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Abstract. The theory of sampling and reconstruction of data has a wide
range of applications and a rich collection of techniques. For many methods,
a core problem is to estimate the number of samples needed in order to se-
cure a stable and accurate reconstruction. This can often be controlled by the
Stable Sampling Rate (SSR). In this paper we discuss the SSR and how it is
crucial for two key linear methods in sampling theory: generalized sampling
and the recently developed Parametrized Background Data Weak (PBDW)
method. Both of these approaches rely on estimates of the SSR in order to be
accurate. In many areas of signal and image processing binary samples are
crucial and such samples, which can be modelled by Walsh functions, are the
core of our analysis. As we show, the SSR is linear when considering binary
sampling with Walsh functions and wavelet reconstruction. Moreover, for
certain wavelets it is possible to determine the SSR exactly, allowing sharp
estimates for the performance of the methods.

Key words and phrases : Sampling, Wavelets, binary measurements, Gener-
alized sampling, linear reconstruction,

2010 AMS Mathematics Subject Classification : 94A20, 42C10, 42C40 (pri-
mary); 65R32, 94A08, 94A12 (secondary)

1. Introduction

Sampling theory is a mainstay in image and signal processing as well as mathe-
matics of information, data science and inverse problems. Since the early results
of Shannon [33, 48, 50] many techniques have been developed, and there is now
a myriad of methods available. Moreover, the many applications, such as Mag-
netic Resonance Imaging (MRI) [27, 39], electron tomography [35, 36], lensless
cameras, fluorescence microscopy [46, 49], X-ray computed tomography [16, 45],
surface scattering [34] as well as parametrised PDEs [9, 12, 19], make the field
well connected to different areas of the sciences.
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A standard sampling model is as follows. We have an element f ∈ H, where H
is a separable Hilbert space, and the goal is to reconstruct an approximation to
f from a finite number of linear samples of the form li(f), i ∈ N. In particular,
given that the lis are linear functionals, we measure the scalar product between f
and some sampling element si ∈ H, i ∈ N, i.e. li(f) = 〈f, si〉. It is important to
note that the lis cannot be chosen freely, but are dictated by the modality of the
sampling device, say an MRI scanner providing Fourier samples or a fluorescence
microscope giving binary measurements modelled by Walsh coefficients.

The different techniques for making the reconstruction can be divided into
two main categories: linear and non-linear methods. In the non-linear case
(infinite-dimensional) compressed sensing [5, 22, 23] and deep learning [32, 37]
are two examples, whereas generalised sampling [1, 2, 4, 6, 7, 20, 21, 29, 31, 40, 51]
and the PBDW method [9,12,19,41] are examples of linear methods. Although
the SSR is developed mainly for linear methods there is a strong connection to
non-linear techniques. For example in infinite-dimensional compressed sensing a
key condition is the so-called balancing property [5], which is very similar to the
SSR. It is not known if a similar concept is needed in deep learning [37], as, so far,
there is no mathematical theory describing its performance. However, it would
be counterintuitive if deep learning reconstructions could be guaranteed to be
stable and accurate without any understanding of how the number of samples
relate to the reconstruction technique. Thus, just as the SSR has a connection
to compressed sensing we conjecture that there will have to be a similar concept
also for deep learning.

To define the SSR we first introduce the sampling space and the reconstruction
space. We define the sampling space S = span{si : i ∈ N} ⊂ H, meaning the
closure of the span. In practice, one can only acquire a finite amount of samples,
therefore we denote by SM = span{si : i = 1, . . . ,M}, the sampling space of the
first M elements. Similarly, the reconstruction space denoted byR is spanned by
reconstruction functions (ri)i∈N, i.e. R = span{ri : i ∈ N}. As in the sampling
case, one has to restrict to a finite reconstruction space, which is denoted by
RN = span{ri : i = 1, . . . , N}.

The key ingredient in the definition of the SSR is the subspace angle ω between
the subspaces RN and SM . In particular,

cos(ω(RN ,SM )) := inf
r∈RN ,‖r‖=1

‖PSM r‖.

