Reiθ) dθ ≤ 1. Now,

1
2π logR

(
∫ 2π

0
fn(Reiθ)) dθ =

1
4π logR

(
∫ 2π

0
τn(log(|Pn(T −Reiθ)∗(T −Reiθ)Pn|))) dθ

≤ 1
2 logR

‖τn‖ log( sup
θ∈[0,2π]

‖|Pn(T −Reiθ)∗(T −Reiθ)Pn|‖)

≤ 1
2 logR

log((‖T‖+R)2) −→ 1, R→∞.

Step III. The existence of ν now follows from the weak* compactness of the unit ball
of C0(C)∗ since we have proved in Step II that {νn} is uniformly bounded as elements in
C0(C)∗.

We are left with the task of proving that

supp(ν) ⊂ σ(T ), (4.2.6)

and this will be done in Step IV and V.
Step IV. We will show that fn(z) → f(z) when z /∈ σ(T ) and f is defined in (4.2.1).

To prove that we need to demonstrate that

lim
n→∞

1
2

∫ ∞

0
log t dµT,z,n(t) =

∫ ∞

0
log t dµ|(T−z)|(t), z /∈ σ(T ). (4.2.7)
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Before we can prove (4.2.7) we need the following observation. Note that since z /∈ σ(T )
then there is an ε > 0 and M <∞ such that

σ(|T − z|2) ⊂ [ε,M ], σ(Pn(T − z)∗(T − z)dPnH) ⊂ [ε,M ]. (4.2.8)

Indeed, letting
ε = ( inf

‖ξ‖=1,ξ∈H
〈(T − z)∗(T − z)ξ, ξ〉)1/2

and
εn = ( inf

‖ξ‖=1,ξ∈H
〈(Pn(T − z)∗(T − z)Pnξ, ξ〉)1/2

then σ(|T − z|) ⊂ [ε,∞) and σ(Pn(T − z)∗(T − z)Pn) ⊂ [εn,∞) so

µ|T−z|([0, ε)) = τ(E|T−z|([0, ε))) = 0

µT,z,n([0, ε)) = τn(E|Pn(T−z)∗(T−z)Pn
([0, εn))) = 0,

since (E|T−z|([0, ε)) = EPn(T−z)∗(T−z)Pn
([0, εn)) = 0. Also,

εn = ( inf
‖ξ‖=1,ξ∈H

〈(Pn(T − z)∗(T − z)Pnξ, ξ〉)1/2

= ( inf
‖ξ‖=1,ξ∈Hn

〈(T − z)∗(T − z)ξ, ξ〉)1/2

≥ ( inf
‖ξ‖=1,ξ∈H

〈(T − z)∗(T − z)ξ, ξ〉)1/2

= ε.

Thus, since

ε = ( inf
‖ξ‖=1,ξ∈H

〈(T − z)∗(T − z)ξ, ξ〉)1/2 = 1/‖(T − z)−1‖ > 0

and T is bounded then (4.2.8) follows. We can now return to the task of proving (4.2.7).
Now, using (4.2.8), we have that

fn(z) =
1
2

∫ ∞

0
log t dµT,z,n(t) = τn(χ[ε,M ] log ◦g(Pn(T − z)∗(T − z)dPnH))

f(z) =
∫ ∞

0
log t dµ|T−z|(t) = τ(χ[ε,M ] log ◦g((T − z)∗(T − z))),

where g(t) =
√
t, t ∈ [0,∞). Thus, we are left with the task of showing that

lim
n→∞

τn((χ[ε,M ] log ◦g(Pn(T − z)∗(T − z)dPnH)) = τ((χ[ε,M ] log ◦g)((T − z)∗(T − z))).

But, by the uniqueness of τ and Proposition 4.1.4 we have that

lim
n→∞

τn(B) = τ(B), B ∈ A,

thus our problem is reduced to showing

lim
n→∞

|τn((χ[ε,M ] log ◦ g((T − z)∗(T − z)))

− τn((χ[ε,M ] log ◦g)(Pn(T − z)∗(T − z)Pn))| = 0.
(4.2.9)



74 Chapter 4. Convergence of Densities

Thus, by the fact that the norm of the linear functionals

f ∈ C[ε,M ] 7→τn(f((T − z)∗(T − z)))
− τn(f((Pn(T − z)∗(T − z)Pn)∗(Pn(T − z)∗(T − z)Pn)))

is bounded by 2, the Stone-Weierstrass Theorem, (4.2.8) and linearity of τn it is true that
(4.2.9) follows if we can show that

lim
n→∞

|τn(((T − z)∗(T − z))p)− τn(((Pn(T − z)Pn)∗(Pn(T − z)Pn))p)| = 0

for p = 1, 2, . . . . Also, since the sequence of p-linear forms

Bn(T1, T2, . . . , T2p) = τn(T1T2 · · ·T2n)− τn(PnT1PnT2Pn · · ·PnT2n), Tj ∈ A

is uniformly bounded (by 2) we may assume that T and T ∗ have finite degree. By Propo-
sition 4.1.5 we have that

|τn(((T − z)∗(T − z))p)− τn(((Pn(T − z)Pn)∗(Pn(T − z)Pn))p)|

≤ ‖T − z‖p‖(T − z)∗‖p 1
dn
p(deg(T ) + deg(T ∗)) −→ 0, n→∞,

where dn = dim(Hn), and thus we have shown Step IV.
Step V. We claim that∫

R2

fn∇2ϕdm −→
∫

R2

f∇2ϕdm, n→∞, ϕ ∈ C∞c , (4.2.10)

when supp(ϕ) ⊂ C \ σ(T ). Let δ > 0 and

Ωδ = {z ∈ C : dist(z, σ(T )) ≤ δ}.

We claim that there is a constant C > −∞ such that

inf{fn(z) : z ∈ C \ Ωδ} ≥ C. (4.2.11)

Indeed, this is the case. Firstly, observe that for z /∈ σ(T ) it follows that

fn(z) ≥
1
2

∫ 1

0
log t dµT,z,n(t),

thus (4.2.11) will follow if we can show that there is an ε > 0 such that

supp(µT,z,n) ⊂ [ε,∞) for all z ∈ C \ Ωδ.

Secondly, note that
inf{1/‖(T − z)−1‖ : z ∈ C \ Ωδ} > 0.

So let

ε = inf
z∈C\Ωδ

( inf
‖ξ‖=1,ξ∈H

〈(T − z)∗(T − z)ξ, ξ〉)1/2 = inf{1/‖(T − z)−1‖ : z ∈ C \ Ωδ}.
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Then, as argued in Step IV, we have that

µT,z,n([0, ε)) = τn(EPn(T−z)∗(T−z)Pn
([0, εn))) = 0,

since σ(|Pn(T − z)∗(T − z)Pn|) ⊂ [εn,∞), where

εn = inf
z∈C\Ωδ

( inf
‖ξ‖=1,ξ∈H

〈(Pn(T − z)∗(T − z)Pn)ξ, ξ〉)1/2 ≥ ε

Pick δ > 0 so small that supp(ϕ) ⊂ C \ Ωδ. Let

g(z) =

{
inf{fn(z) : z ∈ C \ Ωδ} z ∈ C \ Ωδ

0 z ∈ Ωδ.

Then, by the reasoning above, g is integrable and dominates {fn} from below. Hence,
(4.2.10) follows by Step IV and dominated convergence.

Note that (4.2.6) follows from Step V and the fact that supp(µT ) ⊂ σ(T ), and thus we
have proved the theorem.

Proof. (Proof of Theorem 4.2.2) To prove (i) we need to show that∫
R2

fn∇2ϕdm −→
∫

R2

f∇2ϕdm, n→∞, ϕ ∈ C∞c , (4.2.12)

where f is defined in (4.2.1). Now, for z /∈ σ(T ) we have

fn(z) ≥ inf
n∈N

τn(log(Pn(T − z)∗(T − z)dPnH))

=
1
dn

dn∑
j

λj(log(Pn(T − z)∗(T − z)dPnH))

=
1
dn

dn∑
j

log(λj(Pn(T − z)∗(T − z)dPnH))

≥ 1
dn

dn∑
j

log( min
j∈{1,...,dn}

{λj(Pn(T − z)∗(T − z)dPnH}))

= log(( inf
‖ξ‖=1,ξ∈H

〈Pn(T − z)∗(T − z)Pnξ, ξ〉)1/2)

≥ log(( inf
‖ξ‖=1,ξ∈H

〈(T − z)∗(T − z)ξ, ξ〉)1/2)

= log(1/‖(T − z)−1‖),

where dn = dim(Hn) and λj(B) denotes the j-th eigenvalue of B ∈ B(Hn) according to
some ordering, where the eigenvalues of B are repeated according to multiplicity (obvi-
ously, the ordering is irrelevant in this context). Hence, fn is dominated from below by ρ
and since ρ is integrable, (4.2.12) follows by dominated convergence.

Now (ii) follows by noting that z 7→ log(|z|α) is locally integrable and arguing as in
the proof of (i) using dominated convergence.
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Chapter 5

Introduction

Mathematical scientists have been successfully computing eigenvalues and eigenvectors of
linear operators since the 1950s. Such computations are a mainstay of the fields of acous-
tics, computational quantum chemistry through the Schrödinger operator and quantum
mechanics. These are self-adjoint examples, but spectral analysis of non-self-adjoint op-
erators is equally central to the stability calculations of fluid dynamics and non-hermitian
quantum mechanics. The algorithms involved in applications like these are usually based
on discretization of partial differential equations, and sometimes, though not always, they
are accompanied by theorems guaranteeing convergence to the correct result as the dis-
cretization is refined.

A mathematician, however, may ask a broader question: what about the computation
of spectra of arbitrary linear operators, not necessarily defined by derivatives and not
necessarily consisting of just eigenvalues? In this generality much less has been done, even
in the self-adjoint case, especially if one insists upon theorems guaranteeing convergence.

The purpose of these chapters is to shed light on this fundamental question in oper-
ator theory that has received some attention in the last decade (see (Arv91) (Arv93b),
(Arv93a), (Arv94a), (Arv94b), (Bro06), (Bro07a) and (DP04), (Dav00), (Dav98), (Böt00),
(HRS01), (LS04), (Bou06)(Bou07)), namely, how to compute the spectrum of a linear op-
erator on an infinite dimensional, separable Hilbert space. The question is fundamental
in the sense that our understanding of most physical phenomena in quantum mechanics,
both relativistic and non-relativistic, depends on the understanding of the spectra of linear
operators. However, to obtain complete understanding of such physical phenomena we not
only need mathematical descriptions of the behavior of spectra of linear operators, we also
need a mathematical theory on how to find explicit approximations to such spectra. If we
compare our understanding of classical mechanics and quantum mechanics from computa-
tional point of view, there is only one restriction in the classical case, namely, computing
power. In the classical case one needs to integrate a vector field on a manifold and there is
a vast literature on how to prove rigorously that one can get arbitrarily close to the exact
solution given a sufficiently efficient computer. In the quantum case much less is known, in
fact it is a completely open question how to compute the spectrum of an arbitrary linear
operator as pointed out in (Arv94b): “Unfortunately, there is a dearth of literature on this
basic problem, and so far as we have been able to tell, there are no proven techniques.”
Since this observation was made, there have been new developments in the self-adjoint
case (Dav00), but for the general non-self-adjoint case techniques for computing spectra
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are not known. The lack of such techniques presents therefore a serious limitation of our
possible understanding of quantum systems since non-self-adjoint operators are ubiquitous
in quantum mechanics (HN96), (HN97).

In (Dav05) Davies questions whether one can actually compute the spectrum of a
bounded operator on a Hilbert space. The example that Davies presents and that gives
rise to the question is the following: Let Aε : l2(Z) → l2(Z) be defined by

(Aεf)(n) =

{
εf(n+ 1) n = 0
f(n+ 1) n 6= 0.

Now for ε 6= 0 we have σ(Aε) = {z : |z| = 1} but for ε = 0 then σ(A0) = {z : |z| ≤ 1}.
Davies argues as follows: “If ε is a very small constructively defined real number and
one is not able to determine whether or not ε = 0, then the spectrum of Aε cannot be
computed even approximately even though Aε is well-defined constructively. This implies
that there exist straightforward bounded operators whose spectrum will probably never
be determined.”

A numerical analyst may express the same concern. One can argue that if one should
do a computation of the spectrum on a computer, the fact that the arithmetic operations
carried out are not exact may lead to the outcome that one gets the true solution to a
slightly perturbed problem. This type of analysis is often referred to as Backward Error
Analysis in the numerical linear algebra literature. As suggested in the previous example,
getting the answer to a slightly perturbed problem could be disastrous.

This poses a slightly philosophical question; is it impossible to compute spectra of
arbitrary operators? And if so, does that mean that there are operators, whose spectral
theory might be crucial for understanding physical phenomena, yet their spectra will never
be determined? This would imply that there is a rather unpleasant barrier between what
we can compute and what we want to compute. In Chapter 2 and Chapter 3 several
new methods for estimating spectra and pseudospectra of operators were presented. Our
goal in this part is to show that these results can be used for actual computations, and
that, indeed, it is possible to compute spectra of arbitrary bounded operators on separable
Hilbert spaces. We will emphasize the computational task and refer to Chapters 2 and 3
for justifications of the mathematical statements that will be presented.

Our theory is very much inspired by the pseudospectral theory that has emerged
through the last two decades (TE05). The main reason is that to overcome the disconti-
nuity problem suggested above, one is forced to consider the computation of a different set
than the spectrum, even though estimating the spectrum may be the main goal. This is
the main theme of Chapter 6 where we will see that variants of the pseudospectra, namely
the n-pseudospectra, are excellent candidates for sets that approximate the spectrum well.
Also, these sets do not behave discontinuously with the operator (we will be more specific
about this later). We will in Chapter 6 also consider implementation details of algorithms
that compute the n-pseudospectra and show how these can be used to compute spectra of
arbitrary bounded linear operators.

In Chapter 7 we deviate from the pseudospectral theory and focus on the Infinite
Dimensional QR algorithm (or the Infinite QR algorithm for short). The reason why
the Infinite QR algorithm is a valuable supplement to the pseudospectral methods in-
troduced in Chapter 6 is that spectral approximation methods based on pseudospectral
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theory may struggle with very non-normal problems. The Infinite QR algorithm exhibits
surprisingly good qualities when handling non-normal problems, and, although the Infinite
QR algorithm can never reveal the whole spectrum of an operator, it turns out to be an
indispensable tool.

Chapter 8 is a direct continuation of Chapter 7 and is devoted to the task of imple-
menting the Hessenberg reduction of an infinite matrix. The Hessenberg reduction in
infinite dimensions is motivated (as in finite dimensions) by the desire to speed up the
QR algorithm. As expected, the Hessenberg reduction together with the Infinite QR algo-
rithm cut the computational cost dramatically and therefore allow for more complicated
problems. Several numerical examples follow at the end of that chapter.

5.1 Background and Notation

In this section we will briefly recall some basics from functional analysis and some notation.
Throughout the thesis, H will always denote a separable Hilbert space and B(H) the set
of bounded linear operators on H. If T ∈ B(H) and T − z is invertible, for z ∈ C, we
use the notation R(z, T ) = (T − z)−1. We will denote orthonormal basis elements of H
by ej , and if {ej}j∈N is a basis and ξ ∈ H then ξj = 〈ξ, ej〉. The word basis will always
refer to an orthonormal basis. If T ∈ B(H) then T is uniquely determined by its matrix
elements 〈Tej , ei〉 and hence we will use the words bounded operator and infinite matrix
interchangeably.

A couple of basic topological aspects of B(H) will be useful in the future developments
((KR97) gives a good overview of the ideas sketched here). Recall that a sequence {Tn} ⊂
B(H) converges to T ∈ B(H) in the strong operator topology, denoted by

SOT-lim
n→∞

Tn = T,

if and only if Tnξ → Tξ as n→∞ for all ξ ∈ H. Also, {Tn} ⊂ B(H) converges to T ∈ B(H)
in the weak operator topology, denoted by

WOT-lim
n→∞

Tn = T,

if and only if 〈Tnξ, η〉 → 〈Tξ, η〉 as n → ∞ for all ξ, η ∈ H. In connection with the weak
operator topology, the following proposition will be useful in the future developments.

