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Abstract—Compressed sensing (CS) is one of the great suc-
cesses of computational mathematics in the past decade. There
are a collection of tools which aim to mathematically describe
compressed sensing when the sampling pattern is taken in a
random or deterministic way. Unfortunately, there are many
practical applications where the well studied concepts of uniform
recovery and the Restricted Isometry Property (RIP) can be shown
to be insufficient explanations for the success of compressed
sensing. This occurs both when the sampling pattern is taken
using a deterministic or a non-deterministic method. We shall
study this phenomenon and explain why the RIP is absent, and
then propose an adaptation which we term ‘the RIP in levels’
which aims to solve the issues surrounding the RIP. The paper
ends by conjecturing that the RIP in levels could provide a
collection of results for deterministic sampling patterns.

I. INTRODUCTION

In sampling theory, a typical problem is to reduce the num-
ber of measurements required for the effective operation of a
scanning device. This can be expressed in formal mathematics
as solving an underdetermined system of linear equations.
More precisely, let x ∈ Cn be a vector and let M ∈ Cn×n be
a scanning device (e.g. a Magnetic Resonance Imaging (MRI)
scanner, a Computerized Tomography (CT) scanner etc.). We
are tasked with finding x from the values of y := PΩMx,
where PΩ is a projection map from {1, 2, . . . , n} onto the
sampling set Ω ⊆ {1, 2, . . . , n} so that (PΩy)i = yi if i ∈ Ω
and (PΩy)i = 0 if i /∈ Ω.

It is clear that, in general, it will be impossible to recover
x from such information unless Ω = {1, 2, . . . , n}. However,
if we know a priori that x can be represented in a sparse way
in a different basis {W1,W2, . . .Wn}, recovery may still be
possible. Indeed, we can then write y = PΩMBw where w
is a representation of x using the basis (Wi)

n
i=1 and B is the

change of basis matrix from (Wi)
n
i=1 to the standard basis

in Cn. The theory of compressed sensing [1]–[6] states that
under certain conditions which shall be discussed throughout
this paper, solutions to

minw′∈Cn‖w′‖1 such that y = PΩMBw′ (1)

will be very good or exact approximations to w. The focus
of this paper will be on structured sampling, which is needed
in most applications, and `1 minimization. This is, however,
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Fig. 1. The results of different subsampling patterns when compressed sensing
with the matrix DFTDWT−1 is performed. The same number of samples
(7.9%) were taken in both cases

entirely distinct from theories of model based compressed
sensing [7], which shall not be discussed further here.

A standard example that we shall use repeatedly is the
case where M is a discrete Fourier transform (DFT), B is
the inverse wavelet transform (henceforth denoted DWT−1)
and w is a collection of wavelet coefficients of an image x.
This Fourier-Wavelet example can be used to simulate an MRI
scanner, spectroscopy, electron microscopy and computerized
tomography among many others. If we are permitted to choose
Ω ourselves, then a strong choice of Ω with |Ω| � n is to
exploit so-called multi-level sampling. This is detailed in [8]
and an example is provided in Figure 1.
One of our main focuses is that of recovery with deterministic
sampling. In this case, we are given a fixed Ω and are then
tasked with mathematically describing the effectiveness of
solving (1). Of particular importance is the case where Ω is a
collection of radial lines (see Figure 2), and as before M , B
and w represent DFT, DWT−1 and the wavelet coefficients
of an image respectively. It will, however, be helpful to begin
by discussing non-deterministic sampling, i.e. where Ω is
permitted to be randomly chosen.

II. UNIFORM RECOVERY IN COMPRESSED SENSING

With a random choice of Ω, there are a number of possible
ways of mathematically quantifying recovery. Firstly, one can978-1-4673-7353-1/15/$31.00 c©2015 IEEE
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Fig. 2. Various radial line sampling patterns on a 2048 × 2048 pixel grid,
with 44, 128 and 256 radial lines respectively.

randomly choose Ω and then ask whether it is possible to
recover all s-sparse w (i.e. the collection of w which have at
most s non-zero entries) exactly. This type of recovery is called
uniform recovery. Asking whether or not uniform recovery is
possible leads to the development of the Restricted Isometry
Property (RIP) [9].

