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Abstract—We present recently devised approach for recovery
of compactly supported multivariate functions from nonuniform
samples of their Fourier transforms. This is the so-called nonuni-
form generalized sampling (NUGS), based on a generalized
sampling framework which permits an arbitrary choice of the
reconstruction space and where nonuniform sampling is modeled
via weighted Fourier frames. We establish a sharp sampling
density which is sufficient to guarantee stable recovery, without
imposing any separation condition on the sampling points.
In particular for the stable NUGS recovery, we also provide
sufficient sampling bandwidths in the case of one-dimensional
wavelet reconstructions and show sufficient linear scaling of the
sampling bandwidth and the number of wavelets.

I. INTRODUCTION

Let E ⊆ Rd be a compact set in the space domain and H
a Hilbert space of L2-functions with a support in E. Let ‖·‖
and 〈·, ·〉 denote the standard L2-norm and L2-inner product,
respectively. For a point in the frequency domain ω ∈ R̂d,
define

eω(x) = ei2πω·xχE(x), x ∈ Rd,

and the Fourier transform of f ∈ H at ω ∈ R̂d by f̂(ω) =
〈f, eω〉. The problem we address is that of recovering an
unknown function f ∈ H given the set of samples

{f̂(ω) : ω ∈ Ω},

where Ω ∈ R̂d is a countable set of sampling points not
necessarily taken on a Cartesian grid.

The problem of function recovery from a finite set of
pointwise measurements of its Fourier transform is ubiquitous
in applications such as Magnetic Resonance Imaging (MRI),
Computed Tomography (CT), seismology and electron mi-
croscopy, just to name a few. In these applications, Fourier
samples are often acquired along a non-Cartesian sampling
pattern such as spirals or radial lines. In contrast to Cartesian
sampling which leans on the fundamental Nyquist–Shannon
theorem, nonuniform sampling is typically studied within the
concept of Fourier frames, see [1] and references therein. The
set {eω : ω ∈ Ω} forms a Fourier frame for H if there exist
constants A,B > 0 such that for all f ∈ H

A‖f‖2 ≤
∑
ω∈Ω

|f̂(ω)|2 ≤ B‖f‖2.

We refer to such a system as a classical Fourier frame.
If {eω : ω ∈ Ω} is a classical Fourier frame, then Ω neces-

sarily cannot have a clustering point, i.e. Ω must be separated

[2]. However, once a spiral or radial sampling trajectory is
used, as the number of sampling points increases, clustering
points at lower frequencies appear and as a result the upper
frame bound B blows up. To compensate for arbitrary cluster-
ing of sampling points, which often needs to be facilitated in
practice, it is common to use weights, also known as density
compensation factors. For some weights µω > 0, the set{√

µωeω : ω ∈ Ω
}

forms a weighted Fourier frame for H if
there exist constants A,B > 0 such that for all f ∈ H

A‖f‖2 ≤
∑
ω∈Ω

µω|f̂(ω)|2 ≤ B‖f‖2.

Weighted Fourier frames allow stable sampling with a sub-
stantially more general type of nonuniform sampling pattern.

Provided one has a weighted or a classical Fourier frame,
stable function recovery is possible and can be carried out
via a number of different algorithms [1]. Therefore, it is
crucial to understand conditions under which a set of sampling
points is guaranteed to give rise to a Fourier frame. In
one dimension, there is an almost full characterization of
classical Fourier frames in terms of Beurling density and
separation of the sampling points, mainly due to work of
Beurling, Landau, Jaffard and Seip, see the review paper [3]. In
higher dimensions, however, characterization of Fourier frames
complicates considerably. A classical result due to Beurling
[4] provides a Nyquist criterion for nonuniform sampling of
L2-functions supported in the unit Euclidean ball in terms of
density and separation of the sampling points. Unfortunately,
the separation condition prevents a consideration of general
sampling patterns, such as those mentioned above.