Proposition 5.1.1. Let H be a Hilbert space. Then

{T ∈ B(H) : ‖T‖ ≤ 1}

is sequentially compact in the weak operator topology.

This proposition means that if {Tn} is a bounded (in the operator norm) sequence in
B(H) then there is an operator T ∈ B(H) and a subsequence {Tnk

} such that

WOT-lim
k→∞

Tnk
= T

Another part of basic operator theory is the functional calculus, namely, for a normal
operator T ∈ B(H) and f ∈ L∞(C) we can form the operator f(T ) ∈ B(H). The functional
calculus has several key features e.g. for f, g ∈ L∞(C we have

(fg)(T ) = f(T )g(T ), f(T )∗ = f̄(T ).
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This means that, if we let ω ⊂ C and χω denote the characteristic function on ω, then
χω(T ) must be a projection when T is normal.

The spectrum of T ∈ B(H) will be denoted by σ(T ), and σd(T ) denotes the set of
isolated eigenvalues with finite multiplicity. In connection with the spectrum we need to
recall some definitions.

Definition 5.1.2. Let T ∈ B(H), then the essential spectrum is defined as

σess(T ) =
⋂

K compact

σ(T +K).

Definition 5.1.3. Let T be a bounded operator on a Hilbert space H. Then the numerical
range of T is defined as

W (T ) = {〈Tξ, ξ〉 : ‖ξ‖ = 1},

and the essential numerical range is defined as

We(T ) =
⋂

K compact

W (T +K)

Definition 5.1.4. Let T ∈ B(H) then the essential spectral radius is defined as

ress(T ) = sup{|λ| : λ ∈ σess(T )}.

Definition 5.1.5. Let T be a closed operator on a Hilbert space H such that σ(T ) 6= C,
and let ε > 0. The ε-pseudospectrum of T is defined as the set

σε(T ) = σ(T ) ∪ {z /∈ σ(T ) : ‖(z − T )−1‖ > ε−1}.

Convergence of sets in the complex plane will be quite crucial in our analysis and hence
we need the Hausdorff metric as defined by the following.

Definition 5.1.6. (i) For a set Σ ⊂ C and δ > 0 we will let ωδ(Σ) denote the δ-
neighborhood of Σ (i.e. the union of all δ-balls centered at points of Σ).

(ii) Given two sets Σ,Λ ⊂ C we say that Σ is δ-contained in Λ if Σ ⊂ ωδ(Λ).

(iii) Given two compact sets Σ,Λ ⊂ C their Hausdorff distance is

dH(Σ,Λ) = max{sup
λ∈Σ

d(λ,Λ), sup
λ∈Λ

d(λ,Σ)}

where d(λ,Λ) = infρ∈Λ |ρ− λ|.

If {Λn}n∈N is a sequence of compact subsets of C and Λ ⊂ C is compact such that
dH(Λn,Λ) → 0 as n→∞ we may use the notation Λn −→ Λ. The closure of a set Ω ⊂ C
will be denoted by Ω, however, when convenient, the notation cl(Ω) may be used.

The fact that arithmetic operations may not be carried out exactly on a computer is
crucial in our analysis, and εmach will always denote the machine epsilon in the computer
software used. The software of choice is MATLAB, and in that case εmach = 10−16 .
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Pseudospectral Theory

Let T ∈ B(H), {ej} be a basis for H, and suppose that we wish to compute the spectrum
of T . As discussed at the beginning of Chapter 5, we are faced with the slightly unpleasant
problem of computing something that may depend discontinuously on the matrix elements
〈Tej , ei〉. The fact that roundoff errors always will play a part in the computation may
result in the fact that one gets the solution to a perturbed spectral problem, and this may
be far from the solution of the original problem if the desired spectrum we wish to compute
varies discontinuously with the operator. Thus, this seems like almost an impossible task
to handle numerically.

The solution to the problem is to look to the pseudospectral theory. Note that if we
were considering estimating the pseudospectrum instead of the spectrum, the problem
suggested by the example in Chapter 5 would not occur. The reason is that the pseu-
dospectrum varies continuously with the operator T if T is bounded (we will be more
specific regarding the continuity below.) One may argue that the pseudospectrum may
give a lot of information about the operator and one should therefore estimate it in place of
the spectrum, however, we are interested in getting a complete spectral understanding of
the operator and will therefore estimate both the spectrum and the pseudospectrum. We
hence wish to introduce a set which has the continuity property of the pseudospectrum but
approximates the spectrum, and this motivates our definition of the n-pseudospectrum.
As we will see in Section 6.2, the n-pseudospectrum has all the nice continuity properties
that the pseudospectrum has, but it also approximates the spectrum arbitrarily well for
large n.

Before we continue with pseudospectral theory we would like to make a short detour
via the finite section method and try to convince the reader that the finite section method
is not a serious contender to the “method of the month” award among algorithms for the
general computational spectral problem.

6.1 The Finite Section Method

Suppose that we have an operator A ∈ B(H) and that we know the matrix elements
aij = 〈Aej , ei〉 with respect to some basis {ej}. The question is then how do we compute
the spectrum and the pseudospectra of A using {aij}. A natural thought may be to reduce
this to a finite-dimensional spectral problem by constructing (using {ej}) a sequence of
finite rank projections {Pm} such that Pm+1 ≥ Pm and Pm → I strongly, where I is

83
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the identity, and then compute the spectrum and pseudospectra of PmAdPmH. Typically
Pm would be the projection onto span{e1, . . . , em}. This is often referred to as the finite
section method in the literature. Now, this may work in some cases e.g. if the operator
is compact or in the case of computing pseudospectra, if one is considering a Toeplitz
operator. However, one must be very careful using the finite section method and it should
not be used unless accompanied by a rigorous analysis that justifies the convergence

σ(PmAdPmH) −→ σ(A), σε(PmAdPmH) −→ σε(A), ε > 0, m→∞.

It is quite easy to find elementary counter examples to show that the finite section method
can fail dramatically. Consider the shift operator defined by Sen = en+1 on l2(N). This
operator has the following matrix representation

S =


0 1 0 0 . . .
0 0 1 0 . . .
0 0 0 1 . . .
0 0 0 0 . . .
...

...
...

...
. . .

 .

Thus, if Pm is the projection onto span{e1, . . . , em}, we would get that σ((PmSdPmH) = {0}
for allm, but σ(S) is the closed unit disc. To find examples where the finite section method
fails when wanting to compute the pseudospectrum, one does not have to go very far away
from the Toeplitz operators. The finite section method may have serious trouble finding
the right pseudospectra of Laurent operators. Note that if we have a Laurent operator
AL given in its matrix representation with respect to the basis {ej}∞j=−∞ and choose Pm
to be the projection onto

span{e−m, . . . , em}

then PmAdPmH is a Toeplitz matrix. So, if AT is the Toeplitz variant of AL, meaning that
it has the same matrix elements but is an operator on l2(N) instead of l2(Z), then

σε(PmALdPmH) −→ σε(AT ), m→∞,

but we may have that
σε(AL) 6= σε(AT ),

and in this case the finite section method will fail. This is visualized in the following
example. Define the Laurent operator by

AL =



. . .
...

...
...

...
. . . 0 1 0 0 . . .
. . . 0 0 1 0 . . .
. . . 1− i 0 0 1 . . .
. . . 0 1− i 0 0 . . .

...
...

...
...

. . .


,

then σε(PmALdPmH) is far from σε(AL) as visualized in Figure 6.1 for ε = 0.1.
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Figure 6.1: The first figure shows σε(AL) and the second figure shows σε(PmALdPmH) for ε = 0.1
and m = 1000.

6.2 The n-pseudospectrum

Given a closed operator T on H, the motivation for the n-pseudospectrum is the desire to
approximate the function

z 7→ dist(z, σ(T )),

in order to estimate σ(T ). A convenient formula for this is

dist(z, σ(T )) =
1

ρ(R(z, T ))
,

where ρ denotes the spectral radius. Thus, in principle, we have reduced the problem of
estimating the distance from z to σ(T ) to a problem of estimating the spectral radius of
a bounded operator. Now, numerically that is a nontrivial task, but keeping in mind the
spectral radius formula, namely,

ρ(A) = lim
n→∞

‖An‖1/n, A ∈ B(H),

we can approximate the spectral radius by estimating the norm of powers of the opera-
tor. By choosing a subsequence of {‖An‖1/n}, namely, {‖A2n‖1/2n} we get a decreasing
sequence

‖A2n‖1/2n ≥ ‖A2n+1‖1/2n+1
and ρ(A) = lim

n→∞
‖A2n‖1/2n

.

Hence, we have

1/‖R(z, T )2
n‖1/2n ≤ 1/‖R(z, T )2

n+1‖1/2n+1 ≤ 1/ρ(R(z, T )) = dist(z, σ(T ))

and
lim
n→∞

1
‖(R(z, T ))2n‖1/2n = dist(z, σ(T )).

This gives the motivation for the following definition of the (n, ε)-pseudospectrum, or the
n-pseudospectrum for short.

Definition 6.2.1. Let T be a closed operator on a Hilbert space H, and let n ∈ Z+ and
ε > 0. The (n, ε)-pseudospectrum of T is defined as the set

σn,ε(T ) = σ(T ) ∪ {z /∈ σ(T ) : ‖R(z, T )2
n‖1/2n

> ε−1}.
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Figure 6.2: The figure shows σε(H) (left) and σ1,ε(H) (right) for ε = 0.1.

As we see, the n-pseudospectrum is just a generalization of the pseudospectrum. By
the analysis above, one can deduce that the n-pseudospectrum should be a better ap-
proximation to the spectrum than the pseudospectrum, and hopefully also share its nice
continuity properties. In particular one should expect

σn,ε(T ) ⊃ σn+1,ε(T ),

and hope for
dH(σn,ε(T ), ωε(σ(T ))) −→ 0, n→∞,

where ωε(σ(T )) denotes the ε-neighborhood around σ(T ). A famous example in pseu-
dospectral theory is the complex harmonic oscillator (DK04)

Hf(x) = −f ′′(x) + cx2f(x)

acting on L2(R). To visualize the difference between the pseudospectrum and the n-
pseudospectrum we have computed the pseudospectrum and the 1-pseudospectrum for
H when c = i in Figure 6.2.

6.3 Properties of the n-pseudospectra of Bounded Opera-
tors

Theorem 6.3.1. Let T ∈ B(H) and define for z ∈ C and n ∈ Z+.

γn(z) = min
[
inf{λ1/2n+1

: λ ∈ σ
(
((T − z)∗)2

n
(T − z)2

n
)
},

inf{λ1/2n+1
: λ ∈ σ

(
(T − z)2

n
((T − z)∗)2

n
)
}
]
.

(6.3.1)

Then the following is true.

(i) σn+1,ε(T ) ⊂ σn,ε(T ).

(ii) σn,ε(T ) = {z ∈ C : γn(z) < ε}.

(iii) {z : γn(z) < ε} = {z : γn(z) ≤ ε}.
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(iv) We have that
dH(σn,ε(T ), ωε(σ(T ))) −→ 0, n→∞,

where ωε(σ(T )) denotes the ε-neighborhood around σ(T ).

(v) If {Tk} ⊂ B(H) and Tk → T in norm, it follows that

dH(σn,ε(Tk), σn,ε(T )) → 0, k →∞.

Proof. This is Theorem 3.3.4 in Chapter 3 and a proof can be found there.

Theorem 6.3.1 provides several important observations. Firstly, the fact that

dH(σn,ε(T ), ωε(σ(T ))) −→ 0, n→∞

allows us to use the n-pseudospectrum as an approximation to the spectrum. Secondly,
the problem of inexact arithmetic is solved by the fact that for each fixed n we have

dH(σn,ε(Tk), σn,ε(T )) → 0, k →∞,

when Tk → T in norm. Thus, in theory, we can get arbitrarily close to the spectrum
by computing the n-pseudospectrum and still allow the computation to be in inexact
arithmetic. Now, of course the εmach will have to decrease as n grows.

The function γn and the fact that σn,ε(T ) = {z ∈ C : γn(z) ≤ ε} provide us with a tool
for estimating the n-pseudospectrum. In fact, by recalling (6.3.1), we have now reduced
the problem of finding the spectrum of a non-normal operator to a problem of finding the
smallest element in the spectrum of a self-adjoint operator. In the following examples we
will show some of the properties of the pseudospectra listed in Theorem 6.3.1

Example 6.3.2. To demonstrate the property σn+1,ε(T ) ⊂ σn,ε(T ) of the pseudospectra
we have chosen the following operator:

T =


a1 b1 0 0 . . .
c1 a2 b2 0 . . .
0 c2 a1 b3 . . .
0 0 c3 a2 . . .
...

...
...

...
. . .

 ,

where a1 = 2, a2 = 0.5, bj = 1+i2
j1/6 and cj = 1/j1/2. Now, T can be written as a sum of two

operators where one is compact and the other one has only essential spectrum and thus A
should have plenty of isolated eigenvalues. The four largest eigenvalues with corresponding
n-pseudospectra are displayed in Figure 6.3.

Example 6.3.3. To visualize the property that if {Tk} ⊂ B(H) and Tk → T in norm, it
follows that

dH(σn,ε(Tk), σn,ε(T )) → 0, k →∞,

a natural test object is the example by Davies introduced in Section 5. The discontinuity
of the spectrum shown in that example was a strong motivation for the introduction of
the n-pseudospectrum. Recall that we define Aδ : l2(Z) → l2(Z) by

(Aδf)(n) =

{
δf(n+ 1) n = 0
f(n+ 1) n 6= 0,
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Figure 6.3: The first figure shows the first four eigenvalues, and the following figure shows σε(T ), σ1,ε(T ),
σ2,ε(T ) for ε = 0.05.
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Figure 6.4: The figure shows σ2,ε(A0), σ2,ε(A10−16), σ1,ε(A0.005), and σ2,ε(A0.005), for ε = 0.025.
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and that for δ 6= 0 we have σ(Aδ) = {z : |z| = 1} but for δ = 0 then σ(A0) = {z : |z| ≤ 1}.
We have computed the n-pseudospectrum of A0 for ε = 0.025 and n = 2 which co-

incides with the closed ε-neighborhood of the unit disk. We have also computed the
n-pseudospectrum of A10−16 to demonstrate that, at least up to the accuracy of the grid
size we have chosen, the computed results are identical.

Now, if we actually wanted to compute the spectrum of A10−16 we would have to
choose computer software with higher precision and also take n much larger. The εmach

in MATLAB limits us to take n ≤ 2 since our computation requires operations with
(εmach)1/2

n+1
. Hence, since (εmach)1/2

3+1
= 0.1, we may experience that for n = 3, our

computation will be accurate only up to the first decimal. However, we have visualized (in
Figure 6.4) (iii) in Theorem 6.3.1 by computing the n-pseudospectra of A0.005 for n = 1, 2,
in which case the n-pseudospectra approximates the spectrum of A0.005 quite well even for
small values of n.

6.4 Computing the n-pseudospectrum

6.4.1 Designing the Algorithm

Numerically, a self-adjoint spectral problem is much easier to deal with than a non-self-
adjoint problem, but we cannot attack the task of computing (6.3.1) as it is, since this
is an infinite-dimensional problem. We therefore need to find an approximation to γn (as
defined in (6.3.1)) that is suitable for computations. A natural choice seems to be to choose
a sequence of finite rank projections {Pm} such that Pm+1 ≥ Pm and Pm → I strongly,
e.g. we may choose a basis {ej} and let Pm be the projection onto span{e1, . . . , em}. Now
we can try to approximate γn by the function

γn,m(z) = min
[
min{λ1/2n+1

: λ ∈ σ
(
Pm((T − z)∗)2

n
(T − z)2

n
⌈
PmH

)
},

min{λ1/2n+1
: λ ∈ σ

(
Pm(T − z)2

n
((T − z)∗)2

n
⌈
PmH

)
}
]
,

(6.4.1)

and if γn,m → γn in some sense we can hope that

{z : γn,m(z) ≤ ε} −→ σn,ε(T ), m→∞.

In fact so is almost the case as the following theorem guarantees.