A. Uniform recovery and the RIP

More precisely, a matrix U ∈ Cm×n is said to satisfy the
RIP of order s with constant δs if

(1− δs)‖w′‖22 ≤ ‖Uw′‖22 ≤ (1 + δs)‖w′‖22
for all s-sparse w′ ∈ Cn. If the matrix PΩMB satisfies the RIP
of order s with a sufficiently small constant δs (e.g. δs < 1

3
as in [10]) then solutions w1 to (1) satisfy

‖w1 − w‖1 ≤ Cσs(w)1 (2)

‖w1 − w‖2 ≤
C√
s
σs(w)1 (3)

where
σs(w)1 := min

w′ is s-sparse
‖w − w′‖1

and we say that the RIP holds.
All that remains is to prove that the examples of interest

satisfy the RIP. Unfortunately, showing that a given matrix
satisfies the RIP is an NP-hard problem [11]. In fact, it can
be demonstrated easily that many practical matrices PΩMB
do not satisfy the RIP. Indeed, one can perform the so-called
flip test (taken from [8]) as follows:

1) Compute the wavelet coefficients w of a typical image.
2) Suppose that PΩMB satisfies the necessary conditions

for (2) and (3). Use standard `1 minimization to find a
solution to w1 to (1).

3) Flip the coefficients of w to obtain w̃. Set w̃2 to be a
solution of (1) with y = PΩMBw̃.

4) Flip the coefficients of w̃2 to obtain w2.
5) If (2) and (3) are even close to sharp, w1 should

approximate w in the same way that w̃2 approximates
w̃ (since σs(w)1 = σs(w̃)1).

6) Therefore, ‖w1 − w‖ ≈ ‖w̃2 − w̃‖ = ‖w2 − w‖.
Performing the flip test shows that uniform recovery does

not hold in many cases (see Figure 3). In particular, for various
sampling patterns using a Fourier-Wavelet matrix, the RIP
does not hold. Therefore, the RIP is insufficient for describing
successful compressed sensing.

CS reconstruction CS Flip Subsampling pattern

Fig. 3. The flip test using various sampling patterns with U =
PΩDFTDWT−1 . The column CS reconstruction represents the standard
reconstruction w1 and CS flip represents the flipped reconstruction w2.

B. Is uniform recovery necessary?

In the discussion that follows, we shall assume that B =
DWT−1, although our arguments apply equally to other level
based reconstruction basis. Let us now assume that we are
trying to recover a vector w which represents the wavelet
coefficients of an image. In this situation, the location of
the non-zero values is extremely important. Indeed, typical
images have larger and therefore more important entries in
their coarser wavelet coefficients, whereas the finer wavelet
coefficients are unlikely to contain important details.

Uniform recovery suggests that the location is unimportant,
and that all s-sparse vectors can be recovered. The class of
s-sparse wavelet coefficients is clearly much larger than the
class of standard images and as such, it is unrealistic to expect
recovery of all s-sparse vectors.

III. MATHEMATICALLY MODELLING CS
A. (s,M)-sparsity and the RIP in levels

In a level based reconstruction basis, it no longer makes
sense to speak of s-sparsity. As discussed above, the location
of the non-zero values is extremely important. In particular, we
should expect relatively more sparsity in the finer levels. To
model this situation, we can introduce (as in [8]) the concept
of (s,M)-sparsity.

Definition 1. For an l ∈ N, which we call the num-
ber of levels, let s = (s1, s2, . . . , sl) ∈ Nl and M =
(M0,M1, . . . ,Ml) ∈ Nl+1 satisfy

0 = M0 < 1 ≤M1 < M2 < · · · < Ml

and si ≤Mi −Mi−1. A set Λ is said to be an (s,M)-sparse
set if Λ ⊂ {M0 + 1,M0 + 2, . . . ,Ml} and, for i = 1, 2, . . . l,



we have

|Λ ∩ {Mi−1 + 1,Mi−1 + 2, . . . ,Mi}| ≤ si.

We say that w is (s,M)-sparse if the support of w is an (s,M)-
sparse set.

A careful choice of M allows us to say that w is (s,M)-
sparse if and only if it contains at most s1 non-zero coefficients
in the first wavelet level, s2 in the second, s3 in the third and
so on. Even though the set of (s,M)-sparse vectors is still
larger than the set of wavelet coefficients that represent typical
images, experimental evidence (see Section V) suggests that
recovering all (s,M)-sparse vectors is an attainable goal in
the case where M = DFT−1, Ω is a collection of radial lines
and s and M are chosen sensibly.