The separation of the sampling points rising to a classical
Fourier frame is assumed only to control the upper frame
bound. However, if it does not hold, the Fourier samples
need to be appropriately weighted and once nontrivial weights
µω > 0 are introduced, existence of a lower frame bound is
no longer guaranteed by Beurling’s result. Nevertheless, in the
first result of this paper, we demonstrate how the separation
condition from Beurling’s result can be successfully removed
by using weights corresponding to the volumes of the Voronoi
cells of the sampling points.

Weighted Fourier frames have been used previously in
Gröchenig’s work [5] where he provides a sufficient sam-
pling density without necessity for the separation condition.
Moreover, he provides explicit frame bounds. However, these



bounds and the density condition cease to be sharp in higher
dimensions. We improve this in two ways: our first above
mentioned result provides the universal sampling density, and
our second result improves explicit estimates for the frame
bounds, which in certain cases are also dimension independent.

Once Fourier frames are characterized and conditions for
stable reconstruction are provided, it is important to construct a
good approximation to f from finite Fourier data. In this paper
we use the approach of generalized sampling (GS), where
the sampling system is described by weighted Fourier frames
and recovery is carried out in an arbitrary reconstruction
space. This is the so-called nonuniform generalized sampling
(NUGS), developed by the authors in [6]. NUGS is essentially
a special instance of GS, a more general approach of sampling
and reconstructing in abstract Hilbert spaces introduced by
Adcock and Hansen [7]. The major advantage of this approach
is free choice of the reconstruction space T which can be
tailored to a specific application by using a favorable space.

Among popular methods for reconstruction from nonuni-
form Fourier data, one can find gridding [8], iterative tech-
niques [9], the ACT algorithm [10] and methods based on
inversion of the frame operator [11]. NUGS is closest to the
efficient algorithm from the recent work of Guerquin–Kern,
Häberlin, Pruessmann and Unser [12] where the equivalent
model is considered for wavelet reconstruction spaces. How-
ever, NUGS is a more general framework for reconstruction
in arbitrary finite-dimensional spaces together with guarantees
for its convergence and robustness leaning on the theory of
weighed Fourier frames.

II. WEIGHTED FOURIER FRAMES

A classical result due to Beurling [4] provides a sufficient
condition for sampling points to give rise to a Fourier frame
for the space H of L2-functions supported in the unit Euclidean
ball. Namely, if a countable set Ω ⊆ R̂d is separated, i.e. if
there exists η > 0 such that

∀ω, λ ∈ Ω, ω 6= λ, |ω − λ| ≥ η,

and also if Ω satisfies the following density condition

δ = sup
z∈R̂d

inf
ω∈Ω
|ω − z| < 1

4
,

then the family of functions {eω : ω ∈ Ω} is a Fourier frame
for H. Moreover, if δ ≥ 1/4 then a lower frame bound does
not necessarily exist, implying the sharpness of the density
bound. This was generalized to arbitrary compact, convex and
symmetric supports E ⊆ Rd by Benedetto and Wu [13] and
also by Olevskii and Ulanovskii [14].

In [5] (see also [15]), Gröchenig provides a sufficient
sampling density in order to have a weighted Fourier frame
for L2-functions supported in the unit cube. Due to use of
weights, unlike Beurling’s result, Gröchenig’s result does not
assume the separation condition. The weights are defined as
measures of Voronoi regions with respect to the Euclidean
norm, namely for ω ∈ Ω, µω =

∫
R̂d χVω

(x) dx, where

Vω =
{
z ∈ R̂d : ∀λ ∈ Ω, λ 6= ω, |z − ω| ≤ |z − λ|

}
.

Although in one dimension the density condition is the same
as Beurling’s and therefore sharp, in higher dimensions it reads

δ = sup
z∈R̂d

inf
ω∈Ω
|ω − z| < log 2

2πd
. (II.1)

However, Gröchenig additionally provides explicit estimates
for the corresponding frame bounds

A ≥ 2− e2πδd, B ≤ e2πδd,

but which unfortunately also deteriorate with dimension.
By using Voronoi weights, our first result removes the

separation condition from Beurling’s result while it keeps the
sampling density sharp.