The orthogonal projection onto the sampling space is denoted by PSM . Mainly,
one is interested in the reciprocal value

µ(RN ,SM ) = 1/ cos(ω(RN ,SM )),

which, as we will see below, plays a key role in all the error estimates. We can
now define the stable sampling rate

Θ(N, θ) = min {M ∈ N : µ(RN ,SM ) < θ} .
In particular, the SSR determines how many samples M are needed when given
N reconstruction vectors in order to bound µ by θ.
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There are many applications which can be modelled with Fourier measure-
ments. In particular, the sjs represent complex exponentials, and the SSR when
considering wavelets as reconstruction bases is well known to be linear [3]. An-
other important group of applications are those which have binary measure-
ments. These measurements can be represented by inner products of the data
with Walsh functions. A main application where this arises is fluorescence mi-
croscopy [43].

The purpose of this paper is to demonstrate the similarities and differences
between the approach of generalized sampling [4] and the PBDW approach based
on data assimilation [12]. Moreover, we show how both methods completely rely
on the SSR in order to be accurate and we provide sharp results on the SSR when
considering Walsh functions and Haar wavelets. This can be done by realising
the common structure of the Walsh functions and the Haar wavelets. Although
the SSR is linear when considering Walsh samples and wavelet reconstructions,
sharp results on the SSR for arbitrary Daubechies wavelets are still open. The
difficulty is that the higher order Daubechies wavelets share very little structural
similarities with the Walsh functions.

2. Reconstruction Methods

In terms of reconstruction methods there are three different properties that
are often desired. The most important are obviously accuracy and stability.
However, consistency, meaning that the reconstruction will yield the same sam-
ples as the true solution, is also often considered an advantage. Below, we will
see how the SSR is crucial for the two former properties.

2.1. Reconstruction and Sampling Space. Throughout the paper H =
L2([0, 1]d). Due to the fact that we are dealing with the d-dimensional case,
we introduce multi indices to make the notation more readable. Let j =
{j1, . . . , jd} ∈ Nd, d ∈ N be a multi index. A natural number n is in the
context with a multi index interpreted as a multi index with the same entry,
i.e. n = {n, . . . , n}. Then we define the addition of two multi indices for
j, r ∈ Nd by the pointwise addition, i.e. j + r = {j1 + r1, . . . , jd + rd} and
the sum

∑r
j=k xj :=

∑r1
j1=k1

. . .
∑rd

jd=kd
xj1,...,jd , where k, r ∈ Nd. The multipli-

cation of an multi index with a real number is understood pointwise, as well as
the division by a multi index.

To define the sampling space SM we first need to define the Walsh functions.
The Walsh functions in higher dimensions can be represented by the tensor
product of one dimensional Walsh functions.

Definition 1 (Walsh function [25]). Let s =
∑

i∈Z si2
i−1 with si ∈ {0, 1} be the

dyadic expansion of s ∈ R+. Analogously, let x =
∑

i∈Z xi2
i−1 with xi ∈ {0, 1}.

The generalized Walsh functions in L2([0, 1]) are given by

Wal(s, x) = (−1)
∑

i∈Z(si+si+1)x−i−1 .
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We extend it to functions in L2([0, 1]d) by the tensor product for s = (sk)k=1,...,d, x =
(xk)k=1,...,d

Wal(s, x) =
d⊗

k=1

Wal(sk, xk).

These functions then span the sampling space, i.e. for M = md,m ∈ N we
have

SM = span {Wal(s, ·), s = (sk)k=1,...,d, sk = 1, . . . ,m, k = 1, . . . , d} .

Moreover, Walsh functions can be extended to negative inputs by Wal(−s, x) =
Wal(s,−x) = −Wal(s, x).

With the help of the Walsh functions we can define the continuous Walsh
transform of a function f ∈ L2([0, 1]d) as in [25]

f
∧

W

(s) = 〈f(·),Wal(s, ·)〉 =

∫
[0,1]d

f(x) Wal(s, x)dx, s ∈ Rd.

The Walsh functions have the following very useful properties. First, they obey
the scaling property, i.e. Wal(2js, x) = Wal(s, 2jx) for all j ∈ N and s, x ∈
R. Second, the multiplicative identity holds, this means Wal(s, x) Wal(s, y) =
Wal(s, x ⊕ y), where ⊕ is the dyadic addition. These properties are also easily
transferred to the Walsh transform. For further information on Walsh functions
and transforms see [10,15,47].