Now that we have a good concept of sparsity in a level
based reconstruction basis, it is time to define an analogue to
the RIP. The natural adaptation, which we term the ‘RIP in
levels’ (as described in [12]), is defined as follows:

Definition 2. A matrix U ∈ Cm×n is said to satisfy the RIP
in levels (RIPL) of order (s,M) with constant δs,M if

(1− δs,M)‖w′‖22 ≤ ‖Uw′‖22 ≤ (1 + δs,M)‖w′‖22
for all (s,M)-sparse vectors w′ ∈ Cn.

We shall see later that the RIPL allows for recovery of all
(s,M)-sparse vectors.

B. The weighted RIP

In [13], an alternative to the RIP was described, termed
the ‘weighted RIP’. Here, we do not consider s-sparse or
(s,M)-sparse vectors, but weighted sparse vectors. To be
precise, given a vector w ∈ Cn and a vector of weights
ω := (ω1, ω2, . . . , ωn) ∈ Rn with ωj ≥ 1 for each j, we
set ‖w‖ω,0 :=

∑
j∈supp(w) ω

2
j . w is said to be (ω, s)-sparse if

‖w‖ω,0 ≤ s. In the same way as with the RIPL and the RIP,
we can define a weighted RIP.

Definition 3. A matrix U ∈ Cm×n is said to satisfy the
weighted RIP of order (ω, s) with constant δω,s if

(1− δω,s)‖w′‖22 ≤ ‖Uw′‖22 ≤ (1 + δω,s)‖w′‖22
for all (ω, s)-sparse vectors w′ ∈ Cn.

Weighted sparsity has been shown to be useful when
analysing recovery of smooth functions from undersampled
measurements [13]. It is thus natural to ask whether weighted
sparsity also is a good model for recovery involving wavelets,
curvelets, shearlets etc. As the following theorem and nu-
merical example suggest, this may not be the case. We have
demonstrated above that the class of sparse signals is too big
to be able to explain the success of compressed sensing using
X-lets. We now argue that the set of weighted sparse vectors
is also too big.
Example 1 (Flip test with weighted sparsity). The flip test
above is designed to reveal if the given sparsity model can
explain the success of the sampling strategy Ω used. We

Fig. 4. With the sampling pattern on the right, the leftmost image (with
wavelet coefficients w) is recovered perfectly under a discrete fourier trans-
form with DB2 wavelets. The image in the middle is the result of `1 recovery
after applying a permutation to w preserving ‖ · ‖ω,0, and then permuting
back. Similar issues are observed when `1 recovery is replaced by weighted
`1 recovery.

Fig. 5. With the sampling pattern on the right, the leftmost image (with
wavelet coefficients w) is recovered perfectly under a discrete fourier trans-
form with DB2 wavelets. The image in the middle is the result of weighted
`1 recovery after applying a permutation to w preserving ‖ · ‖ω,0, and then
permuting back. The rightmost image shows where samples were taken - a
value of 1 indicates that a sample was taken at that fourier frequency.

can do exactly the same with weighted sparsity. Consider the
successful recovery using the sampling pattern Ω in Figure 4,
where we have recovered perfectly a sparse image (this image
has only 1% non-zero wavelet coefficients). To reveal if this
successful sampling pattern could also recover all weighted
sparse vectors we do the following: Find the smallest s such
that ‖w‖ω,0 ≤ s where w denotes the wavelet coefficients
of the image. We then permute w to a vector w̃ such that
‖w̃‖ω,0 ≤ s . Next, we try to recover w̃ via `1 optimisation,
and finally we perform the inverse permutation on the recov-
ered vector (similar to the flip test above). As shown in Figures
4 and 5 this gives a highly suboptimal result. The weights used
were 1, 2d/2, 22d/2, . . . , 2ld/2 for all the indices corresponding
to the levels 1, 2, . . . , l respectively, where d is the dimension
of the problem, however, other choices of weights give exactly
the same phenomenon. Note that the result is the same if
the `1 recovery is replaced by weighted `1 recovery. This is
illustrated in Figure 5 where we have performed the same
flip test for a one dimensional signal and a different sampling
strategy.
Remark 1. If the previous flip test is changed to only permute
within the levels, i.e. the (s,M)-sparse structure is preserved
rather than the weighted sparsity, then the recovery is perfect.
See Section V.

The issue is that the class of weighted sparse vectors is too
big and allows one to change the sparsity of the wavelet levels.
The following theorem provides additional insight as to what
goes wrong.