Theorem 6.4.1. Let T ∈ B(H) and let {Pm} is an increasing sequence of finite rank
projections converging strongly to the identity such that Pm+1 ≥ Pm. Define γn,m as in
(6.4.1), then γn,m → γn locally uniformly as m→∞, and for a compact ball K ⊂ C such
that σn,ε(T ) ∩Ko 6= ∅ we have

{z : γn,m(z) ≤ ε} ∩K −→ σn,ε(T ) ∩K, m→∞,

where the convergence is understood to be in the Hausdorff metric.

Proof. The proof can be found in the proof of Theorem 3.5.4 in Chapter 3.
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Now, computing γn,m still involves the products

((T − z)∗)2
n
(T − z)2

n
, (T − z)2

n
((T − z)∗)2

n
,

which may be challenging to compute as T acts on an infinite dimensional space. However,
there is a solution to this problem. Instead of computing the products ((T−z)∗)2n

(T−z)2n

and (T − z)2
n
((T − z)∗)2

n
we will compute

(Pk(T − z)Pk)∗)2
n
(Pk(T − z)Pk)2

n
, (Pk(T − z)Pk)2

n
((Pk(T − z)Pk)∗)2

n
,

where Pk is a finite rank projection as in Theorem 6.4.1. As Pk has finite rank this is
feasible, in particular, we can define the function

γn,m,k(z)

= min
(

min{λ1/2n+1
: λ ∈ σ

(
Pm((Pk(T − z)Pk)∗)2

n
(Pk(T − z)Pk)2

n
⌈
PmH

)
},

min{λ1/2n+1
: λ ∈ σ

(
Pm(Pk(T − z)Pk)2

n
((Pk(T − z)Pk)∗)2

n
⌈
PmH

)
}
)
,

(6.4.2)

and argue that γn,m,k → γn,m as k →∞. In fact we have:

Theorem 6.4.2. Let T ∈ B(H) and let {Pm} be an increasing sequence of finite rank
projections converging strongly to the identity such that Pm+1 ≥ Pm. Define γn,m,k as in
(6.4.2), then γn,m,k → γn,m locally uniformly as k → ∞, and for a compact ball K ⊂ C
such that {z : γn,m(z) ≤ ε} ∩Ko 6= ∅ we have

{z : γn,m,k(z) ≤ ε} ∩K −→ {z : γn,m(z) ≤ ε} ∩K, k →∞,

where the convergence is understood to be in the Hausdorff metric.

Proof. The proof can be found in the proof of Theorem 3.5.4 in Chapter 3.

For a full infinite matrix, γn,m,k can be a tough challenge to compute, since there are
two limit processes going on at the same time, namely k →∞ and m→∞. It is therefore
important to take advantage of structured problems.

Definition 6.4.3. Let {ej}j∈N be a basis for H and let T ∈ B(H). If

〈Tej+l, ej〉 = 〈Tej , ej+l〉 = 0, l > d,

then T is said to be banded with bandwidth d.

The following theorem is important for the computation of γn,m,k when the infinite
matrix is banded.

Theorem 6.4.4. Let T ∈ B(H) and {ej} be a basis for H. Let Pm be the projection onto

span{e1, . . . , em}.

Define γn,m and γn,m,k as in (6.4.1) and (6.4.2). Suppose that the matrix representation
of T with respect to {ej} is banded with bandwidth d. Then, for m > d,

γn,m(z) = γn,m,2nd+m(z), z ∈ C.

Proof. The proof can be found in the proof of Theorem 3.5.8 in Chapter 3.
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6.4.2 The algorithm

As Theorem 6.4.1 suggest, the estimation of the n-pseudospectra can be done by computing
values of γn,m,k on a grid in the complex plane. Also, by Theorem 6.4.4, if the matrix T
is banded with bandwidth d then

γn,m(z) = γn,m,2nd+m(z), z ∈ C,

where d is the number of off diagonals. Thus, we are left with the task of computing

min
{
λ1/2n+1

: λ ∈ σ
(
Pm((Pk(T − z)Pk)∗)2

n
(Pk(T − z)Pk)2

n
⌈
PmH

)}
(6.4.3)

and

min
{
λ1/2n+1

: λ ∈ σ
(
Pm(Pk(T − z)Pk)2

n
((Pk(T − z)Pk)∗)2

n
⌈
PmH

)}
. (6.4.4)

As m becomes large, both (6.4.3) and (6.4.4) are difficult to compute since

(Pm((Pk(T − z)Pk)∗)2
n
(Pk(T − z)Pk)2

n
⌈
PmH

Pm(Pk(T − z)Pk)2
n
((Pk(T − z)Pk)∗)2

n
⌈
PmH

(6.4.5)

may have many eigenvalues very close to zero, and standard numerical routines as MAT-
LAB’s eigs will have trouble detecting the smallest eigenvalue to sufficient precision (at
least that is our experience). If one wants a contour plot of the n-pseudospectrum, there is
no way around the previous problem, but if one only wants the n-pseudospectrum for one
specific ε > 0, it is unnecessary to compute the smallest eigenvalue in (6.4.3) and (6.4.4).
In fact, since we are only interested in knowing whether γn,m,k(z) ≤ ε for some complex
z, we only need to check if the self-adjoint matrices

(Pm((Pk(T − z)Pk)∗)2
n
(Pk(T − z)Pk)2

n
⌈
PmH

− ε2
n+1

I

and
Pm(Pk(T − z)Pk)2

n
((Pk(T − z)Pk)∗)2

n
⌈
PmH

− ε2
n+1

I

are both positive definite. If they both are, then z /∈ {z : γn,m,k(z) ≤ ε}.

6.4.3 The Cholesky Decomposition

It is well known that a self-adjoint matrix A ∈ Cn×n is positive definite if and only if it
has a Cholesky decomposition

A = GG∗,

where G is lower triangular with positive elements on the diagonal (GVL96). Thus, to
determine whether A is positive definite or not, we need to find out if the decomposition
A = GG∗ exists. This can be done in the following way. Let

A =
(
α v∗

v B

)
=

(
β 0
v/β In−1

) (
1 0
0 B − vv∗/α

) (
β v∗/β
0 In−1

)
, (6.4.6)
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where α > 0 if A is positive definite, so β =
√
α. If α ≤ 0 we conclude that A is not

positive definite and we are done. Now, B − vv∗/α is positive definite if and only if A is
positive definite since it is a principal submatrix of U∗AU, where

U =
(

1 −v∗/α
0 In−1

)
.

If there is a Cholesky factorization G1G
∗
1 = B − vv∗/α then it follows from (6.4.6) that

A = GG∗, where

G =
(
β 0
v/β G1

)
.

We can continue this argument withG1 and do this recursively to obtain {G1, G2, . . . Gn−1}.
Thus, if all Gjs turn out to be positive definite then A is positive definite, and if there is
a Gj that is not positive definite then A cannot be positive definite. The standard algo-
rithm for this requires n3/3 flops. A neat tool for determining whether or not A is positive
definite is MATLAB’s chol routine that has an build in check for positive definiteness of
matrices.

Suppose that T is a banded infinite matrix with bandwidth d, the following MATLAB
program will plot the the following set

{z : γn,m,2nd+m(z) ≤ ε} ∩K,

where K is a rectangle in C and γn,m,2nd+m is defined in (6.4.2).

Algorithm 6.4.1.
%Computes {z : gamma_n,m,2^nd+m(z) <= epsilon} \cap K,

%for an infinite matrix A with bandwith d=diag, where K is

%a rectangle with coordinates left, right, up, down.

%The size of the section of A must be 2^nd+m.

function s = n_pseu_chol(A,epsilon,left,right,down,up,grid_eps,n,diag)

r = (right-left)/grid_eps; e = grid_eps; si = size(A,2);

l = (up - down)/grid_eps;

for j=1:r

for k=1:l

z = left + j*grid_eps + (down + k*grid_eps)*i;

B_1 = (((A-z*speye(si))^(2^n))’)*(A-z*speye(si))^(2^n);

B_2 = (A-z*speye(si))^(2^n)*((A-z*speye(si))^(2^n))’;

C_1 = B_1(1:si - (diag*(2^n)),1:si - (diag*(2^n)));

C_2 = B_2(1:si - (diag*(2^n)),1:si - (diag*(2^n)));

w = size(C,2); lambda = epsilon^(2^(n+1));

[R,p_1] = chol(C_1 - lambda*speye(w));

[R,p_2] = chol(C_2 - lambda*speye(w));

if abs(max(p_1,p_2)) == 0

else

plot(z,’k.’);

hold on

end

end

end



6.4 Computing the n-pseudospectrum 93

!8 !6 !4 !2 0 2 4 6 8
!6

!4

!2

0

2

4

6

8

0

1

2

!1

1

!8 !6 !4 !2 0 2 4 6 8
!6

!4

!2

0

2

4

6

8

!8 !6 !4 !2 0 2 4 6 8
!6

!4

!2

0

2

4

6

8

Figure 6.5: The first figure is the curve of the symbol f1 with winding numbers, the second is the
spectrum of the Laurent operator corresponding to f1 computed with ε = 0.15, n = 2, m = 3000 and
grid-size being 0.1. The third figure is the spectrum of the Toeplitz operator corresponding to f1 with the
same numerical parameters as for the Laurent case.

6.4.4 Tests on Laurent and Toeplitz matrices

The spectral theory of Laurent and Toeplitz operators is very well understood, and they
are therefore a natural choice when it comes to test objects for numerical algorithms.
We briefly recall some of the basics from Laurent and Toeplitz operator theory. Given a
Laurent operator AL on l2(Z)

AL =



. . .
...

...
...

...
. . . a0 a−1 a−2 a−3 . . .
. . . a1 a0 a−1 a−2 . . .
. . . a2 a1 a0 a−1 . . .
. . . a3 a2 a1 a0 . . .

...
...

...
...

. . .


,

it is well known that AL is a bounded operator if and only if there is a function f ∈ L∞(T),
where T denotes the circle, such that {an}∞n=−∞ is the sequence of Fourier coefficients of
f , e.g.

an =
1
2π

∫
f(eiθ)e−inθ dθ, n ∈ Z.

Also, σ(AL) = R(f), where R(f) denotes the essential range of f. For a Toeplitz operator
AT on l2(Z+), given by

AT =


a0 a−1 a−2 a−3 . . .
a1 a0 a−1 a−2 . . .
a2 a1 a0 a−1 . . .
a3 a2 a1 a0 . . .
...

...
...

...
. . .

 ,

we have a similar result, namely, AT is bounded if and only if there is a function f ∈ L∞(T)
such that its Fourier coefficients are the sequence {an}n∈Z. The function f is called the
symbol of the Laurent or Toeplitz operator.

As for the spectrum of AT , note that t 7→ f(eit), t ∈ [0, 2π] is a curve in C, and hence
we can assign a winding number to every point z ∈ C with respect to the curve. We
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Figure 6.6: The first figure is the curve of the symbol f2 and the second figure is the spectrum of the
Laurent operator corresponding to f2 computed (inside the rectangle) with ε = 0.1, n = 2, m = 3000 and
grid-size being 0.1.

then have that σ(AT ) is equal to R(f) together with all complex numbers with non-zero
winding number with respect to the curve.

In our examples (displayed in Figure 6.5 and Figure 6.6) we have chosen Laurent and
Toeplitz operators with symbols

f1(z) = 2z−3 − z−2 + 2iz−1 − 4z2 − 2iz3

and
f2(z) = z−2 + z−1 + 1 + 2z,

where the corresponding winding numbers are displayed on the figures. Our numerical
computation is done as suggested in Algorithm 6.4.1, where we check whether

γn,m(z) = min
[
min{λ1/2n+1

: λ ∈ σ
(
Pm((T − z)∗)2

n
(T − z)2

n
⌈
PmH

)
},

min{λ1/2n+1
: λ ∈ σ

(
Pm(T − z)2

n
((T − z)∗)2

n
⌈
PmH

)
}
]

is less than or equal to ε, for some ε > 0, on a grid in the complex plane, where T here is
either AL or AT . If γn,m(z) ≤ ε the point z is assign a black color.

The choice of the projections is the natural one, namely, in the case of Laurent opera-
tors; Pm is the projection onto the span of {ej}mj=−m where {ej}j∈Z is the obvious basis for
l2(Z) (i.e ej has one on the j-th coordinate and zero elsewhere). For Toeplitz operators
this is done similarly, but with Pm being the projection onto span{ej}mj=1 and {ej}j∈N
being the obvious basis for l2(N).

The computational costs of these figures are quite high due to large numbers of grid
evaluations, and the computational time for some of them can typically take one night on
a desktop computer. It is therefore difficult to get really accurate results. However, the
computations done with the symbol f2 in Figure 3 are done with a small grid-size to show
accuracy.

6.5 Other Types of Pseudospectra

Even though the previous examples show very good results when computing spectra of
Laurent and Toeplitz operators, one must be aware that the n-pseudospectrum can only
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give an estimate on the position of the spectrum. The reason why the computations in
the previous section are so close to the spectrum is simply because the n-pseudospectrum
is close to the spectrum even for small n. This may of course not be the case in general,
and we will now show how one can use the computations of γn,m to determine subsets of
the spectrum. The disadvantage of the n-pseudospectrum is that even though one can
estimate the spectrum by taking n very large, n may have to be too large for practical
purposes. Thus, since we only have the estimate for T ∈ B(H), ε > 0 that σ(T ) ⊂ σn,ε(T ),
it is important to get a “lower” bound on σ(T ) i.e. we want to find a set Ω ⊂ C such that
Ω ⊂ σ(T ). A candidate for this is described in the following.

Definition 6.5.1. Let T ∈ B(H) and define

ζ1(z) = min
{
λ1/2 : λ ∈ σ ((T − z)∗(T − z))

}
,

ζ2(z) = min
{
λ1/2 : λ ∈ σ ((T − z)(T − z)∗)

}
.

Let ε > 0 and define the ε-residual pseudospectrum to be the set

σres,ε(T ) = {z : ζ1(z) > ε, ζ2(z) = 0},

and the adjoint ε-residual pseudospectrum to be the set

σres∗,ε(T ) = {z : ζ1(z) = 0, ζ2(z) > ε}.

Theorem 6.5.2. Let T ∈ B(H) and let {Tk} ⊂ B(H) such that Tk → T in norm, as
k →∞. Then for ε > 0 we have the following,

(i) σ(T ) ⊃
⋃
ε>0 σres,ε(T ) ∪ σres∗,ε(T )

(ii) cl({z ∈ C : ζ1(z) < ε}) = {z ∈ C : ζ1(z) ≤ ε}

(iii) cl({z ∈ C : ζ2(z) < ε}) = {z ∈ C : ζ2(z) ≤ ε}

(iv) For any compact ball K ⊂ C such that cl(σres,ε(T )) ∩Ko 6= ∅ it follows that

dH(cl(σres,ε(Tk)) ∩K, cl(σres,ε(T )) ∩K) −→ 0, k →∞.

(v) For any compact ball K ⊂ C such that σres∗,ε(T ) ∩Ko 6= ∅ it follows that

dH(cl(σres∗,ε(Tk)) ∩K, cl(σres∗,ε(T ) ∩K)) −→ 0, k →∞.

Proof. This is Theorem 3.6.2 in Chapter 3 and a proof can be found there.

The previous theorem shows that the residual and the adjoint residual pseudospectra
have similar continuity properties as the pseudospectra. Hence, these sets are suitable for
computations. The approximations are very similar to the techniques we have used in the
previous sections.



96 Chapter 6. Pseudospectral Theory

Theorem 6.5.3. Let T ∈ B(H) and suppose that {Pm} is a sequence of finite rank pro-
jections converging strongly to the identity such that Pm+1 ≥ Pm. Define

ζ1,m(z) = min
{
λ1/2 : λ ∈ σ

(
Pm(T − z)∗(T − z)

⌈
PmH

)}
,

ζ2,m(z) = min
{
λ1/2 : λ ∈ σ

(
Pm(T − z)(T − z)∗

⌈
PmH

)}
and

ζ1,m,k(z) = min
{
λ1/2 : λ ∈ σ

(
Pm(Pk(T − z)Pk)∗(Pk(T − z)Pk)

⌈
PmH

)}
,

ζ2,m,k(z) = min
{
λ1/2 : λ ∈ σ

(
Pm(Pk(T − z)Pk)(Pk(T − z)Pk)∗

⌈
PmH

)}
.