Direct inversion from a finite amount of samples, both in the Fourier and
Walsh case may lead to substantial artefacts such as the Gibbs phenomenon in
the Fourier case or block artefacts known from Walsh functions. This can be
seen in the numerical experiments in Figures 3c, 4c and 5b. Therefore, it is
important to consider reconstruction spaces R, which represent the data in a
much better way, such that already a finite and low dimensional subspace leads
to a good reconstruction. In many different applications such as image and
signal processing, and also representations of solution manifolds for PDEs [42],
wavelets have become highly popular alternatives. The reconstruction space is
then spanned by reconstruction functions rj , j ∈ N. As it is not possible to
deal numerically with an infinite amount of samples it also is not possible to
reconstruct infinite amount of coefficients. Therefore, we have a look at the
reconstruction space RN = span {ri : i = 1, . . . , N}. When RN is used to be
an approximation for the solution manifold of a PDE we are also given the
approximation error εN .

In the following we use wavelets as the reconstruction space, due to their good
time and frequency localisation. First, we have a look at the one dimensional
case to then get to higher dimensions. We use the common notation and denote
the mother wavelet with ψ and the corresponding scaling function with φ. These
functions are then scaled and translated. This results in the functions

ψR,j(x) := 2R/2ψ(2Rx− j) and φR,j(x) := 2R/2φ(2Rx− j),
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where R, j ∈ Z. The wavelet space at a certain level r is then given by Wr :=
span {ψr,j : j ∈ Z} and the scaling space is given by Vr := span {φr,j : j ∈ Z}.
Often one is interested in the representation of functions in L2([0, 1]) instead of
L2(R). For this sake boundary corrected wavelets were introduced in [17]. The
scaling space for boundary corrected wavelets is spanned by the original scaling
function φ and reflections around 1 of the scaling function φ#, i.e.

V b
r = span

{
φr,n : n = 0, . . . , 2r − p− 1, φ#

r,n : n = 2r − p, . . . , 2r − 1
}
,

for Daubechies wavelets of order p. Also the boundary corrected Daubechies
wavelets obey the multi resolution analysis. Therefore, it is possible to represent
the union of the wavelet spaces up to a certain level R− 1 by the scaling space
at this level, i.e. ⋃

r<R

W b
r = V b

R.

Hence, it is not necessary for the analysis to have a deeper look in the ordering
of the wavelets and their construction for the boundary corrected version as long
as we have that the amount of coefficients equals the amount of elements in that
level, i.e. if N = 2R for some R ∈ N. The reconstruction space is then given by

RN := V b
R.

The higher dimensional scaling spaces are constructed by tensor product of the
one dimensional one, such that we get in d dimensions

RN = V b,d
R := V b

R ⊗ . . .⊗ V b
R (d-times)

for N = 2dR. Remark, that the corresponding wavelet space is not simply the
tensor product of the one dimensional wavelets. Fortunately, this is not often
a problem in the analysis, since Daubechies wavelets obey the multi resolution
analysis. We will have a look at the internal ordering for the one and two
dimensional case for the Haar wavelets.

2.2. Reconstruction Techniques. In the following we present two different
interesting reconstruction methods which are both optimal in their setting. We
highlight some advantages and disadvantages. Especially, we see that the per-
formance of both methods depends highly on the subspace angle between the
sampling and the reconstruction space. This gives rise to the discussion in §3.1
about the question for which sampling and reconstruction spaces the stable sam-
pling rate is linear.

2.2.1. PBDW-method. In [9, 12, 19] the PBDW-method from [41] is analysed.
This method arises from the application with PDEs. One tries to estimate a
state u of a physical system by solving a parametric family of PDEs depending
on a parameter µ, which may not be known exactly. Therefore, the value of u can
not be attained by just solving the PDE. Hence, other information are necessary.
In most applications, one has access to linear measurements li(u), i = 1, . . . ,M
of the state u. This alone is not sufficient to estimate u or more ambitiously
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even the parameter µ. Fortunately, one has also information about the PDE,
which can be used to analyse the solution manifold M. The solution manifold
is usually quite complicated and not given directly. Hence, approximations are
used. The method used in this context is the approximation by a sequence of
nested finite subspaces

R0 ⊂ R1 ⊂ . . . ⊂ RN , dim(Rj) = j,

where the approximation error is known to be εj for each subspace Rj . There
are a lot of different methods which allow to construct the spaces Rj as the
reduced basis method [11, 14,18,52] and the use of wavelets [42].