Theorem 1. Suppose that s,M is a sparsity pattern with l
levels and that the set of (s,M)-sparse vectors is contained in



Fig. 6. A demonstration of the near block diagonality of typical CS matrices.
From left to right, the images represent the absolute values of Fourier to DB2,
Fourier to DB10 and Haar to Hadmard matrices.

the set of (ω, s)-sparse vectors. Then there is an l0 for which
the set of (s′,M) is contained in the (ω, s)-sparse vectors,
where s′ := (0, . . . , 0︸ ︷︷ ︸

l0−1

, lsl0 , 0, . . . , 0).

Remark 2 (The consequences of Theorem 1). In many practi-
cal circumstances (such as Fourier or Hadamard to wavelets,
see Figure 6), the matrix PΩMB ≈

⊕l
j=1 PΩjXj for some

complex matrices Xj ∈ CMj−Mj−1 and projection matrices
PΩj . When this occurs, Theorem 1 suggests that Ωj must
be selected in such a way so that PΩl0

Xl0 is capable of
recovering all lsl0 -sparse vectors. This requires a suboptimal
number of measurements. On the other hand, to recover
all (s,M)-sparse vectors we would only require Ωl0 to be
chosen so that PΩl0

Xl0 is capable of recovering all sl0 -
sparse vectors. Theorem 1 highlights another significant issue
with the weighted RIP. Specifically, given w, it is possible
to permute w in such a way that the number of non-zero
coefficients in each level is changed. This is exactly what is
going on in the above flip test.

C. Non-uniform recovery

The final mathematical description discussed here is to fix
w and then randomly choose Ω. With a certain probability,
good recovery of w will be possible. This is the theory of
non-uniform recovery. A great deal of research has been done
in this area. Notably, the golfing scheme (see [14] can be
applied to generate probabilistic results on the number of
measurements required for acceptable recovery. The results
in this area have successfully been applied to schemes with a
random Ω and the Fourier-Wavelet example above.

IV. DETERMINISTIC SAMPLING IN COMPRESSED SENSING

It is clear that the RIP is an inadequate description of
compressed sensing in the deterministic case, by applying the
flip test as before. Moreover, the weighted RIP suffers from the
same issues, albeit to a smaller degree. Additionally, the non-
uniform recovery results rely on randomness. In our current
situation, there is no randomness involved - we are simply
fixing Ω and w. Consequently, we shall focus the remainder
of our analysis on the RIPL.

A. Recovery results using the RIPL

If a matrix satisfies the RIP of order s with a sufficiently
small constant δs, then uniform recovery of all s-sparse vectors
is guaranteed. Similarly, one suspects that if the RIPL constant

of order (s,M) is sufficiently small (henceforth, if this condi-
tion is satisfied then a matrix is said to satisfy the RIPL), then
recovery of all (s,M)-sparse vectors is guaranteed. Indeed,
one can show the following result:

Theorem 2. Let U ∈ Cm×n, and let (s,M) be a sparsity
pattern satisfying the following:

1) Ml = n where l is the number of levels.
2) si 6= 0 for each i = 1, 2, . . . l.

Suppose that U has RIPL constant δ2s,M satisfying

δ2s,M <
1√

l
(√
ηs,M + 1

4

)2
+ 1

where ηs,M = max
1≤i,j≤l

si/sj .

Let w ∈ Cn and y ∈ Cm satisfy ‖Uw− y‖2 ≤ ε. Then any
w̃ ∈ Cn which satisfies both ‖w̃‖1 ≤ ‖w‖1 and ‖Uw̃−y‖2 ≤ ε
also satisfies

‖w − w̃‖1 ≤ C1σs,M(w)1 +D1

√
s̃ ε (4)

and

‖w − w̃‖2 ≤
σs,M(w)1√

s̃

(
C2 + C ′2

4
√
lηs,M

)
+ ε
(
D2 +D′2

4
√
lηs,M

)
(5)

where

σs,M(w)1 := min ‖w − ŵ2‖1 such that ŵ2 is (s,M)-sparse,

s̃ = s1 + s2 + s3 + · · · + sl and C1, C2, C
′
2, D1, D2 and D′2

depend only on δ2s,M. In particular, (4) and (5) also hold for
solutions to

min
w′∈Cn

‖w′‖1 subject to ‖Uw′ − y‖2 ≤ ε.

The change from solving Uw′ = y to solving ‖Uw′−y‖2 ≤
ε allows us to cover the case where the measurements we
obtain are no longer given by Uw but instead by Uw + γ
where γ is a noise term with ‖γ‖ ≤ ε. Similar results that
account for noise can be obtained for the standard RIP. It is
worth noting that although Theorem 2 reduces to a standard
result on the RIP in the case that l = 1, the requirement on
δs,M involves the number of levels l and a parameter ηs,M.
Further work in [12] has shown that this requirement cannot
be avoided.