Let δ ∈ (0, ε). Then we have the following.

(i) If K is a compact ball such that σres,ε(T ) ∩Ko 6= ∅ then

cl({z : ζ1,m(z) > ε, ζ2,m(z) < δ}) ∩K −→ σres,ε(T ) ∩K, m→∞.

(ii) If K is a compact ball such that σres∗,ε(T ) ∩Ko 6= ∅ then

cl({z : ζ1,m(z) < δ, ζ2,m(z) > ε}) ∩K −→ σres∗,ε(T ) ∩K, m→∞.

(iii) If K is a compact ball such that cl({z : ζ1,m(z) > ε, ζ2,m(z) < δ}) ∩Ko 6= ∅ then

cl({z : ζ1,m,k(z) > ε, ζ2,m,k(z) < δ}) ∩K
−→ cl({z : ζ1,m(z) > ε, ζ2,m(z) < δ}) ∩K, k →∞.

(iv) If K is a compact ball such that cl({z : ζ1,m(z) < ε, ζ2,m(z) > ε}) ∩Ko 6= ∅ then

cl({z : ζ1,m,k(z) < δ, ζ2,m,k(z) > ε}) ∩K
−→ cl({z : ζ1,m(z) < δ, ζ2,m(z) > ε}) ∩K, k →∞.

Proof. A proof of this theorem can be found in the proof of Theorem 3.6.3 in Chapter
3.

We now have a computational tool for estimating the spectrum both from “above”
and “below”, meaning that for T ∈ B(H) we have

σres,ε(T ) ∪ σres∗,ε(T ) ⊂ σ(T ) ⊂ σn,ε(T ).

Thus, it would be natural to compute, for ε > 0 and δ ∈ (0, ε), both

{z : ζ1,m,k(z) > ε, ζ2,m,k(z) ≤ δ} ∪ {z : ζ1,m,k(z) ≤ δ, ζ2,m,k(z) > ε}

and
{z : γn,m,k(z) ≤ ε},
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Figure 6.7: The figure shows on the first row Ωε,ε−10−10,3000(T1) (ε = 0.01),
Ωε,ε−10−10,3000(T2) (ε = 0.0005), Ωε,ε−10−10,3000(T4) (ε = 0.00001) and on the second row
{z : γ0,m(z) ≤ ε} (m = 3000) for the same operators and εs as on the first row.

where γn,m,k is defined as in (6.4.1) to get an estimate for the spectrum. To simplify the
notation we define

Ωε,δ,m(T ) = {z : ζ1,m(z) > ε, ζ2,m(z) ≤ δ} ∪ {z : ζ1,m(z) ≤ δ, ζ2,m(z) > ε} (6.5.1)

and

Ωε,δ,m,k(T ) = {z : ζ1,m,k(z) > ε, ζ2,m,k(z) ≤ δ} ∪ {z : ζ1,m,k(z) ≤ δ, ζ2,m,k(z) > ε}. (6.5.2)

Example 6.5.4. Given an infinite matrix T , we will in this example show how computa-
tions of

σres,ε(T ) ∪ σres∗,ε(T ), σn,ε(T )

can give quite good estimates on the position of the spectrum. As test objects we have
chosen Toeplitz like operators, where we have kept much of the Toeplitz structure, but
let some of the subdiagonals have alternating numbers instead of constants. As we are
left with few (if any) mathematical tools to estimate the spectrum, we can only rely on
the computed estimate, which in some cases seems quite acceptable. Consider the three
infinite matrices

T1 =



0 a b c 0 0 . . .
d 0 a b c 0 . . .
f e 0 a b c . . .
g f d 0 a b . . .
0 g f e 0 a . . .
0 0 g f d 0 . . .
...

...
...

...
...

...
. . .


, T2 =



0 a b c 0 0 . . .
d 0 a b c 0 . . .
f e 0 a b c . . .
g f d 0 a b . . .
φ1 g f e 0 a . . .
0 ψ1 g f d 0 . . .
...

...
...

...
...

...
. . .


,
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and

T3 =



0 a b c 0 0 . . .
d 0 a b c 0 . . .
0 e 0 a b c . . .
g 0 d 0 a b . . .
φ1 g 0 e 0 a . . .
0 ψ1 g 0 d 0 . . .
...

...
...

...
...

...
. . .


,

where a = 1 + 2i, b = −1, c = 5 + i, d = −2, e = 1 + 2i, f = −4, g = −1 − 2i,
φj = −2 + −5+15i

j1/6 and ψj = 1 + 2i + 5+15i
j1/3 . Figure 6.7 shows computations of Ωε,δ,m(Tj)

(where Ωε,δ,m(·) is defined as in (6.5.2)) and

{z : γ0,m(z) ≤ ε}

for Tj (j = 1, 2, 3), m = 3000 and ε = 10−5, δ = ε− 10−10. Since

Ωε,δ,m(T ) −→ σres,ε(T ) ∪ σres∗,ε(T ) ⊂ σ(T ), m→∞

and
{z : γ0,m(z) ≤ ε} −→ σε(T ), m→∞,

it is reasonable to believe that the computation displays the following relation

Ωε,δ,m(T ) ⊂ ων(σ(T )) ⊂ {z : γ0,m(z) ≤ ε}, ν > 0,

for some ν. As we tried this with several larger values of m up to m = 10000 without
noticing any change, it suggests that ν is small in the experiment with T1, where “small”
here means relative to the resolution of the figures displayed.

6.6 Discrete Schrödinger Operators

6.6.1 The Non-self-adjoint Almost Mathieu Operator

An important operator in non-self-adjoint spectral theory is the non-self-adjoint harmonic
oscillator H, defined by

Hf(x) = −f ′′(x) + cx2f(x),

acting on L2(R). One of the motivations for this operator was that one wanted to take
a well known self-adjoint operator, alter it slightly so that it becomes non-self-adjoint,
and then see how the spectral properties change. Indeed, the spectral properties of the
non-self-adjoint harmonic oscillator are very different from the usual harmonic oscillator,
as discussed in (DK04)(TE05). Our approach is to do the same with discrete Schrödinger
operators.

The almost Mathieu operator on l2(Z) is known from the Ten Martini Problem, a
problem that was initiated in 1981 by Kac and Simon and finally solved in 2003 by Puig
(Pui04). The operator is defined as

(Hb,φ,ωx)n = xn+1 + xn−1 + b cos(2πωn+ φ)xn, n ∈ Z,
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Figure 6.8: The first row shows σε(Hi,2,π/4), σε(H1+i,2,π/4) and σε(Hi,2,
√

5) for ε = 0.005.
The second row shows σ1,ε(Hb,φ,ω) for the same values as in the first row.

where ω > 0 is an irrational number, φ ∈ T = R/2πZ and b ∈ C. The usual almost
Mathieu operator has b ∈ R, so that Hb,φ is self-adjoint and the Ten Martini problem was
to show that for real non-zero b then σ(Hb,φ,ω) is a cantor set.

We do not claim anything about the spectral properties of the non-self-adjoint almost
Mathieu operator (NSAM operator), but we rather use it as an example of an operator
where we before did not have computational tools at hand to handle the problem of
numerically estimating the spectrum. Arveson gave a complete theory in (Arv94a) on
how to handle the computational aspects of the spectral theory of the self-adjoint almost
Mathieu operator. However, self-adjointness is crucial in Arvesons theory and therefore
not suitable for our problems. But with the techniques suggested in the earlier sections
of this chapter we can get numerical approximations to the spectra of these non-self-
adjoint Schrödinger operators. In Figure 6.8 we have computed pseudospectra and 1-
pseudospectra of the NSAM operator for different values of b and ω.

6.6.2 Random Non-self-adjoint Schrödinger operators

In this section we will consider the non-self-adjoint Anderson model that has several ap-
plications in physics (Dav01)(TE05). More specifically we will consider the operator H
on l2(Z) defined by

(Hx)n = e−gxn−1 + egxn+1 + Vnxn,

where g > 0 and V is a random real valued potential taking values from an interval [-B,B]
according to some probability measure µ on [-B,B]. Faced with the problem of computing
the spectrum or pseudospectra of H we immediately discard the finite section method
due to Davies’ analysis of the problem in (Dav01). In particular Davies pointed out that
one must resist the temptation of projecting down to l2(−N,N) and impose boundary
conditions because the spectrum of H on l2(−N,N) as N →∞ may have little to do with
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Figure 6.9: The first row shows {z : γ0,m(z) ≤ ε} for B = 1, 0.5, 0.1 and the second row
shows {z : γ0,m(z) ≤ ε} for the same values of B. In both examples m = 20000 and
ε = 0.05.

the spectrum of H on l2(Z) regardless of the choice of boundary conditions. Having left
the finite section approach, the method of computing the function γn,m comes in handy
as this will at least help us estimating the n-pseudospectrum of H.

Davies showed in (Dav01) that if B < eg − e−g then

σ(H) ∩ {z ∈ C : |z| < r} = ∅,

where r = eg − e−g −B > 0 Also, if B ≥ eg + e−g then

σ(H) = E + [−B,B], a.s.,

where E = {eg+iθ + e−g−iθ : θ ∈ [0, 2π]} and a.s. means almost surely. But the question is
what happens when eg−e−g < B < eg+e−g? The purpose of our numerical computation is
not to investigate this seriously, but rather demonstrate that we now have a tool that could
be used if one wants to use numerical simulations to get some insight on this problem. We
have tested this only for one sample of H, and of course, since H is a random operator,
one has to compute σ(H) sufficiently many times to get a reliable result. However, this is
just an example, and we postpone more serious computations for future work.

In this example we have estimated σε(H) and σ1,ε(H), where V is uniformly distributed,
by computing

{z : γ0,m(z) ≤ ε}, {z : γ1,m(z) ≤ ε}

for g = 0.1 (so that eg+iθ+e−g−iθ = 2.01 and eg+iθ−e−g−iθ = 0.2003), ε = 0.05, m = 20000
and B = 1, 0.5, 0.1. An interesting observation is that for B = 0.5 the computation in
Figure 6.9 suggests that the spectrum has a hole.



Chapter 7

The Infinite-Dimensional QR
algorithm

In numerical linear algebra the QR algorithm (Wil65) (Par65) (PK69) (Wat82) represents
the state of the art in the computation of the algebraic eigenvalue problem. The algorithm
is exceedingly powerful, and is now the core of, for example, the MATLAB command eig.
Now, all is well with the QR algorithm as long as the matrix we are working with has
finitely many entries, but the problem is that not all matrices may have this nice prop-
erty. In fact, most of the operators in mathematical physics act on an infinite dimensional
space and hence a matrix representation of such an operator results in an infinite matrix.
The problem of computing the spectrum of an infinite matrix may be very different from
the finite dimensional case, however, it is not less important, as the set of infinite dimen-
sional problems contains e.g. Schrödinger spectral problems and other problems related
to quantum mechanics. In Chapter 6 several new methods for computing spectra of in-
finite matrices were introduced. The theoretical framework in Chapter 6 and Chapter 3
shows how one can compute the spectrum of an infinite matrix as long as it is a bounded
operator on l2(N). Although this gives a way of computing spectra of arbitrary infinite
matrices, there is a slight disadvantage, namely, the framework is based on pseudospectral
theory, and isolated eigenvalues are therefore difficult to detect. Often one may not be
able to determine the difference between an isolated eigenvalue or a small neighborhood
of the eigenvalue. This will become increasingly difficult with non-normal operators. An
alternative to the pseudospectral framework in Chapter 6 is the Infinite dimensional QR
algorithm or just the Infinite QR algorithm as we will call it. The algorithm in infinite
dimensions is very similar to the finite dimensional case, and the implementation is based
on Householder transformations. Theoretically one can analyze the convergence of the
algorithm as if it was carried out on an infinite computer (meaning that we allow storage
and multiplication of infinite matrices), however, in practice there are tricks one can use to
avoid this impossible assumption. In fact, as we will see later, there are no truncations or
approximations done in the algorithm, and the information provided by the computation
is (up to εmach) as if it was done with an infinite computer. Thus, one can conclude that,
indeed, this is infinite dimensional numerical linear algebra.

The Infinite QR algorithm has existed as a pure mathematical concept for more than
twenty years and it first appeared in the paper “Toda Flows with Infinitely Many Vari-
ables” (DLT85) in 1985. However, the framework presented here and in Chapter 2 was

101
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developed independently and the author is indebted to Percy Deift for pointing out the
connection to (DLT85). We will in this paper concentrate on the applied and computa-
tional properties of the Infinite QR algorithm and refer to Chapter 2 and (DLT85) for a
more theoretical exposition.

7.1 Pollution in the Finite Section Method

Let us recall the basic ideas of the finite section method as discussed in Chapter 6.
Suppose that we have an operator A ∈ B(H) and that we know the matrix elements
aij = 〈Aej , ei〉 with respect to some basis {ej}. A quite common idea is to reduce this to a
finite-dimensional spectral problem. One constructs (using {ej}) a sequence of finite rank
projections {Pm} such that Pm+1 ≥ Pm and Pm → I strongly, where I is the identity,
and then compute the spectrum and pseudospectra of PmAdPmH. Typically, Pm would be
the projection onto span{e1, . . . , em}, but other choices are also possible. This is often
referred to as the finite section method in the literature. It is well known that this may
work in some cases e.g. if the operator is compact, or in some cases when the operator
is self-adjoint. However, one must be very careful using the finite section method, and it
should not be used unless accompanied by a rigorous analysis that justifies the convergence

dH(σ(PmAdPmH), σ(A)) −→ 0, m→∞.

As discussed before in Chapter 6, it is quite easy to find elementary counter examples
to show that the finite section method can fail dramatically. Consider the shift operator
Sen = en+1 on l2(N). This operator has the following matrix representation

S =


0 1 0 0 . . .
0 0 1 0 . . .
0 0 0 1 . . .
0 0 0 0 . . .
...

...
...

...
. . .

 . (7.1.1)

Thus, if Pm is the projection onto span{e1, . . . , em}, we would get that σ((PmSdPmH) =
{0} for all m, but σ(S) is the closed unit disc. This example showed that we can have
σ(PmT dPmH) ⊂ σ(T ), where the inclusion is proper for all m, and T ∈ B(H). But we can
also have that σ(PmT dPmH) * σ(T ), as the following example shows. Let

A =



0 0 0 0 0 0 . . .
1 0 a23 a24 0 0 . . .
0 1 0 0 0 0 . . .
0 0 1 0 a45 a46 . . .
0 0 0 1 0 0 . . .
0 0 0 0 1 0 . . .
...

...
...

...
...

...
. . .


,

where a2j,j+1 = 1. Also, a2j,2j+2 = −i if j is prime and a2j,2j+2 = 0 otherwise. If
we let Pm be the projection onto span{e1, . . . , em} and compute σ(PmAdPmH) then the
phenomenon “spectral pollution” occurs, namely, that σ(PmAdPmH) contains elements
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Figure 7.1: The first figure shows σε(A) for ε = 0.02 and the next figures shows
σ(PmAdPmH) for m = 700 and m = 900 with the false eigenvalue.

that have nothing to do with σ(A). This is visualized in Figure 7.1. The phenomenon
described in this example is often referred to as spectral pollution and is well known. As
the following theorem suggest, the “pollution” can be arbitrarily bad.

Theorem 7.1.1. (Pokrzywa)(Pok79) Let A ∈ B(H) and {Pn} be a sequence of finite-
dimensional projections converging strongly to the identity. Suppose that S ⊂ We(A).
Then there exists a sequence {Qn} of finite-dimensional projections such that Pn < Qn
(so Qn → I strongly) and

dH(σ(An) ∪ S, σ(Ãn)) → 0, n→∞,

where
An = PnAdPnH, Ãn = QnAdQnH

and dH denotes the Hausdorff metric.

However, life is not completely dark for the finite section method as the following result
shows. (Also, in the self-adjoint case the finite section method sometimes perform quite
well (Arv94a) (Bro07b) (Han08)).