The given setting leads to the goal of trying to merge the data driven and
model based information, which leads to the concept of PBDW-method. Let
the measurement s := PSMu be given. The idea is to combine the information
given by the measurements and the PDE. This means we are searching for an
approximation u∗ ∈ Ks where

K = {u ∈ H : dist(u,RN ) ≤ εN} and Hs = {u ∈ H : PSMu = s} .

The intersection is then the space of possible solutions, i.e. K ∩ Hs = Ks. The
aim is to reduce the distance between the approximation u∗ and the true solution
u.

It was shown in [12] that the following approach introduced in [41] is optimal
for this task. First, the minimizing problem

v∗ = argminv∈RN
||s− PSM v||

2, (1)

is solved. The solution to the reconstruction problem is then given by the
mapping A∗ defined by

A∗(PSMu) := u∗ = s+ PS⊥M
v∗.

For the performance analysis, we first have a look at the instance optimality.
This means we analyse the error for a given measurement s, i.e.

||u−A(s)|| ≤ CA(s) dist(u,RN ), u ∈ Ks.

The algorithm which leads to the smallest constant CA(s) is called instance
optimal. It is clear that the error scales with the distance of the element u
from the reconstruction space RN . Due to the fact that we normally do not
know s a priori, this estimate is not very helpful. Hence, one is interested in
the performance for any kind of input s ∈ SM . Therefore, the performance of a
recovery algorithm A on any subset W ⊂ H is given by

EA(W ) := sup
u∈W
||u−A(PSMu)||.

Taking the infimum over the whole class gives the class optimal performance
on a given set W defined by

E(W ) := inf
A
EA(W ).
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It is shown in [12] that the presented algorithm is both instance and class
optimal and gives the estimate

||u−A∗(PSMu)|| ≤ µ(RN ,SM ) dist(u,RN ).

Hence, with this approach we do not get reasonable estimates, ifRN∩S⊥M 6= {0}.
And moreover, a detailed knowledge about the stable sampling rate is necessary
to get a useful method. In addition, it was shown in [41] that this estimate can
even be improved to

||u−A∗(PSMu)|| ≤ µ(RN ,SM ) dist(u,RN ⊕ (SM ∩R⊥N )). (2)

Note that (2) demonstrates how the PBDW-method is dependent on the SSR.
Moreover, it was shown in [12] that the constant µ(RN ,SM ) cannot be improved.
Thus, the estimate is sharp, which demonstrates the importance of the SSR
even stronger. Remark that (2) also shows that the error gets smaller with
larger M even though we keep the reconstruction space RN the same. Hence,
with increasing SM we are leaving the reconstruction space RN and get further
away as M increases. This is an important observation if one is particularly
interested in having the solution staying in the reconstruction space RN . If, for
example, RN yields a sparse representation of the solution, it may be desirable
to make sure that the solution stays in RN . In particular, if one would expand
the method further and include potential subsampling, a sparse solution would
be desirable. Note that this is possible for generalized sampling [44] as the
recovered solution always stays in RN .

2.2.2. Generalized Sampling. After discussing the concept of the PBDW-method,
we want to have a look at the different reconstruction technique generalized sam-
pling. Here the approach is a stable improvement of concepts as finite section
methods [13,26,28,38]. The main difference is that generalized sampling allows
for different dimensions on SM and RN , whereas in the finite section method
they are always the same. However, the finite section method becomes a special
case of generalized sampling when the dimensions of the sampling space and
reconstruction space are equal. The method is defined the following way.

Definition 2 ( [1]). For f ∈ H and N,M ∈ N, we define the reconstruction
method of generalized sampling GN,M : H → RN by

〈PSMGN,M (f), rj〉 = 〈PSM f, rj〉, j = 1, . . . , N, (3)

where PSM denotes the orthogonal projection on the subspace SM . We also refer
to GN,M (f) as the generalized sampling reconstruction of f .

We stress at this point that generalized sampling is also a linear reconstruction
scheme. In particular, one solves the following linear equation for αN ∈ RN .

U [N,M ]α[N ] = l(f)[M ],
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where

U [N,M ] =

 u11 . . . u1N
...