Theorem II.1. [16] Let H = {f ∈ L2(Rd) : supp(f) ⊆
E}, where E ⊆ Rd is compact, convex and symmetric. If a
countable set Ω ⊆ R̂d has density

δE◦ = sup
z∈R̂d

inf
ω∈Ω
|ω − z|E◦ <

1

4
(II.2)

where E◦ is the polar set of E, then {√µωeω}ω∈Ω is a
weighted Fourier frame for H with the weights µω > 0 defined
as the measures of Voronoi regions with respect to |·|E◦ .

Although Theorem II.1 indeed guarantees frames under the
sharp density condition (II.2), note that, the same as Beurling’s
result, it does not provide explicit frame bounds, which can
be useful in stability and convergence analysis of a given
reconstruction algorithm. Employing very similar techniques
used to derive explicit frame bounds for weighted Fourier
frames in [5], our next theorem gives the frame bounds under
an improved density condition compared to the one given by
Gröchenig’s result.

Theorem II.2. [16] Let H = {f ∈ L2(Rd) : supp(f) ⊆ E},
where E ⊆ Rd is compact. Suppose that |·|∗ is an arbitrary
norm on Rd and c∗ > 0 the smallest constant such that |·| ≤
c∗ |·|∗, where |·| denotes the Euclidean norm. Let Ω ⊆ Rd be
such that

δ∗ = sup
z∈R̂d

inf
ω∈Ω
|ω − z|∗ <

log(2)

2πmEc∗
, (II.3)

where mE = supx∈E |x|. Then {√µωeω}ω∈Ω is a weighted
Fourier frame for H with the weights defined as the measures
of Voronoi regions with respect to the norm |·|∗. The weighted
Fourier frame bounds A,B > 0 satisfy

√
A ≥ 2− e2πδ∗c

∗mE ,
√
B ≤ e2πδ∗c

∗mE .

We firstly note that if the density and Voronoi regions are
defined in the Euclidean norm, i.e. if |·|∗ = |·|, which is
typically the case in practice, then c∗ = 1. Also, if E is taken
to be the unit Euclidean ball, which corresponds to Beurling’s
setting, then mE = 1. In this particular case, the dimension
dependence of (II.1) is completely removed and the density
condition (II.3) reads δ < log 2/(2π) ≈ 0.11.

Besides removing dimension dependence for supports con-
tained in the unit spheres, Theorem II.2 also directly improves



the setting in the original Gröchenig’s result for the unit cubes.
Namely, if E is the unit cube then mE =

√
d, and therefore,

the linear dependence of density (II.1) with dimension is
reduced to the square-root dependence.

III. NUGS IN MULTIPLE DIMENSIONS

We have seen the conditions on a countable set of points
under which stable sampling is possible. In practice, we are
typically faced with a finite set of sample points and therefore
the remaining challenge is to construct a stable and efficient
reconstruction using only finite Fourier data. In this section,
we construct an approximation G(f) ∈ T to the function
f ∈ H using only {f̂(ω) : ω ∈ ΩK}, where T ⊆ H is any
finite-dimensional reconstruction space, and ΩK ⊆ R̂d a finite
countable set of sampling points with the density defined as

δK∗ = sup
z∈ZK

inf
ω∈ΩK

|ω − z|∗ ,

for a given norm |·|∗. The set ZK ⊆ R̂d is chosen such that
ΩK ⊆ ZK and gχZK

→ g, for g ∈ L2(R̂d), as K → ∞,
where K is referred to as the sampling bandwidth. The aim
is to ensure that G(f) is stable and close to the orthogonal
projection PTf , i.e. for any f, h ∈ H, we want G(f) which
satisfies

‖f −G(f + h)‖ ≤ CG (‖f − PTf‖+ ‖h‖) , (III.1)

for some constant CG > 0. To this end, define the NUGS
reconstruction G(f) ∈ T by the weighted least-squares fit

G(f) = argmin
g∈T

∑
ω∈ΩK

µKω

∣∣∣f̂(ω)− ĝ(ω)
∣∣∣2 , (III.2)

where µKω > 0 is the measure of the Voronoi region

V Kω,∗ = {z ∈ ZK : ∀λ ∈ Ω, λ 6= ω, |z − ω|∗ ≤ |z − λ|∗} .