Theorem 7.1.2. Let T ∈ B(H) and {Pn} be a sequence of finite-dimensional projections
converging strongly to the identity. If λ /∈We(T ) then λ ∈ σ(T ) if and only if

d(λ, σ(PnT dPnH)) −→ 0, n→∞.

However, if we want to use the finite section method and rely on Theorem 7.1.2 we
must know We(T ), and that may be unpleasant to compute. Or we could hope that
σe(T ) = We(T ) and try to estimate re(T ), but that may also be a highly non-trivial
problem. Now, it is known that if an operator T is hypo-normal (T ∗T − TT ∗ ≥ 0) then

conv(σe(T )) = We(T ),

where conv(σe(T )) denotes the convex hull of σe(T ). But what if we have a “very non-
normal” operator? Another problem we may encounter using the finite section method
is that even though σd(T ) may be recovered, one may get a very misleading picture of
the rest of the spectrum. Such problems are illustrated in the following examples. Unless
otherwise stated Pm will denote the projection onto span{e1, . . . , em}. Let
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Figure 7.2: The first figure shows σ(PmAdPmH) for m = 500 and the second figure shows
σε(A) for ε = 0.02.

A =



2.5 + 0.5i 0 0 0 0 0 0 . . .
1 3− 0.5i 0 0 0 0 0 . . .
0 1 1.7 0.05 0 0 0 . . .
0 0 0.05 1 0 0 0 . . .
0 0 0 1 1 a56 0 . . .
0 0 0 0 1 1 0 . . .
0 0 0 0 0 1 1 . . .
...

...
...

...
...

...
...

. . .


,

where a2j−1,2j = i for j ≥ 3. Now, A can be written as a compact perturbation of the
operator

I + S∗ +B, B = 0⊕ B̃ on PmH⊕ P⊥mH, m = 4,

where S is the shift operator (recall (7.1.1)) and

〈B̃ẽ2j , ẽ2j−1〉 = i, 〈B̃ẽj , ẽi〉 = 0 elsewhere, i, j ∈ N,

where {ẽj} is the basis for P⊥mH. Thus, A should have some isolated eigenvalues of fi-
nite multiplicity as well as some essential spectrum. Using the techniques introduced in
(Han10) we can compute the pseudospectrum of A (Figure 7.2) to reveal that at least some
of the isolated eigenvalues produced by the finite section method appear to be correct. Al-
though, without the support from the picture of the pseudospectrum, the information from
the finite section method would have been useless since one does not know the essential
numerical range of A.

Another example of misleading information from the finite section method is the foll-
wing. Let

T =



2.5 + 0.5i 0 0 0 0 0 0 . . .
1 3− 0.5i 0 0 0 0 0 . . .
0 1 1.7 0.05 0 0 0 . . .
0 0 0.05 t4 0 0 0 . . .
0 0 0 0 t5 0 0 . . .
0 0 0 0 1 t6 0 . . .
0 0 0 0 0 1 t7 . . .
...

...
...

...
...

...
...

. . .


,
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Figure 7.3: The first figure shows σ(T ), the second σ(PmT dPmH) and σ(PmT̃ dPmH) (they
are identical) and the third shows σε(T̃ ) (or rather a desperate try) for ε = 5× 10−8.

where tj = 1 + 0.5(sin j, cos j). Using techniques from (Han10) we can compute the spec-
trum of T, and this is shown in Figure 7.3. Now, using the finite section method on T , we
observe that, even though all the points that are displayed (Figure 7.3) are actually in the
spectrum of T , the result is far from correct. To complicate the task slightly we perturb
T by introducing a large number on the subdiagonal. In particular let

T̃ =



2.5 + 0.5i 0 0 0 0 0 0 . . .
1 3− 0.5i 0 0 0 0 0 . . .
0 1 1.7 0.05 0 0 0 . . .
0 0 0.05 t4 0 0 0 . . .
0 0 0 5× 105 t5 0 0 . . .
0 0 0 0 1 t6 0 . . .
0 0 0 0 0 1 t7 . . .
...

...
...

...
...

...
...

. . .


.

If we should use the pseudospectrum as a guide (as done in Figure 7.2) we see that this
is quite difficult (Figure 7.3) due to the fact that T̃ is highly non-normal. The figure has
in fact very little to do with the pseudospectrum as the roundoff error interferes in the
computation. However, our point is that, in this case, very little can be said about the
spectrum of T̃ if we should only rely on Figure 7.3. In Section 7.5.1 we will see that the
Infinite QR algorithm gives quite satisfactory results on these examples.

7.2 The QR decomposition

The QR decomposition is the core of the QR algorithm. If A ∈ Cn×n, one may apply the
Gram-Schmidt procedure to the columns of A and store these columns in a matrix Q and
this gives us the QR decomposition

A = QR, (7.2.1)

where Q is a unitary matrix and R upper triangular. It is therefore no surprise that a
QR decomposition should exist in the infinite dimensional case, however, we need more
than just the existence. A key ingredient in the QR algorithm is the Householder trans-
formation, and for computational reasons one uses Householder transformations when
computing the QR decomposition. It is therefore crucial that we can adopt these tools in
the infinite dimensional setting. Our goal is therefore to extend the construction of the
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QR decomposition, via Householder transformations, to infinite matrices. And moreover,
to find a way so that one can implement the procedure on a computer.

7.2.1 Householder Reflections

Before we can state and prove the main theorem we need to introduce the concept of
Householder reflections in an infinite-dimensional setting.

Definition 7.2.1. A Householder reflection is an operator S ∈ B(H) of the form

S = I − 2
‖ξ‖2

ξ ⊗ ξ̄, ξ ∈ H. (7.2.2)

In the case where H = H1 ⊕H2 and Ii is the identity on Hi then

U = I1 ⊕
(
I2 −

2
‖ξ‖2

ξ ⊗ ξ̄

)
ξ ∈ H2,

will be called a Householder transformation.

A straightforward calculation shows that S∗ = S−1 = S and thus also U∗ = U−1 = U.
An important property of the operator S is that if {ej} is an orthonormal basis for H and
η ∈ H then one can choose ξ ∈ H such that

〈Sη, ej〉 = 〈(I − 2
‖ξ‖2

ξ ⊗ ξ̄)η, ej〉 = 0, j 6= 1.

Indeed, if η1 = 〈η, e1〉 6= 0 one may choose ξ = η±‖η‖ζ, where ζ = η1/|η1|e1 and if if η1 = 0
choose ξ = η ± ‖η‖e1, The verification of the assertion is a straightforward calculation.
Note that the notation

ξ ⊗ ξ̄, ξ ∈ H,

deviates from what one is used to in finite dimensions. Recall that in finite dimensions a
Householder reflection is often expressed as

I − 2
‖x‖2

xx̄T , x ∈ Cn,

however, in a coordinate-free Hilbert space H the notation ξξ̄T does not make any sense
for ξ ∈ H. One therefore uses the correct notation as in (7.2.2) and recalls that

ξ ⊗ ξ̄(η) = 〈ξ, η〉ξ, η ∈ H.

7.2.2 Constructing the QR decomposition

We will now explain how to construct the QR decomposition in infinite dimensions. The
approach is for now on only mathematical and we will in Section 7.4 discuss how to use
certain tricks so that this procedure is actually implementable on a computer. First, we
recall how this is done in finite dimensions. Let A ∈ Cn×n. We may construct R in (7.2.1)
by multiplying A from the left by Householder transformations U1, . . . , Un such that

Un · · ·U1A = R,
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and R is upper triangular. Now, the fact that every Householder reflection is a unitary
matrix makes

A = U1 · · ·UnR = QR

the desired composition. In infinite dimensions we will do exactly the same, however,
we are faced with the challenge of making sense of an infinite product of Householder
transformations. We will explain this more carefully. Let A ∈ B(l2(N)). We will now
obtain R as a limit of the infinite matrices Un · · ·U1A, where Uj is a Householder reflection
e.g.

R = lim
n→∞

Un · · ·U1A,

where the limit is understood to be in an appropriate topology on B(l2(N)).We will be more
specific about this topology later. First, let us concentrate on how to construct elements
Un · · ·U1A and worry about the limit later. Let Pn be the projection onto {e1, . . . , en}
and suppose that we have the n elements in the sequence and that the n-th element is an
operator Rn = Un · · ·U1A such that, with respect to the decomposition H = PnH⊕P⊥n H,
(here we use H = l2(N) to simplify notation) we have

Rn =
(
R̃n Bn
Cn Nn

)
, R̃n = PnRnPn, Bn = PnRnP

⊥
n , Cn = P⊥n RnPn,

where Nn = P⊥n RnP
⊥
n and R̃ is upper triangular and Cej = 0 for j ≤ n− 1. Let ζ = Cen.

Choose ξ ∈ P⊥n H and define the Householder reflection S ∈ B(P⊥n H),

S = I − 2
‖ξ‖2

ξ ⊗ ξ̄, and Un+1 = Pn ⊕ S, (7.2.3)

such that Sζ = {ζ̃1, 0, 0, . . .}. Finally let Rn+1 = Un+1Rn. Hence,

Rn+1 = Un+1Rn =
(
R̃n Bn
SCn SNn

)
=

(
R̃n+1 Bn+1

Cn+1 Nn+1

)
, (7.2.4)

where the last matrix is understood to be with respect to the decomposition H = Pn+1H⊕
P⊥n+1H. Note that, by the choice of S, it is true that R̃n+1 is upper triangular and Cn+1ej =
0 for j ≤ n. How to choose the initial U1 follows from similar reasoning. Thus, we have
constructed the sequence {Rn}, and we can now turn the attention to finding a candidate
R such that

R = lim
n→∞

Rn,

in some apropriate topology on B(H), where R is upper triangular. Note that ‖Rn‖
is uniformly bounded since Uj is unitary. And since a closed ball in B(H) is weakly
sequentially compact, there is an R ∈ B(H) and a subsequence {Rnk

} such that

Rnk

WOT−→ R, k →∞.

But by (7.2.4) it is clear that for any integer j we have PjRnPj = PjRmPj for sufficiently
large n and m. Hence

WOT-lim
n→∞

Rn = R.
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Now, by (7.2.4) R is upper triangular with respect to {ej} and also Rej = Rnej for large
n, thus

SOT-lim
n→∞

Rn = R.

Hence, we have constructed the upper triangular infinite matrix R, and we now return to
the task of forming Q. Let

Vn = U1 · · ·Un

By similar reasoning, using the previous compactness argument (since Vn is bounded) and
the fact that, by (7.2.3), for any integer j we have Vnej = Vmej for sufficiently large m
and n, it follows that there is a V ∈ B(H) such that

Vn
SOT−→ V, n→∞.

And, being a strong limit of unitary operators; V is an isometry. Let Q = V. Then,
A = QR since A = VnRn and multiplication is jointly strongly continuous on bounded
sets. We have just proved the following theorem.

Theorem 7.2.2. Let A be a bounded operator on a separable Hilbert space H and let {ej}
be an orthonormal basis for H. Then there exist an isometry Q such that A = QR where
R is upper triangular with respect to {ej}. Moreover

Q = SOT-lim
n→∞

Vn

where Vn = U1 · · ·Un and Uj is a Householder transformation.

7.3 The QR algorithm

Let A ∈ B(H) be invertible and let {ej} be an orthonormal basis for H. By Theorem
7.2.2 we have A = QR, where Q is unitary and R is upper triangular with respect to {ej}.
Consider the following construction of unitary operators {Q̂k} and upper triangular (w.r.t.
{ej}) operators {R̂k}. Let A = Q1R1 be a QR decomposition of A and define A2 = R1Q1.
Then QR factorize A2 = Q2R2 and define A3 = R2Q2. The recursive procedure becomes

Am−1 = QmRm, Am = RmQm. (7.3.1)

Now define
Q̂m = Q1Q2 . . . Qm, R̂m = RmRm−1 . . . R1. (7.3.2)

The recursive procedure (7.3.1) is known as the QR algorithm.

Definition 7.3.1. Let A ∈ B(H) be invertible and let {ej} be an orthonormal basis for
H. The sequences {Q̂j} and {R̂j} constructed as in (7.3.1) and (7.3.2) will be called a
Q-sequence and an R-sequence of A with respect to {ej}.

The following observation will be useful in the later developments. From the construc-
tion in (7.3.1) and (7.3.2) we get

A = Q1R1 = Q̂1R̂1,
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A2 = Q1R1Q1R1 = Q1Q2R2R1 = Q̂2R̂2,

A3 = Q1R1Q1R1Q1R1 = Q1Q2R2Q2R2R1 = Q1Q2Q3R3R2R1 = Q̂3R̂3.

An easy induction gives us that
Am = Q̂mR̂m.

Note that R̂m must be upper triangular with respect to {ej} since Rj , j ≤ m is upper
triangular with respect to {ej}. Also, by invertibility of A it is true that 〈Rei, ei〉 6= 0.
From this it follows immediately that

span{Amej}Nj=1 = sp{Q̂mej}Nj=1, N ∈ N. (7.3.3)

In finite dimensions we have the following theorem:

Theorem 7.3.2. Let A ∈ CN×N be a normal matrix with eigenvalues satisfying |λ1| >
. . . > |λN |. Let {Q̂m} be a Q-sequence of unitary operators. Then Q̂mAQ̂

∗
m → D, as

m→∞, where D is diagonal.

We will show that an analogue of this theorem is true in infinite dimensions. But
before we do that let us recall some basic Banach space geometry. We follow the notation
in (Kat95). Let E ⊂ B and F ⊂ B be closed subspaces of a Banach space B. Define

δ(E,F ) = sup
x∈E

‖x‖=1

inf
y∈F

‖x− y‖

and
δ̂(E,F ) = max[δ(E,F ), δ(F,E)].

Given subspaces E and {Ek} such that δ̂(Ek, E) → 0 as k → ∞ we will sometimes use
the notation

Ek
δ̂−→ E, k →∞.

The reason why we introduce such convergence is the following. If we should prove an
infinite dimensional analogue of Theorem 7.3.2, we obviously have to abandon any deter-
minant based theory as in (Par65). Now, the ideas in (PP73) are much better suited for
use in infinite dimensions as that theory is based on convergence of subspaces, a concept
that is certainly not exclusive to finite dimensional spaces. Thus, having decided on using
the ideas in (PP73) as an inspiration, the best way of approaching the Infinite QR algo-
rithm is probably to think of it as an advanced power method. This is emphasized in the
following theorem.

Theorem 7.3.3. Let A ∈ B(H) be an invertible normal operator. Suppose that σ(A) =
ω∪Ω is a disjoint union such that ω = {λi}Ni=1 and the λis are isolated eigenvalues of finite
multiplicity satisfying |λ1| > . . . > |λN |. Suppose further that sup{|γ| : γ ∈ Ω} < |λN |.
Let {ξi}Mi=1 be a collection of linearly independent vectors in H such that {χω(A)ξi}Mi=1 are
linearly independent. The following observations are true.

(i) There exists an M -dimensional subspace B ⊂ ranχω(A) such that

span{Akξi}Mi=1
δ̂−→ B, k →∞.



110 Chapter 7. The Infinite-Dimensional QR algorithm

(ii) If

span{Akξi}M−1
i=1

δ̂−→ D ⊂ H, k →∞,

where D is an (M − 1)-dimensional subspace, then

span{Akξi}Mi=1
δ̂−→ D ⊕ span{ξ}, k →∞,

where ξ ∈ ranχω(A) is an eigenvector of A.

Note that the previous theorem gives us some control on the behavior of span{Akξi}Mi=1

as k → ∞, where ξi is as in Theorem 7.3.3. It is essentially that result combined with
(7.3.3) (and some more analysis) that lead to the following theorem. The theory and
proofs of both Theorem 7.3.3 and Theorem 7.3.4 can be found in Chapter 2.