. . .
...

uM1 . . . uMN

 (4)

and uij = 〈rj , si〉, l(f)[M ] = (l1(f), . . . , lM (f)) ∈ RM . The matrix can be seen
in Figure 1 for different sampling and reconstruction spaces. The reconstruction
is given by GN,M (f) =

∑N
i=1 αiri. An interesting part about this is, that the

matrix U [N,N ] is very ill-conditioned for most cases. As pointed out in [3], in the
case of Fourier samples and wavelet reconstructions, the condition number grows
exponentially in N . This means that this approach is only feasible due to the
above mentioned allowance of a different amount of samples and reconstructed
coefficients. It can be shown, that there exist a certain amount of samples, such
that (3) obeys a solution.

Theorem 1 ( [2]). Let N ∈ N. Then, there exists M0 ∈ N, such that, for every
f ∈ H, (3) has an unique solution GN,M (f) for all M ≥ M0. Moreover, the
smallest M0 is the least number such that cos(ω(RN ,SM0)) > 0.

Just as for the PBDW-method, performance bounds of generalized sampling
were studied. Here we observe again that the reconstruction quality highly
depends on the subspace angle and on the relation between the data and the
reconstruction space.

Theorem 2 ( [2]). Retaining the definitions and notations from this chapter,
for all f ∈ H, we have

||GN,M (f)|| ≤ µ(RN ,SM )||f ||,
and

||f − PRN
f || ≤ ||f −GN,M (f)|| ≤ µ(RN ,SM )||f − PRN

f ||.
In particular, these bounds are sharp.

Considering only mappings which map into the reconstruction space RN , we
get that generalized sampling is also optimal in terms of achieving low condition
numbers and accuracy.

In [44] a consistent approach of generalized sampling was introduced. Let
f ∈ R then it can be represented as f =

∑∞
j=1 xjrj . The measurements can be

written as fM = P[M ]Ux, where P[M ] is the orthogonal projection onto space
spanned by the first M elements and U is defined as in (4). The introduced
method solves the non linear minimization problem

inf
µ∈`1
||µ||`1 with P[M ]Uµ = P[M ]Ux. (5)

The solution is then given by

gM =

∞∑
j=1

µjrj .
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The measurements of gM and f are naturally equal. Hence, this approach is
consistent and maps into the reconstruction space. In contrast to generalized
sampling it is not necessary to decide the amount of reconstructed coefficients a
priori.

In the setting of arbitrary sampling and reconstruction spaces, it was shown
that for every amount of reconstructed coefficients N there exist some M0 such
that the method reconstructs the data correct up to its first N coefficients.
Hence, this approach is convergent as the error is given by O(||P⊥RN

f ||) which
goes to zero for M → ∞. The speed of convergence is then depending on
the sampling and reconstruction space. This speed was analysed in [44] for the
case of Fourier measurements and wavelet reconstruction. Let the reconstruction
spaceR be given by wavelets and the sampling space S be the space representing
Fourier measurements. Then, for x ∈ `1(N) and N ∈ N, the following holds:

(1) If for some A > 0 and α ≥ 1, the Fourier transform of the scaling function
φ decays with

|φ̂(ξ)| ≤ A

(1 + |ξ|)α
, ξ ∈ R

then there exists some constant C independent of N (but dependent on

α and ε) such that for M = CN1+1/(2α−1), any solution ξ to (5) satisfies

||ξ − x||`1 ≤ 6||P⊥[N ]x||`1 .

(2) If for k = 0, 1, 2, for some A > 0 and α ≥ 1.5, the Fourier decay of the
scaling function φ, the wavelet ψ and their first two derivatives decays
with

|φ̂(k)(ξ)| ≤ A

(1 + |ξ|)α
, |ψ̂(k)(ξ)| ≤ A

(1 + |ξ|)α
, ξ ∈ R,

then there exists some constant C independent of N (but dependent on
φ, ψ and ε) such that for M = CN , any solution ξ to (5) satisfies

||ξ − x||`1 ≤ 6||P⊥[N ]x||`1 .

The assumptions of this result are natural for example for Daubechies wavelets.
The first assumptions is fulfilled by all Daubechies wavelets and the second one
is fulfilled for Daubechies wavelets of 7 or more vanishing moments. Numerical
experiments suggest that maybe even Daubechies wavelets with less vanishing
moments might have a linear relationship [44].