V. NUMERICAL RESULTS

It is now pertinent to ask whether or not recovery of all
(s,M)-sparse vectors is a realistic expectation of compressed
sensing on a level based reconstruction problem. To give
experimental evidence suggesting that this is the case, one
can adapt the flip test to a ‘permutations in levels’ test.

1) As before, we compute the wavelet coefficients w of a
typical image.

2) Suppose that PΩMB satisfies the necessary conditions
for (4) and (5). Use standard `1 minimization to find a
solution to w1 to (1).



TABLE I
THE FLIP IN LEVELS TEST PERFORMED USING RADIAL LINES.

Maximum Minimum Standard Number of
relative error relative error deviation lines

2.16% 2.14% 0.0025% 128
1.03% 1.02% 0.0011% 256

3) Let Q be a permutation satisfying

Q({Mi−1 + 1, . . . ,Mi}) = {Mi−1 + 1, . . . ,Mi} (6)

for i = 1, 2, . . . , l. Apply the permutation Q to w to ob-
tain w̃. Set w̃2 to be a solution to (1) with y = PΩMBw̃.

4) Apply the inverse permutation Q−1 to w̃2 to obtain w2.
5) If (2) and (3) are even close to sharp, w1 should

approximate w in the same way that w̃2 approximates
w̃ (since σs,M(w)1 = σs,M(w̃)1).

6) Therefore, ‖w1 − w‖ ≈ ‖w2 − w‖ = ‖w̃2 − w̃‖.
Of course, it is far from practical to do this test for every
single possible permutation. However, for any choice of Q
satisfying (6) we certainly require ‖w1 −w‖ to be very close
to ‖w2 − w‖ for the RIPL to hold. Conversely, if the test
succeeds using a large collection of randomly generated Q
on a fixed image w with a fixed matrix PΩMB then one
would suspect that equations (4) and (5) hold, in turn providing
evidence that the RIPL holds for PΩMB. We performed this
test with fifty randomly chosen permutations on the radial lines
image from Figure 3. The results are displayed in I. The small
standard deviations and differences between the maximum and
minimum relative error strongly suggest that equations (4) and
(5) hold when U = PΩ DFT DWT−1, with Ω taken to be a
sufficiently large collection of radial lines. This will certainly
occur when U satisfies the RIPL.

VI. PERTURBATIONS AND THE RIP IN LEVELS

It may however be the case that PΩ DFT DWT−1 does not
satisfy the RIPL, but instead approximates a matrix that does.
In this case, let us set U = PΩ DFT DWT−1 and suppose
that U = R + E where R ∈ Cm×n satisfies the RIPL and
E ∈ Cm×n is a perturbation matrix such that ‖E‖2 is small.
We can then prove the following result:

Theorem 3. Suppose that the sparsity pattern (s,M) satisfies
the following two conditions:

1) Ml = n where l is the number of levels.
2) si 6= 0 for each i = 1, 2, . . . l.

Furthermore, suppose that R has RIPL constant δ2s,M satis-
fying

δ2s,M <
1√

l
(√
ηs,M + 1

4

)2
+ 1

.

Let w ∈ Cn and y ∈ Cm satisfy ‖Uw− y‖2 ≤ ε. Then any
w̃ ∈ Cn which solves the `1 minimization problem

min
w′∈Cn

‖w′‖1 subject to ‖Uw′ − y‖2 ≤ ε

also satisfies

‖w − w̃‖1 ≤ C1σs,M(x)1 +K1

√
s̃ (ε+ ‖E‖‖w‖1) (7)

and

‖w − w̃‖2 ≤
σs,M(w)1√

s̃

(
C2 + C ′2

4
√
lηs,M

)
+ (‖E‖‖w‖+ ε)(K2 +K ′2

4
√
lηs,M) (8)

where C1, C2, C
′
2 are the same as in Theorem 2 and K1,K2

and K ′2 depend only on δ2s,M.

It is straightforward to prove this Theorem using Theorem
2, but we shall not provide these details here.

Following this perturbation result, we claim that in the
radial line case, PΩ DFT DWT−1 satisfies the RIPL, or
PΩ DFT DWT−1 is a slight perturbation of a matrix that
satisfies the RIPL whenever sufficiently many radial lines are
taken. A proof of this conjecture along with an estimate on the
required number of radial lines would provide a strong result
in deterministic sampling, but as of yet it remains unsolved.
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