Theorem 7.3.4. Let A ∈ B(H) be an invertible normal operator and let {ej} be an or-
thonormal basis for H. Let {Qk} and {Rk} be a Q- and R-sequences of A with respect
to {ej}. Suppose also that σ(A) = ω ∪ Ω such that ω ∩ Ω = ∅ and ω = {λi}Ni=1, where
the λis are isolated eigenvalues with finite multiplicity satisfying |λ1| > . . . > |λN |. Sup-
pose further that sup{|θ| : θ ∈ Ω} < |λN |. Then there is a subset {êj}Mj=1 ⊂ {ej} such
that span{Qkêj} → span{q̂j} where q̂j is an eigenvector of A and M = dim(ranχω(A)).
Moreover, span{q̂j}Mj=1 = ranχω(A). Also, if ej /∈ {êj}Mj=1, then χω(A)Qkej → 0.

Remark 7.3.5. The previous theorem is a little pessimistic regarding convergence proper-
ties for the Infinite QR algorithm. The fact that one can only find a subset {êj}Mj=1 ⊂ {ej}
seems a little worrying since one immediately thinks that there may be examples where
êM = eK and K is extremely large. We have to admit that such examples may exists,
but they are rarely encountered in practice. In fact as we will see in Section 7.5.1 that
the Infinite QR algorithm performs surprisingly well. Also, the rather strict (and some-
what unpleasant) assumption of normality required in Theorem 7.3.4 seem not to have
any effect in practice. And from numerical examples (in Section 7.5.1) it seems that the
Infinite QR algorithm works very well on non-normal problems, which are known to be
numerically difficult (TE05). In fact that is where the algorithm really has it strength.
We thus conclude that there is much more to be investigated form a theoretical point of
view to justify the numerical results.

7.4 Implementing the Infinite QR algorithm

The previous sections have given a theoretical justification for why the infinite QR algo-
rithm may work, but we are faced with the possibly unpleasant problem, namely, how to
compute with infinite data structures on a computer. Fortunately there is a way to over-
come such a problem. The key is to impose some structural requirements on the infinite
matrix.

Definition 7.4.1. Let T be an infinite matrix acting boundedly on l2(N) with basis {ej}.
We say that T has k subdiagonals if 〈Tej , ei〉 = 0 when i > j + k.
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Theorem 7.4.2. Let A ∈ B(l2(N)) have k subdiagonals and let An be the n-th element in
the QR iteration, e.g. An = Qn · · ·Q1AQ

∗
1 · · ·Q∗n, where

Qj = SOT-lim
l→∞

U jl · · ·U
j
1

and U jl is a Householder transformation defined as in (7.2.3). Then An has k subdiagonals.

Proof. Straightforward.

Theorem 7.4.3. Let A ∈ B(l2(N)) have k subdiagonals and let An be the n-th element in
the QR iteration, i.e. An = Qn · · ·Q1AQ

∗
1 · · ·Q∗n, where

Qj = SOT-lim
l→∞

U jl · · ·U
j
1

and U jl is a Householder transformation defined as in (7.2.3). Let Pm be the projection
onto span{e1, . . . , em}. Then

PmAnPm =PmUnm · · ·Un1 Un−1
k+m · · ·U

n−1
1 · · ·U2

(n−2)k+m · · ·U
2
1U

1
(n−1)k+m · · ·U

1
1A

× U1
1 · · ·U1

(n−1)k+mU
2
1 · · ·U2

(n−2)k+m · · ·U
n−1
1 · · ·Un−1

k+mU
n
1 · · ·UnmPm.

(7.4.1)

and

PmAnPm = PmU
n
m · · ·Un1 Un−1

k+m · · ·U
n−1
1 · · ·U2

(n−2)k+m · · ·U
2
1U

1
(n−1)k+m · · ·U

1
1

×Pnk+mAPnk+mU1
1 · · ·U1

(n−1)k+mU
2
1 · · ·U2

(n−2)k+m · · ·U
n−1
1 · · ·Un−1

k+mU
n
1 · · ·UnmPm.

(7.4.2)

Proof. Let {eij} be the basis of P⊥i H such that eij = ej+i. Note that, by the assumption
that A has k subdiagonals, it follows that each U jl is of the form

U jl = Il,1 ⊕
(
Il,2 −

2
‖ξ‖2

ξ ⊗ ξ̄

)
ξ ∈ P⊥l−1H,

where 〈ξ, elj〉 = 0 for j > k and Il,1 is the identity on Pl−1H and Il,2 is the identity on
P⊥l−1H. For l = 1 then I0,1 = P0 = 0. This observation yields the following, namely,

PrU
j
l = U jl Pr, r ≥ l + k,

PrU
j
m = Pr, m > r.

(7.4.3)

First note that

PmAnPm = PmP(n−1)k+m · · ·Pk+mPmQn · · ·Q1AQ
∗
1 · · ·Q∗nPmPk+m · · ·P(n−1)k+mPm

and, since multiplication is strongly continuous on bounded sets and by (7.4.3) then

PmAnPm = SOT-liml PmP(n−1)k+m · · ·Pk+mPmUnl · · ·Un1 Qn−1 · · ·Q1A

×Q∗1 · · ·Q∗n−1(SOT-liml U
n
1 · · ·Unl P(n−1)k+m · · ·Pk+mPm)

= PmU
n
m · · ·Un1 P(n−1)k+m · · ·Pk+mQn−1 · · ·Q1A

×Q∗1 · · ·Q∗n−1Pk+m · · ·P(n−1)k+mU
n
1 · · ·UnmPm.

(7.4.4)
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This type or reasoning may, of course, be repeated and, thus, by using (7.4.4), we obtain

PmAnPm

= PmU
n
m · · ·Un1 (SOT-limlP(n−1)k+m · · ·Pk+mUn−1

l · · ·Un−1
1 )Qn−2 · · ·Q1A

×Q∗1 · · ·Q∗n−2(SOT-liml U
n−1
1 · · ·Un−1

l Pk+m · · ·P(n−1)k+m)Un1 · · ·UnmPm
= PmU

n
m · · ·Un1 Pk+mUn−1

k+m · · ·U
n−1
1 P(n−1)k+m · · ·P2k+mQn−3 · · ·Q1A

×Q∗1 · · ·Q∗n−3P2k+m · · ·P(n−1)k+mU
n−1
1 · · ·Un−1

k+mPk+mU
n
1 · · ·UnmPm

= PmU
n
m · · ·Un1 Un−1

k+m · · ·U
n−1
1 P(n−1)k+m · · ·P2k+mQn−3 · · ·Q1A

×Q∗1 · · ·Q∗n−3P2k+m · · ·P(n−1)k+mU
n−1
1 · · ·Un−1

k+mU
n
1 · · ·UnmPm.

Repeating the same ideas n− 3 more times eventually leads to

PmU
n
m · · ·Un1 Un−1

k+m · · ·U
n−1
1 P(n−1)k+m · · ·P2k+mQn−3 · · ·Q1A

×Q∗1 · · ·Q∗n−3P2k+m · · ·P(n−1)k+mU
n−1
1 · · ·Un−1

k+mU
n
1 · · ·UnmPm

= PmU
n
m · · ·Un1 Un−1

k+m · · ·U
n−1
k+m · · ·U

2
(n−2)k+m · · ·U

2
1U

1
(n−1)k+m · · ·U

1
1A

× U1
1 · · ·U1

(n−1)k+mU
2
1 · · ·U2

(n−2)k+m · · ·U
n−1
1 · · ·Un−1

k+mU
n
1 · · ·UnmPm,

and this yields (7.4.1). Now, (7.4.2) follows from (7.4.1) and (7.4.3).

Thus, if the infinite matrix A has k subdiagonals, this result allows us to actually
implement the infinite QR algorithm because each U jl only affects finitely many columns
or rows of A if multiplied either on the left or the right. In computer science it is often
referred to as “Lazy evaluation” when one computes with infinite data structures, but
defers the use of the information until needed, and hence solves the problem of infinite
storage. The author is indebted to Nick Trefethen for pointing out this connection to the
Infinite QR algorithm. A simple implementation is displayed in Algorithm 7.4.1.

Algorithm 7.4.1.
% The Infinite_QR(A,n,k,m) takes a section P_{nk+m}AP_{nk+m}

% of an infinite matrix A with k subdiagonals, performs n iterations

% of the infinite dimensional QR algorithm and returns

% J = P_mQ_nAQ*_nP_m.

function J = Infinite_QR(A,n,k,m)

d = size(A,2);

for j=1:n

A = Inf_QR(A,d-j*k,k); % The output in each loop is actually

end % U_(d-j*k)...U_1A_(j-1)U_1...U_(d-j*k)

J = A(1:m,1:m); % if A_j is the j-th term in the QR iteration.

Algorithm 7.4.2.
% Inf_QR(A,n,k) takes a matrix A with k subdiagonals and performs

% multiplication by n Householder transformation from the left and

% right, i.e. B = U_n...U_1AU_1...U_n.

function B = Inf_QR(A,n,k)

B = A; d = size(A,1);

for j = 1:n

u = House(A(j:j+k,j));
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A(j:j+k,j:d) = A(j:j+k,j:d) - 2*u*(u’*A(j:j+k,j:d));

B(j:j+k,1:d) = B(j:j+k,1:d) - 2*u*(u’*B(j:j+k,1:d));

B(1:d,j:j+k) = B(1:d,j:j+k) - 2*(B(1:d,j:j+k)*u)*u’;

end

Algorithm 7.4.3.
% House(x) takes a vector x and creates a vector u

% such that (I + u*u’)x = ce_1 where c is some complex

% number (depending on x) and e_1 = [1,0...].

function u = House(x)

v = x;

if v(1) == 0

v(1) = v(1) + norm(v); %This is the classical way

else %of creating Householder reflections

v(1) = x(1) + sign(x(1))*norm(x); %as in finite dimensions.

end

u = v/norm(v);

7.5 Testing the Infinite QR algorithm

In this section we will see that the QR algorithm performs much better than what we have
been able to prove in Theorem 7.3.4. In fact, the normality required in Theorem 7.3.4
is not needed at all to get satisfactory results. This section is meant to visualize some
of the rather unexpected behavior of the Infinite QR algorithm and to give numerical
support to suggest results that we have not proved rigorously. Throughout this section
Qn will denote the n-th “Q” matrix in the iteration i.e. if A is the initial matrix then
An = QnAQ

∗
n represents the n-th element in the iteration.

To illustrate the infinite QR algorithm we have tested it on an infinite matrix T of the
form T = I +C, where C is compact. This should give plenty of isolated eigenvalues and
is therefore a good testing candidate. More examples will follow in the next sections. Now
T is of the following form

T =



1 t12 0 0 0 0 . . .
0 1 t23 0 0 0 . . .
t31 0 1 t34 0 0 . . .
0 t42 0 1 t45 0 . . .
0 0 t53 0 1 t56 . . .
0 0 0 t64 0 1 . . .
...

...
...

...
...

...
. . .


,

where

t2j−1,2j = i− (1 + 2i)/j, t2j,2j+1 = (13− i)/
√
j, t2j+1,2j−1 = −1, t2j+2,2j = 1/j.

The plots shown in Figure 7.4 shows the elements of

PmQnTQ
∗
ndPmH, m = 30, n = 1500,

that are larger than 10−15 and 10−5.
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Figure 7.4: The figure shows the elements of PmQnTQ∗ndPmH (m = 30, n = 1500) that
are greater than 10−15 and 10−5, respectively.

7.5.1 The Magical Result

We will in this section show some rather spectacular and so far mathematically unex-
plained features of the Infinite QR algorithm. So far the theoretical results cover only
normal operators, but in practice the Infinite QR algorithm works very well for non-
normal problems. Now, if an infinite matrix T has m eigenvalues with multiplicity one
then, under some extra assumptions, one would expect that the eigenvalues will appear
on the diagonal of

PmQkTQ
∗
kdPmH

as k →∞ i.e. we would expect that

σ(PmQkTQ∗kdPmH) −→ σd(T ), k →∞.

But what happens with
σ(PnQkTQ∗kdPnH)

when n > m as k becomes large? That is the theme of the next examples. Let us go
back to one of the examples in Section 7.1, where we computed the spectrum of the finite
section PmAdPmH of the infinite matrix A, where

A =



2.5 + 0.5i 0 0 0 0 0 0 . . .
1 3− 0.5i 0 0 0 0 0 . . .
0 1 1.7 0.05 0 0 0 . . .
0 0 0.05 a4 0 0 0 . . .
0 0 0 0 a5 0 0 . . .
0 0 0 0 1 a6 0 . . .
0 0 0 0 0 1 a7 . . .
...

...
...

...
...

...
...

. . .


.

Recall that the problem with the finite section method in that case was that we do not
know anything about We(A) and hence could not deduce if the eigenvalues produced by
the finite section method were correct. Also, recall the slightly misleading circle that
appeared that had nothing to do with the boundary of the essential spectrum (see Figure
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Figure 7.5: The first figure shows σ(PmAdPmH) and the second figure shows
σ(PmQnAQ∗ndPmH) (the fat line, the thin line is just to visualize the circle) for m = 500
and n = 1500.

7.5). We have plotted

σ(PmAdPmH), σ(PmQnAQ∗ndPmH), m = 500, n = 1500,

in Figure 7.5 to see the difference. Note that σ(PmQnAQ∗ndPmH) actually reveals part
of the correct boundary of the essential spectrum. We have also tested the Infinite QR
algorithm on the perturbed version of A from Section 7.1, namely Ã, where

Ã =



2.5 + 0.5i 0 0 0 0 0 0 . . .
1 3− 0.5i 0 0 0 0 0 . . .
0 1 1.7 0.05 0 0 0 . . .
0 0 0.05 a4 0 0 0 . . .
0 0 0 5× 105 a5 0 0 . . .
0 0 0 0 1 a6 0 . . .
0 0 0 0 0 1 a7 . . .
...

...
...

...
...

...
...

. . .


.

Now, σess(A) = σess(Ã), but due to the fact that Ã is highly non-normal it is impossible
(at least with the εmach in MATLAB) to use the pseudospectral techniques in Chapter 6
to compute the spectrum of Ã. However, the infinite QR algorithm seems to be able to
pick up parts of the boundary of the essential spectrum, as visualized in the first picture of
Figure 7.6. Also, as it seems that the Infinite QR algorithm is able to pick up the extreme
part of the spectrum, we were tempted to see what would happen when the Infinite QR
algorithm is applied to a shift of Ã? In particular, one would expect that

σ(PmQn(Ã− 2I)Q∗ndPmH)

should contain the left part of the circle for appropriately chosen m and n. This is
visualized in Figure 7.6.

Finally, We have tested the Infinite QR algorithm on the infinite matrices from Section
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Figure 7.6: The first figure shows σ(PmQnÃQ∗ndPmH) (the fat dots) and the second figure
shows σ(PmQn(Ã− 2I)Q∗ndPmH), for n = 1500, m = 500.

7.1, namely

T =



0 0 0 0 0 0 . . .
1 0 a23 a24 0 0 . . .
0 1 0 0 0 0 . . .
0 0 1 0 a45 a46 . . .
0 0 0 1 0 0 . . .
0 0 0 0 1 0 . . .
...

...
...

...
...

...
. . .


,

{
a2j,2j+2 = −i j is prime
a2j,2j+2 = 0 otherwise,

a2j,j+1 = 1,

and

T̃ =



2.5 + 0.5i 0 0 0 0 0 0 . . .
1 3− 0.5i 0 0 0 0 0 . . .
0 1 1.7 0.05 0 0 0 . . .
0 0 0.05 1 0 0 0 . . .
0 0 0 1 1 a56 0 . . .
0 0 0 0 1 1 0 . . .
0 0 0 0 0 1 1 . . .
...

...
...

...
...

...
...

. . .


, a2j−1,2j = i, j ≥ 3.

We have used techniques from Chapter 6 to compute the spectra of A and Ã and
also run the Infinite QR algorithm with 1500 iteration. In both cases we see the same
phenomenon, namely, that if one takes a finite section after running the Infinite QR
algorithm, then a part of the boundary of the essential spectrum also occurs. This is
visualized in Figure 7.7. Note that the part of the boundary that is captured is the
extreme part (meaning the points with largest modulus). It seems that after running the
Infinite QR algorithm the spectral information from the largest isolated eigenvalues and
the largest approximate point spectrum gets “squeeced up”. Although we can not explain
this phenomenon, it is not completely counter intuitive, as this is what normally happens
in finite dimensions.