Finally, we would like to mention the stability of this approach. Stability is
considered in the `1 setting and the used definition is equal to the existence
of the condition number of the method. This means that the problem is well-
conditioned in terms of solving an `1 minimization problem rather than the
reconstruction of f from M samples. Especially, this means that the problem is
not robust against noise.
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2.2.3. Comparison. Both methods are optimal in their setting. The PBDW-
method is optimal in contrast to other consistent methods and generalized sam-
pling is optimal in the class of reconstruction methods, which map to the recon-
struction space RN . Also generalized sampling can be changed to a consistent
method, however, this method is then not robust. Moreover, both methods have
in common that their accuracy and stability is depending on the reciprocal of
the subspace angle µ(RN ,SM ). Therefore, we devote the following §3 to the
analysis of the relation between the dimension of the sampling and the recon-
struction space to bound the subspace angle. This similarity in the dependence
is not to surprising. When we compare the two methods. We see that the inter-
mediate step v∗ in (1) is the same as the generalized sampling solution. Hence,
one is solving the same least square problem. However, in the PBDW-method
this solution is tweaked to make the solution consistent. This is done by adding
the measurements and removing the measurements of the calculated solution,
i.e.

u∗ = v∗ + PSMu− PSM v
∗.

3. Stable Sampling Rate

3.1. Linearity of the Stable Sampling Rate. In §2.2 we saw that the sub-
space angle between the sampling and the reconstruction space controls the
reconstruction accuracy. Therefore, one is interested in the relation between the
amount of samples and the amount of reconstructed coefficients, such that the
subspace angle is bounded. In detail we are interested in the stable sampling
rate:

Θ(N, θ) = min {M ∈ N : µ(RN ,SM ) < θ} .

The stable sampling rate has been analysed for important cases which appear
frequently in practice, i.e. for the Fourier-Wavelet [3], Fourier-Polynomial bases
[31] and Walsh-Wavelet cases [30]. For the reconstruction with wavelets we get
for both Fourier and Walsh sampling that the stable sampling rate is linear.
This is the best relation one can wish for and means that the methods discussed
above are, up to a constant, as good as if one could access the wavelet coefficients
directly. In particular, for the Walsh case we have the following theorem.

Theorem 3 ( [30]). Let S and R be the sampling and reconstruction spaces of
Walsh functions and boundary wavelets in L2([0, 1]d). If N = 2dR where R ∈ N,
then for every θ ∈ (1,∞) there exist a constant Sθ depending on θ such that
Θ(N, θ) ≤ SθN = O(N) for any θ ∈ (1,∞), i.e. the stable sampling rate is
linear.

A natural question which arises from this theorem is, if it is possible to give
sharp bounds on the constant Sθ. In Figure 1 we can see the stable sampling
rate for different Wavelets and the bound θ = 2. The slope Sθ is unknown in
most cases and very difficult to find. This comes from the fact that for the
majority of wavelets the reconstruction matrix is not perfectly block diagonal as
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in 1d and 1f. Hence, one has to take the off diagonals into consideration. The
numerics suggest that the slope is higher the further away the reconstruction
matrix gets from block diagonal. Only for the case of Haar wavelets and Walsh
functions we get that the reconstruction matrix is perfectly block diagonal, as it
can be seen in 1b. Note that from the numerical example one may deduce that
Sθ = 1. This is indeed the case, and the analysis detailed below establishes that
Sθ = 1 for all θ ∈ (1,∞).

3.2. Sharpness for the Haar wavelet - Walsh case. The sharp bound on
Sθ can summarised in the following theorem.

Theorem 4. Let the sampling space S be spanned by the Walsh functions and
the reconstruction space R by the Haar wavelets in L2([0, 1]d). If N = 2dR for
some R ∈ N, then for every θ ∈ (1,∞) we have that the stable sampling rate is
the identity, i.e. Θ(N, θ) = N .

For the proof we first have a look at the behaviour of Haar wavelets in one
dimension under the Walsh transform. This way we also get a theoretical argu-
ment for the block structure that can be seen in the numerical implementation.

Lemma 1. Let ψ = X[0,1/2] −X(1/2,1] be the Haar wavelet. Then we have that

|〈ψR,j ,Wal(n, ·)〉| =

{
2−R/2 2R ≤ n < 2R+1, 0 ≤ j ≤ 2R − 1

0 otherwise.