Using Theorem II.2, we get the following result for NUGS.

Theorem III.1. [16] Let T ⊆ H = {f ∈ L2(Rd) : supp(f) ⊆
E} be finite-dimensional, E ⊆ Rd compact, and let ΩK be a
sampling set such that for all K

δK∗ <
log(2)

2πmEc∗
,

where mE = supx∈E |x| and c∗ > 0 is the smallest constant
such that |·| ≤ c∗ |·|∗. Let also ε ∈ (0, 2− exp (2πmEδ∗c

∗)).
If K > 0 is large enough so that

RK(T ) = sup
f∈T
‖f‖=1

‖f̂ − f̂χZK
‖ ≤

√
ε(2− ε),

then G(f) defined by (III.2) exists uniquely and satisfies (III.1)
with

CG ≤
exp (2πmEδ

K
∗ c
∗)

2− exp (2πmEδK∗ c
∗)− ε

.

Since T is finite dimensional, the residual RK(T) converges
to zero when K → ∞ and hence there always exists K
such that RK(T) is small enough. Therefore, this theorem

guarantees stable and optimal recovery in an arbitrary finite-
dimensional T, with the explicit bound on the reconstruction
constant CG, provided that the sampling scheme is sufficiently
dense and wide in the frequency domain.

The boundedness of the reconstruction constant CG under
the sharp density condition can be provided by use of Theorem
II.1. However, the use of this theorem trades the explicitness
of the bound, since it deploys non-explicit frame bounds A
and B. In that case the guarantees for stability of G(f) are
formulated in terms of the following K-residual

R̃K(ΩK ,T) = sup
f∈T
‖f‖=1

√∑
ω∈Ω′

µω|f̂(ω)|2,

where Ω′ is a minimal subsequence of Ω such that R̂d\ZK ⊆⋃
ω∈Ω′ Vω,∗, and Ω is a sequence such that ΩK ⊆ Ω and such

that it yields a weighted Fourier frame. Note that the existence
of a sequence Ω only imposes that ΩK has sufficient density
δK∗ . Also, note that the residual R̃K again converges to zero
as K →∞, but it now depends on both T and ΩK .

By Theorem II.1, we get the following result for NUGS.

Theorem III.2. [16] Let T ⊆ H = {f ∈ L2(Rd) : supp(f) ⊆
E} be finite-dimensional, E ⊆ Rd compact convex and
symmetric, and ΩK a sampling set such that for all K

δKE◦ <
1

4
.

Denote by A and B the frame bounds corresponding to the
weighed Fourier frame arising from Ω, ΩK ⊆ Ω, and let ε ∈
(0, A). If K > 0 is large enough so that

R̃K(ΩN ,T) ≤
√
ε,

then G(f) defined by (III.2) exists uniquely and satisfies (III.1)
with

CG ≤
√

B

A− ε
.

Although the density conditions in these theorems are
explicit, it is not yet stated how large the sampling bandwidth
K needs to be. Nevertheless, this is possible to determine
by analysing the residuals RK or R̃K . In particular, since
the residual RK depends only on a particular choice of the
space T, once T is fixed, it is possible to determine scaling
of K and dim(T) which gives sufficiently small RK and
therefore the stable and optimal recovery from any sufficiently
dense sampling set ΩK . This in return provides the so-called
stable sampling rate, which we analyze in the one-dimensional
case in the following section. For uniform samples, the stable
sampling rates for wavelet reconstructions were analyzed in
[17] in one dimension, and in [18] in higher dimensions. For
polynomial reconstructions see [19] and [20].

IV. NUGS IN ONE DIMENSION

In one dimension we take ZK ⊆ R̂ to be the interval
[−K,K], and hence, the K-residual for a finite-dimensional
T becomes

RK(T) = sup
{
‖f̂‖R̂\[−K,K] : f ∈ T, ‖f‖ = 1

}
.