Remark 7.5.1. As the numerical examples suggest, the Infinite QR algorithm seems to be
able to detect extreme parts of the boundary of the essential spectrum. This immediately
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Figure 7.7: The left figures show σ(PmT dPmH)(top) and σ(PmT̃ dPmH) (bottom) for m =
500. The right figures (the dark plot) shows σ(T ) (top), σ(T̃ ) (bottom) and (the light
plot) σ(PmQnT̃Q∗ndPmH) (top), σ(PmQnT̃Q∗ndPmH) (bottom) for n = 900 and m = 600.

leads to the question of shifting as done in the computation visualized in Figure 7.6. This
approach is under current investigation and is also the theme of Chapter 8.





Chapter 8

The Hessenberg Reduction

After having established the Infinite QR algorithm, the first question that comes to mind
is how do we improve the algorithm, and, in particular, how can we speed it up? In finite
dimensions there are two approaches that are very common, namely, Hessenberg reduction
and shifting techniques. In fact the combination of these are actually the core in the
MATLAB command eig. We will in this chapter explore some of these ideas and see how
it may be possible to generalize these finite-dimensional techniques to infinite dimensions.
As we will see, the Hessenberg reduction is a great success and cuts the computational costs
dramatically. Unfortunately, shifting strategies may not give us any advantage regarding
speed. There is a natural reason why this approach cannot work in infinite dimension, and
this will be explained later. However, shifting strategies represent a great improvement on
the QR algorithm, but for different reasons than speed. In particular, using shifts we can
actually compute a larger part of the spectrum. There is no analogy to this phenomenon
in finite dimensions, and it must be admitted that the quite satisfactory results using shifts
in the infinite-dimensional case is quite surprising and not yet mathematically justified.

8.1 Constructing the Hessenberg Reduction

In finite-dimensional matrix analysis, a matrix is said to be upper Hessenberg if it has
only one nonzero leading subdiagonal. In infinite dimensions we adopt the the same idea
and hence consider the following definition.

Definition 8.1.1. Let A ∈ B(l2(N)). Suppose that A satisfies

〈Aej , ei〉 = 0, i > j + 1,

then A is said to be in upper Hessenberg form. If A ∈ B(l2(N)) and A∗ is in upper
Hessenberg form, then A is said to be in lower Hessenberg form.

Throughout the chapter we will use a slightly incorrect terminology and just say that
a matrix is upper or lower Hessenberg.

When faced with the finite dimensional eigenvalue problem, one normally reduces the
matrix to upper Hessenberg form and then applies the QR algorithm. This is because the
vast amount of zeros in the Hessenberg form simplifies the QR algorithm and speeds it

119
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up. The desire to speed up the Infinite QR algorithm is the motivation for introducing
the Hessenberg reduction in infinite dimensions.

In finite dimensions, a matrix is always unitary equivalent to another matrix that is
upper Hessenberg, and the procedure to find this matrix is often referred to as the Hessen-
berg reduction. It turns out that the finite dimensional technique can be modified slightly
to fit into the infinite dimensional framework. In fact, the Hessenberg reduction technique
in infinite dimensions is quite similar to the finite dimensional approach. One needs to
multiply the infinite matrix by unitary operators on each side to introduce zeros under
the first subdiagonal. As usual these unitary operators are, as in the finite dimensional
setting, Householder transformations, which are chosen in the usual way. The procedure
can be visualized as follows.

U1



× × × × × × × . . .
× × × × × × × . . .
× × × × × × × . . .
0 × × × × × × . . .
0 0 × × × × × . . .
0 0 0 × × × × . . .
0 0 0 0 × × × . . .
...

...
...

...
...

...
...

. . .


U1 =



× × × × × × × . . .
× × × × × × × . . .
0 × × × × × × . . .
0 × × × × × × . . .
0 × × × × × × . . .
0 0 0 × × × × . . .
0 0 0 0 × × × . . .
...

...
...

...
...

...
...

. . .



U2



× × × × × × × . . .
× × × × × × × . . .
0 × × × × × × . . .
0 × × × × × × . . .
0 × × × × × × . . .
0 0 0 × × × × . . .
0 0 0 0 × × × . . .
...

...
...

...
...

...
...

. . .


U2 =



× × × × × × × . . .
× × × × × × × . . .
0 × × × × × × . . .
0 0 × × × × × . . .
0 0 × × × × × . . .
0 0 × × × × × . . .
0 0 × × × × × . . .
...

...
...

...
...

...
...

. . .



U3



× × × × × × × . . .
× × × × × × × . . .
0 × × × × × × . . .
0 0 × × × × × . . .
0 0 × × × × × . . .
0 0 × × × × × . . .
0 0 × × × × × . . .
...

...
...

...
...

...
...

. . .


U3 =



× × × × × × × . . .
× × × × × × × . . .
0 × × × × × × . . .
0 0 × × × × × . . .
0 0 0 × × × × . . .
0 0 0 × × × × . . .
0 0 0 × × × × . . .
...

...
...

...
...

...
...

. . .

.


Now, in finite dimensions (say, the dimension of the Hilbert space is n) this procedure
terminates and one is left with a matrix H = Un−2 · · ·U1AU1 · · ·Un−2 in an upper Hes-
senberg form, where A ∈ Cn×n. In infinite dimensions we are faced with the problem
that the procedure described above will not terminate. In particular, (assume now that
A ∈ B(l2(N))) we may construct

Hn = Un · · ·U1AU1 · · ·Un, n ∈ N, (8.1.1)
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as suggested above, but Hn will never be upper Hessenberg. Thus, the only way to
overcome this problem is to interpret the construction (8.1.1) as a sequence leading to a
limit, i.e. we are searching for an element H ∈ B(l2(N)) which is upper Hessenberg and
satisfies

H = lim
n→∞

Hn

in some appropriate topology on B(l2(N)). In particular, we will obtain H as the strong
limit of a sequence {V ∗

nAVn} where Vn = U1 · · ·Un is a unitary operator and Uj is a House-
holder transformation. The procedure is as follows: (Note that the construction is very
similar to what we did in Chapter 7 regarding the construction of the QR decomposition,
however, as the reader may notice, there are some fundamental differences.) Let Pn be
the projection onto sp{e1, . . . , en}. Suppose that we have the n elements in the sequence
and that the n-th element is an operator

Hn = V ∗
nAVn

that with respect to H = PnH ⊕ P⊥n H (here we use H = l2(N) to simplify notation) has
the form

Hn =
(
H̃n Bn
Cn Nn

)
, H̃n = PnHnPn, Bn = PnHnP

⊥
n , Cn = P⊥n HnPn,

where Nn = P⊥n HnP
⊥
n , H̃n is upper Hessenberg and Cnej = 0 for j < n. Let ζ = Cnen.

Choose ξ ∈ P⊥n H such that the Householder reflection S ∈ B(P⊥n H) defined by

S = I − 2
‖ξ‖2

ξ ⊗ ξ̄, and Un = Pn ⊕ S, (8.1.2)

gives Sζ = {ζ̃1, 0, 0, . . .}, and let Hn+1 = UnHnUn. Hence,

Hn+1 = UnHnUn =
(
H̃n BnS
SCn SNnS

)
=

(
H̃n+1 Bn+1

Cn+1 Nn+1

)
, (8.1.3)

where the last matrix is understood to be with respect to the decomposition

H = Pn+1H⊕ P⊥n+1H.

Note that, by the choice of S, it is true that H̃n+1 is upper Hessenberg and Cn+1ej = 0 for
j < n+1. Defining H1 = A and letting Vn = U1 · · ·Un we have completed the construction
of the sequence {V ∗

nAVn}.
Note that Hn = V ∗

nAVn is bounded, since Vn is unitary (since Uj is unitary). And
since a closed ball in B(H) is weakly sequentially compact, there is an H ∈ B(H) and a
subsequence {Hnk

} such that

Hnk

WOT−→ H, k →∞.

But by (8.1.3) it is clear that for any j we have Hnej = Hmej for sufficiently large m and
n. It follows that

SOT-lim
n→∞

Hn = H.
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Also, by (8.1.3), H is upper Hessenberg. By similar reasoning, using the previous com-
pactness argument (since Vn is bounded) and the fact that, by (8.1.2), Vnej = Vmej for
any j and m and n sufficiently large, we deduce that there exists a V ∈ B(H) such that

SOT-lim
n→∞

Vn = V, WOT-lim
n→∞

V ∗
n = V ∗. (8.1.4)

Note that in finite dimensions then V would always be unitary. This is not the case in
infinite dimensions, and this is probably the most important difference when going from
finite to infinite dimensions. As we will see later, V is an isometry, a concept we recall in
the following definition.

Definition 8.1.2. Let T ∈ B(H). If T satisfies

‖Tξ‖ = ‖ξ‖, ξ ∈ H,

then T is said to be isometric (or an isometry).

In finite dimensions, an isometry is also unitary. This is not the case in infinite dimen-
sions, however, we have the following. If T ∈ B(H) is an isomtery then

T ∗T = I, TT ∗ = P,

where P is the orthogonal projection onto ran(T ). (Note that the range of an isometry is
always closed.)

Now returning to the Hessenberg reduction in infinite dimensions, let V be as in
(8.1.4). Since V is the strong limit of a sequence of unitary operators, it follows that V is
an isometry. We claim that

V ∗AV = H.

Indeed, since multiplication is jointly continuous in the strong operator topology on
bounded sets we have AV = V H and since V is an isometry the assertion follows. Note
also that the range of V is invariant under A. In particular we have

PAP = AP, P = V V ∗,

and this is easily seen by a direct computation as follows,

PAP = V V ∗AV V ∗ = V HV ∗ = AP.

The previous reasonings lead to the following theorem.

Theorem 8.1.3. Let A be a bounded operator on a separable Hilbert space H and let {ej}
be an orthonormal basis for H. Then there exists an isometry V such that V ∗AV = H
where H is upper Hessenberg with respect to {ej}. Moreover V = SOT-lim

n→∞
Vn, where

Vn = U1 · · ·Un and Uj is a Householder transformation. Also, the projection P = V V ∗

satisfies PAP = AP.
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8.2 Implementing the Hessenberg Reduction

As we have pointed out before, there is a crucial difference between the result in Theorem
8.1.3 and the finite dimensional counterpart, namely, that in Theorem 8.1.3, V is not
unitary but rather an isometry. This fact has dramatical consequences from a spectral
theoretical perspective. Now, the fact that for P = V V ∗ we have PAP = AP means that
if we compute σ(H) we actually get σ(AdPl2(N)), and, of course, we may have that

σ(A) 6= σ(AdPl2(N)).

However, the Infinite QR algorithm is designed to get information about the boundary of
the spectrum, and we always have

∂σ(AdPl2(N)) ⊂ ∂σ(A). (8.2.1)

But the fact that the inclusion in (8.2.1) may be proper is actually not going to harm us
at all. The idea is the following: Recall from Theorem 7.4.3 that if A ∈ B(l2(N)) and An
is the n-th output of the Infinite QR algorithm then

PmAnPm = PmU
n
m · · ·Un1 · · ·U2

(n−2)k+m · · ·U
2
1U

1
(n−1)k+m · · ·U

1
1

× Pnk+mAPnk+mU
1
1 · · ·U1

(n−1)k+mU
2
1 · · ·U2

(n−2)k+m · · ·U
n
1 · · ·UnmPm.

(8.2.2)

Thus, one uses only information from the section

Pnk+mAPnk+m

of A to compute PmAnPm. The idea is therefore to transform A into a new matrix H̃ (via
unitary transformations) such that Pnk+mH̃Pnk+m is upper Hessenberg. Then H̃ and A
have the same spectrum and we may replace A with H̃ in (8.2.2). Now the construction
of H̃ can be done by the construction suggested in the argument leading up to Theorem
8.1.3. In particular, if

Hj = Uj · · ·U1AU1 · · ·Uj ,

is constructed as in (8.1.1) and (8.1.3), then PmHjPm is upper Hessenberg when j ≥ m.
Moreover, we have the following theorem.

Theorem 8.2.1. Let A ∈ B(l2(N)) have k subdiagonals and let An be the n-th element in
the Hessenbeg reduction, i.e.

Hn = Un · · ·U1AU1 · · ·Un,

where Uj is a Householder transformation defined as in (8.1.2). Let Pm be the projection
onto span{e1, . . . , em}. If m > nk + 1 then

PmHnPm = Un · · ·U1PmAPmU1 · · ·Un, (8.2.3)

and
PnHnPn = PnUn · · ·U1Pnk+2APnk+2U1 · · ·UnPn. (8.2.4)
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Proof. For 1 ≤ j ≤ n, let
Hj = Uj · · ·U1AU1 · · ·Uj ,

It is easy to see that Hj has k + j(k − 1) subdiagonals. Thus, each Uj is of the form

Uj = Ij,1 ⊕
(
Ij,2 −

2
‖ξ‖2

ξ ⊗ ξ̄

)
ξ ∈ P⊥j H,

where Ij,1 is the identity on PjH, Ij,2 is the identity on P⊥j H and

〈ξ, ejl 〉 = 0, l > jk + 1,

where {ejl }l∈N is the natural basis for P⊥j H inherited from the basis {ek}, and this yields
(8.2.3). Note that (8.2.4) follows immediately from (8.2.3).

Thus, if A has only k subdiagonals, we only need information from the finite section
Pnk+2APnk+2 of A in order to compute the section PnHnPn ofHn. The following algorithm
displays an easy implementation of the result in the previous theorem. Note that this
algorithm is almost like the finite dimensional case except that the output is a finite
section of the infinite Hessenberg reduction, rather than a Hessenberg reduction of a finite
section of the infinite matrix.

Algorithm 8.2.1. %Computes a section of the Hessenberg reduction of an

%infinite matrix with number of subdiagonals = k.

function J = Inf_Hessen(A,k)

B = A;

d = size(A,1);

m = (d-1)/k - 1;

for j = 1:m

u = House(B(j+1:j*k + 1,j));

B(j+1:j*k + 1,1:d) = B(j+1:j*k + 1,1:d) - 2*u*(u’*B(j+1:j*k + 1,1:d));

B(1:d,j+1:j*k + 1) = B(1:d,j+1:j*k + 1) - 2*(B(1:d,j+1:j*k + 1)*u)*u’;

end

J = B(1:m,1:m);

Algorithm 8.2.2. % House(x) takes a vector x and creates a vector u

% such that (I + u*u’)x = ce_1 where c is some complex

% number (depending on x) and e_1 = [1,0...].

function u = House(x)

v = x;

if v(1) == 0

v(1) = v(1) + norm(v); %This is the classical way

else %of creating Householder reflections

v(1) = x(1) + sign(x(1))*norm(x); %as in finite dimensions.

end

u = v/norm(v);

Remark 8.2.2. We would like to emphasize that the input of Algorithm 8.2.1 is not
an infinite matrix, but rather a section of an infinite matrix, where the choice of such a
section is justified by Theorem 8.2.1, e.g. if the size of the section PlAPl of the infinite
matrix A (with k-sub diagonals) is l = nk + 2, and PlAPl is put into Algorithm 8.2.1,
then the output of Algorithm 8.2.1 is an n-by-n section PnHnPn of the n-th term Hn of
the Hessenberg reduction of A.
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Figure 8.1: The first figure shows σ(A) whereas the second and the third shows the output
of the Infinite QR algorithm without and with the Hessenberg reduction (the fat dots),
respectively. The thin line is the image of the symbol from (8.3.1).

8.3 Numerical Examples

Throughout this section with numerical examples we will, if A ∈ B(l2(N)), let

An = QnAQ
∗
n, Hn = Un · · ·U1AU1 · · ·Un

denote the n-th iteration in the Infinite QR algorithm and the n-th term in the Hessenberg
reduction, described in (8.1.2), respectively. Also, Pm will as usual always denote the
projection onto span{e1, . . . , em}.

8.3.1 Comparison

The purpose of these examples is to compare the classical Infinite QR algorithm without
Hessenberg reduction with the Infinite QR algorithm with Hessenberg reduction. Let

A =



0 2i −2i 2 0 0 . . .
0 0 2i −2i 2 0 . . .
5 0 0 2i −2i 2 . . .
8i 5 0 0 2i −2i . . .
0 8i 5 0 0 2i . . .
0 0 8i 5 0 0 . . .
...