Now, by using Gröchenig’s one-dimensional sharp result on
weighted Fourier frames adopted to finite sampling sequences,
in [6] the authors obtained the following one-dimensional
version of Theorem III.1.

Theorem IV.1. [6] Let T ⊆ H = {f ∈ L2(R) : supp(f) ⊆
E} be finite-dimensional, E ⊆ Rd compact, and let ΩK ⊆
[−K,K] be a sampling set such that for all K, it satisfies

δK <
1

4mE
,

where mE = supx∈E |x|. Let ε ∈
(
0, 1− 4mEδ

K
)
. If K >

0 is large enough so that RK(T ) ≤
√
ε(2− ε), then G(f)

defined by (III.2) exists uniquely and satisfies (III.1) with

CG ≤
1 + 4mEδ

K

1− 4mEδK − ε
.

A. Wavelets

In the case when T consists of the first M terms of a wavelet
basis, in [6] the authors show that the sampling bandwidth
K only needs to scale linearly with M in order to ensure
sufficiently small residual RK(T).

Let now E = [−1, 1] and define a basis on H following
the boundary wavelet construction from [21]. Namely, assume
that the scaling function φ and the wavelet ψ are supported
on [−p+ 1, p], and define

φint
j,k(x) =


2j/2φ(2jx− k) −2j + p ≤ k < 2j − p
2j/2φleft

k (2jx) −2j ≤ k < −2j + p

2j/2φright
2j−k−1(2jx) 2j − p ≤ k < 2j ,

where φleft and φright are particular boundary scaling func-
tions. The wavelet functions ψint

j,k are defined similarly. We
may now form a multiresolution analysis for H from subspaces

V int
j = span

{
φint
j,k : k = −2j , . . . , 2j − 1

}
,

W int
j = span

{
ψint
j,k : k = −2j , . . . , 2j − 1

}
.

The appropriate truncation, for R > J ≥ log2 p, gives the
finite dimensional reconstruction space

T = V int
J ⊕W int

J ⊕ · · · ⊕W int
R−1 = V int

R , (IV.1)

such that dim(T) = 2R+1. Now we have the following.

Lemma IV.2. [6] Let T be the reconstruction space (IV.1) such
that for some α > 1/2 the scaling function φ satisfies |φ̂(ω)| .
1/(1 + |ω|)α, ω ∈ R̂, and {φint

R,k : k = −2R, . . . , 2R − 1}
forms a Riesz basis for T. Then for any γ > 0 there exists a
c0(γ) > 0 such that

RK(T ) ≤ γ, K ≥ c0(γ)2R+1.

Thus, for such choice of the reconstruction space T, if the
sampling set ΩK ⊆ [−K,K] has density δK < 1/4, for all K,
then by Theorem IV.1 and Lemma IV.2, only a linear scaling
of K with dim(T) is sufficient to guarantee stable recovery in
T with the reconstruction constant

CG ≤
1 + 4δK

1− 4δK − ε
.

Moreover, due to the result for boundary wavelets given in
[22], for smooth functions we obtain optimal convergence
rates. Namely, for such T and ΩK , if f ∈ Hs(0, 1), 0 ≤ s < p,
then

‖f −G(f)‖ = O
(
K−s

)
,

where G(f) ∈ T is the NUGS reconstruction based on the
sampling set ΩK .

The linear scaling and error decrease for wavelet reconstruc-
tions can be illustrated numerically as it is done in Figure 1. On
the other hand, in Figure 2 we show two-dimensional wavelet
reconstructions by using NUGS with and without weights.

B. Other spaces

Ensuring stable and optimal recovery in a reconstruction
space T in terms of an appropriate scaling of the sampling
bandwidth K and dim(T), can also be done for different
finite dimensional reconstruction spaces such as algebraic or
trigonometric polynomials, nonequidistant splines or piece-
wise polynomials. These spaces were analyzed in [23].
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