...
...

...
...

...
. . .


.

Now, A is a Toeplitz operator with symbol

f(z) = 8iz−3 + 5z−2 + 2iz − 2iz2 + 2z3, (8.3.1)

and in this case the spectrum of A is well known and is visualized in the first picture of
Figure 8.1. In the second and third picture we have plotted (in fat dots)

σ(PmQnAQ∗ndPml2(N)), σ(PmQnHkQ
∗
ndPml2(N)),

respectively (where m = 120, n = 750, k = 760), together with the image (the thin line)
of the symbol f . Note that up to the resolution of the picture the output is equivalent,
however, the computational cost of the third picture is roughly half the computational
cost (in CPU-time) of the second picture.
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Figure 8.2: The first figure shows σ(B) whereas the second and the third shows the output
of the Infinite QR algorithm without and with the Hessenberg reduction (the fat dots),
respectively. The thin line is the image of the symbol from (8.3.2).

Let

B =



0 2i −2i 2 0 0 . . .
0 0 2i −2i 2 0 . . .
5 0 0 2i −2i 2 . . .
2i 5 0 0 2i −2i . . .
0 2i 5 0 0 2i . . .
0 0 2i 5 0 0 . . .
...

...
...

...
...

...
. . .


,

Now, B is also a Toeplitz operator and has symbol

g(z) = 2iz−3 + 5z−2 + 2iz − 2iz2 + 2z3. (8.3.2)

Figure 8.2 shows σ(B) (first picture) and

σ(PmQnBQ∗ndPml2(N)), σ(PmQnHkQ
∗
ndPml2(N)),

respectively (where Hk = Uk · · ·U1BU1 · · ·Uk m = 120, n = 750, k = 880), together with
the image of the symbol of B (thin line). Note that in this case the Infinite QR algorithm
with the Hessenberg reduction performs slightly better than the Infinite QR algorithm
without the Hessenberg reduction.

8.3.2 Shifting Strategies

A common technique to speed up the QR algorithm in finite dimensions is to use shifts of
the matrix as the algorithms proceed. The idea is roughly as follows. If one has a guess
of a possible eigenvalue λ of the matrix A then one may use the QR algorithm on A− λI
instead. The reason is that, in general when using the QR algorithm, the eigenvalues with
the largest and smallest modulus will need the least amount of iterations to get the desired
accuracy. One may say that one gets faster convergence to the largest and smallest (in
modulus) eigenvalues. Since the smallest eigenvalue of A− λI should be close to zero (if
λ was a good guess), by the heuristic argument above, it may be more efficient (in order
to get the correct λ̃ for which λ was an approximation to) to use the QR algorithm on
A− λI rather than A. Usually, the shift is updated as the algorithm proceeds.

A natural question to ask is whether this approach can be used in the infinite-dimensional
case in order to speed up the convergence. Unfortunately, the answer is no. In the
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infinite-dimensional case it is only the “largest” (in modulus) part of the spectrum that is
dominating and not the smallest. However, one may use shifting strategies in the infinite-
dimensional case, not in order to increase efficiency, but in order to get more spectral
information from the operator.

The convergence of the Infinite QR algorithm is still a mystery. However, as the
numerical results suggest, one is able to capture the largest (in modulus) part of the
spectrum of the operator (the word “largest” here is used heuristically and due to the
lack of theoretical support we are forced to use vague vocabulary, however, we believe
the reader will understand the outline of the ideas from the examples) Now, of course, by
shifting and rotating the operator one shifts and rotates the spectrum as well. Hence, in
this way one should be able to capture other parts of the spectrum with the Infinite QR
algorithm. This is best visualized by an example.

Let

A =



3.5 0 0 0 0 0 . . .
−2 −3.5 0 0 0 0 . . .
0.5i −2 4i 0 0 0 . . .
1 0.5i −2 −4i 0 0 . . .
0 1 0.5i −2 0 0 . . .
0 0 1 0.5i −2 0 . . .
...

...
...

...
...

...
. . .


.

Then A is a compact perturbation of a Toeplitz operator with symbol

f(z) = z−3 + 0.5z−2 − 2z−1, (8.3.3)

and the spectrum of A is visualized in Figure 8.3. If one runs the Infinite QR algorithm on
A one gets the second figure in Figure 8.3. Here we have plotted the output of the Infinite
QR algorithm with fat dots and the image of the circle under the symbol f as the fine line.
Note that the “largest” part of the spectrum (in modulus) corresponds to the lower part
of the spectrum and is picked up by the algorithm. It is clear from the picture (and the
heuristically exposition in the introduction to this section) that by shifting the operator
to the left, using the Infinite QR algorithm and then map the output back according to
the shifting, one could hope to get the left part of the spectrum. This is visualized in the
second picture in Figure 8.3, where we have kept the output from the first computation as
well. The next two pictures in Figure 8.3 are made by using the shifting strategy suggested
to the right (third picture) and upwards (fourth picture). In both cases the output from
the previous computation has been kept, i.e. Figure 8.3 shows the following sets

σ(A),
σ(PmQnAQ∗ndPml(N)),

σ(PmQnAQ∗ndPml(N)) ∪ {λ+ ω1 : λ ∈ σ(PmQn(A− ω1I)Q∗ndPml(N))},

σ(PmQnAQ∗ndPml(N)) ∪
2⋃
j=1

{λ+ ωj : λ ∈ σ(PmQn(A− ωjI)Q∗ndPml(N))},

σ(PmQnAQ∗ndPml(N)) ∪
3⋃
j=1

{λ+ ωj : λ ∈ σ(PmQn(A− ωjI)Q∗ndPml(N))},

(8.3.4)
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Figure 8.3: The figure shows the sets from (8.3.4) (the fat dots) together with the image
of the symbol (8.3.3)(thin line).

where ω1 = 5, ω2 = −5i and ω3 = −5. Also, m = 135 and n = 660.
The ideas in the previous example can be summarized in the following “Rotate and

Shift”-algorithm.

Algorithm 8.3.1. %Takes an infinite matrix A of upper Hessenberg form

%and computes

% spec(P_mQ_l(exp(k*i*2*pi/n)*A + distance*I)Q*_lP_m) - distance

%for k = 1,...,n, where m = section_size.

function V = Rotate(A,n,section_size,distance)

s = size(A,2);

for k=1:n

J = exp(k*i*2*pi/n)*A;

J = J + distance*eye(s);

B = Infinite_QR(J,s-section_size,1);

f = eig(B);

h = size(f,1);

f = f - distance*ones(h,1);

f = exp(-k*i*m)*f;

plot(f,’k*’);

hold on

end

Remark 8.3.1. We would like to emphasize that the input in Algorithm 8.3.1 is actually
not an infinite matrix, but a section of the matrix according to Theorem 7.4.3. In par-
ticular, if A ∈ B(l2(N)) is an infinite matrix and the section PsAPs is put into Algorithm
8.3.1 together with the variable section size = m, then the number of iterations used in
the Infinite QR algorithm in Algorithm 8.3.1 is equal to s−m.

Note that one of the great strengths of the Infinite QR algorithm is that it is robust
with respect to perturbations, and this is why the Infinite QR algorithm is an important
supplement to the methods introduced in Chapter 6. If we introduce a perturbation of A,
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Figure 8.4: The figure shows the sets from (8.3.4) with A replaced by Ã (the fat dots)
together with the image of the symbol (8.3.3)(thin line).

namely, the highly non-normal matrix

Ã =



3.5 0 0 0 0 0 . . .
108 −3.5 0 0 0 0 . . .
0.5i −2 4i 0 0 0 . . .
1 0.5i −2 −4i 0 0 . . .
0 1 0.5i −2 0 0 . . .
0 0 1 0.5i −2 0 . . .
...

...
...

...
...

...
. . .


,

the shifting strategy and the Infinite QR algorithm work surprisingly well. In Figure 8.4
we have repeated the numerical experiment visualized in Figure 8.3, but replaced A with
Ã.

8.3.3 Shifting Strategies and Hessenberg Reduction

It is obvious, from the previous examples, that the success of the rotate and shift technique
presented above will depend on the geometry of the spectrum of the operator one is
considering. A star shaped spectrum is obviously going to be hard (most likely impossible)
to detect whereas shapes close to a circle may be much easier. In other words, the closer
the the shape of the spectrum is to a convex set, the better.

Now, the problem with the rotate and shift strategy is that for each rotation one has
to run the Infinite QR algorithm again, and this is computationally expensive when the
infinite matrix has many non-zero subdiagonals. To combat this obstacle the idea is that
if A ∈ B(l2(N)) has more than one non-zero sub-diagonal, then one computes the semi
upper Hessenberg matrix

Hk = Uk · · ·U1AU1 · · ·Uk,

namely, the k-th term in the Hessenberg reduction, described in (8.1.2). This infinite
matrix has the same spectrum as A, but because PkHkPk is upper Hessenberg it is much
more suitable for computations. Hence, Hk is computed only once, and then the rotate
and shift technique is used on Hk rather than A. Obviously k has to be chosen according
to n where n denotes the number of iterations used in the Infinite QR algorithm. We will
explore the strategy explained above in the following examples.

In this example we will demonstrate the rotate and shift technique on an operator with
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Figure 8.5: The first figure shows σ(A), the second figure shows the output of the Infinite
QR algorithm, the third show the output of the Infinite QR algorithm together with
Hessenberg reduction and the shift and rotate techniqe.

a slightly more complicated shape of its spectrum. Let

A =



0 2i −2i 2 0 0 0 . . .
0 0 2i i 2 0 0 . . .
5 0 0 2i −2i 2 0 . . .
2i 5 0 0 2i i 2 . . .
0 2i 5 0 0 2i −2i . . .
0 0 2i 5 0 0 2i . . .
0 0 0 2i 5 0 0 . . .
...

...
...

...
...

...
...

. . .


.

In this case A is not a usual Toeplitz operator, however, the spectrum of A can be computed
using the methods in Chapter 6, and this is visualized in the first picture of Figure 8.5.
The second picture in Figure 8.5 shows

σ(PmQnAQ∗ndPml2(N)), m = 120, n = 950,

and the third picture shows the output of Algorithm 8.3.1 applied to

Hk = Uk · · ·U1AU1 · · ·Uk, k = 960,

with four rotations i.e. the following set is visualized

4⋃
j=1

{e−
2πi
4
jλ− ω : λ ∈ σ(PmQn(e

2πi
4
jHk + ωI)Q∗ndPml(N))},

where m = 120, ω = 7 and n = 950.
In the next example we use exactly the same strategy as in the previous example,

however we leave the “Toeplitz like”-type of operators and also recall how poorly the
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Figure 8.6: The first picture shows the output of the finite section method, the second
picture shows σ(B) (the dark plot) together with the output of the Infinite QR algorithm
applied to B (light plot) and the third picture shows the output of the rotate and shift
algorithm applied to B.

finite section may perform on non-self-adjoint problems. Let

B =



2.5 + 0.5i 0 0 0 0 0 0 . . .
1 3− 0.5i 0 0 0 0 0 . . .
0 1 1.7 0.05 0 0 0 . . .
0 0 0.05 1 0 0 0 . . .
0 0 0 1 1 a56 0 . . .
0 0 0 0 1 1 0 . . .
0 0 0 0 0 1 1 . . .
...

...
...

...
...

...
...

. . .


,

where a2j−1,2j = i for j ≥ 3. In the first picture of Figure 8.6 we have shown σ(PmBdPml2(N)),
wherem = 500, to recall the rather poor performance of the finite section method. The sec-
ond picture shows the spectrum of B (the dark color) together with σ((PmQnBQ∗ndPml2(N))
(light color), where m = 600, n = 900. The third picture shows the output of Algorithm
8.3.1 applied to

Hk = Uk · · ·U1BU1 · · ·Uk, k = 1400,

with four rotations i.e. the following set is visualized

4⋃
j=1

{e−
2πi
4
jλ− ω : λ ∈ σ(PmQn(e

2πi
4
jHk + ωI)Q∗ndPml(N))},

where m = 200, ω = 7 and n = 1400.
As we see from the numerical examples, the Infinite QR algorithm performs very well

on non-normal problems, and one is able to get large parts of the boundary of the essential
spectrum. If we should try to predict something about what we might expect to prove, a
guess would be that one should be able to recover

∂conv(σe(T )) ∩ σ(T ), T ∈ B(H)

with the Infinite QR algorithm, where T is assumed to have k subdiagonals with respect
to some basis and conv(σe(T )) denotes the convex hull of the essential spectrum.





Closing Remarks

The main result in this thesis is the development of methods that allow approximations
and computations of spectra and pseudospectra of a large class of operators, including the
whole B(H) and large parts of C(H). However, there are several important unanswered
questions related to both theory and applications.

Concluding Remarks on Theory

The main question that is left open is the following: What is the complexity index of the
spectrum when one allows operators from the whole C(H)? The first thing we need to
determine is whether or not it is greater than one. There is absolutely nothing that suggest
that it should be one, but we must not rule out the possibility. However, if it turns out
to be one, this would have a dramatic impact in applications. It would essentially mean
that, from a complexity point of view, it is just as easy to approximate the spectrum of
a finite dimensional matrix as it is to approximate the spectrum of an arbitrary closed
operator on a separable Hilbert space. This is slightly counter intuitive, however, this is
yet to be proved or disproved.

The previously suggested general problem is of course important, but with the estab-
lishment of the complexity index, the whole theory of classifying computational spectral
problems in terms of their complexity emerges. We have shown that the complexity index
for the spectrum, when considering self-adjoint operators, is less than or equal to three,
however, we believe strongly that it is strictly less than three.

The theoretical exposition of the QR algorithm in this thesis is probably just scratching
the surface. Note that the numerical examples suggest that much more than what we have
rigorously shown here is true. In our theoretical framework on the QR algorithm we only
consider normal operators. This is a natural extension of the work by Deift et al., however,
it is in the non-normal case that the QR algorithm really shows its strength, and thus
theoretical tools for proving convergence in this case are absolutely crucial.

Concluding Remarks on Applications

The main task left open regarding application is how to improve the algorithms, in partic-
ular, how to speed them up. As the reader may have observed, the algorithms suggested in
Part-II are (although robust) quite simple. One would therefore think that there is room
for vast improvements. Also, as the main goal for this thesis has been generality, special
cases have not been given priority. As we now have reliable general methods, it would be
important to take advantage of additional structure (typically other structural properties
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than self-adjointness). This has been done in the case of banded infinite matrices, but
what about particular types of operators in mathematical physics?

Some applications to Schrödinger and Dirac operators have been discussed, but only
implemented in the discrete case. It would therefore be interesting to see if the methods
suggested here could be used in non-hermitian quantum mechanics. The framework indi-
cated in this dissertation is based on computing spectra from the matrix elements rather
than from discretizations of differential operators. This means that one must find reliable
ways of computing the matrix elements. In the case of operators in quantum mechanics,
one must compute inner products of elements in L2(Rn), and hence, one should proba-
bly join forces with the numerical integration community in order to pursue this project
successfully.



Bibliography

[Arv91] William Arveson, Discretized CCR algebras, J. Operator Theory 26 (1991),
no. 2, 225–239. MR MR1225515 (94f:46069)

[Arv93a] , Improper filtrations for C∗-algebras: spectra of unilateral tridiagonal
operators, Acta Sci. Math. (Szeged) 57 (1993), no. 1-4, 11–24. MR MR1243265
(94i:46071)

[Arv93b] , Noncommutative spheres and numerical quantum mechanics, Opera-
tor algebras, mathematical physics, and low-dimensional topology (Istanbul,
1991), Res. Notes Math., vol. 5, A K Peters, Wellesley, MA, 1993, pp. 1–10.
MR MR1259055

[Arv94a] , C∗-algebras and numerical linear algebra, J. Funct. Anal. 122 (1994),
no. 2, 333–360. MR MR1276162 (95i:46083)

[Arv94b] , The role of C∗-algebras in infinite-dimensional numerical linear alge-
bra, C∗-algebras: 1943–1993 (San Antonio, TX, 1993), Contemp. Math., vol.
167, Amer. Math. Soc., Providence, RI, 1994, pp. 114–129. MR MR1292012
(95i:46084)
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