Proof. For the scalarproduct we have

〈ψR,j ,Wal(n, ·)〉 =

∫ 1

0
2R/2

(
X[0,1/2](2

Rx− j)−X(1/2,1](2
Rx− j)

)
Wal(n, x)dx

= 2R/2

(∫
∆R+1

2j

Wal(n, x)dx−
∫

∆R+1
2j+1

Wal(n, x)dx

)
Let ∆p

k = [2−pk, 2−p(k + 1)). We know from [8] that the function Wal(n, x) for

2p ≤ n < 2p+1 takes the value +1 on the interval ∆p+1
2k or ∆p+1

2k+1 and −1 on the
other one for k = 0, . . . , 2p − 1. Now, we have a look at three different cases.

Case 1: n < 2R. There exist r < R such that 2r ≤ n < 2r+1. Then, the
function Wal(n, x) is constant on the interval ∆r

k for any k = 0, . . . , 2r − 1.

Remark, that for j = 0, . . . , 2R − 1 we have that the rounding error is bounded
as follows

b2r−Rjc ≥ 2r−Rj − (1− 2r−R).

Then we have the interval inclusion

∆R+1
2j = [2−R−1(2j), 2−R−1(2j + 1))

= [2−r2−R−1+r2j, 2−r2−R−1+r(2j + 1))

⊂ [2−rb2r−Rjc, 2−r(b2r−Rjc+ 1)) = ∆r
b2r−Rjc.



12 L. TERHAAR AND A. HANSEN

(a) Haar Wavelet where
Θ(N, 2) = N

(b) Haar-Walsh

(c) Daubechies
2 Wavelet where
Θ(N, 2) = 1.49N

(d) db2 - Walsh

(e) Daubechies
8 Wavelet where
Θ(N, 2) = 2N

(f) db8 - Walsh

Figure 1. Stable sampling rate for θ = 2 and reconstruction matrix
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Moreover,

∆R+1
2j+1 ⊂ ∆r

b2r−Rjc.

Hence, Wal(n, x) takes the same value on ∆R+1
2j and ∆R+1

2j+1. Therefore, the two
integrals are equal and the scalarproduct vanishes.

Case 2: 2R ≤ n < 2R+1. We have for j = 0, . . . , 2R − 1 that Wal(n, x) is equal

to +1 on ∆R+1
2j or ∆R+1

2j+1 and −1 on the other. Therefore, we have either

〈ψR,j ,Wal(n, x)〉 = 2R/2

(∫
∆R+1

2j

Wal(n, x)dx−
∫

∆R+1
2j+1

Wal(n, x)dx

)

= 2R/2

(∫
∆R+1

2j

1dx−
∫

∆R+1
2j+1

−1dx

)
= 2R/2(2−R) = 2−R/2.

Or in the other case analogously

〈ψR,j ,Wal(n, x)〉 = 2R/2

(∫
∆R+1

2j

−1dx−
∫

∆R+1
2j+1

1dx

)
= 2R/2(−2−R) = −2−R/2.

Now, we are left with the last case.

Case 3: n ≥ 2R+1. There exists an integer r ≥ R+ 1 such that 2r ≤ n < 2r+1.
Similar to the first case. Moreover, we have for j = 0, . . . , 2R − 1 that

∆R+1
2j =

2r−Rj+2r−R−1−1⋃
l=2r−Rj

∆r+1
2l ∪∆r+1

2l+1.

and with the fact that Wal(n, x) takes the value +1 on one of the invervals
∆r

2l and ∆r
2l+1 and −1 on the other, we have that the function Wal(n, x) takes

the values +1 and −1 on half of the interval of ∆R+1
2j . Therefore, the integral

vanishes. The same holds true for ∆R+1
2j+1, such that we get the desired result.

�

Before we prove Theorem 4 we analyse the reconstruction matrix for the Haar
wavelet - Walsh case in two dimensions. The amount of functions which span
the wavelet space in d dimensions growth exponentially with d. Therefore, we
restrict ourselves to two dimensions to underline the main idea. In 2 we can
see that the reconstruction matrix in 2 dimensions has additional structure in
each level. Similar to the one dimensional case we have perfect block structure
for the Haar case and nearly block structure for the higher order wavelets. For
the analysis of this phenomena in the Haar wavelet - Walsh case we have a look
at the definition and order of the two dimensional Haar wavelet. Remark, that
this is necessary for the analysis of the reconstruction matrix, instead of the
SSR. In two dimensions the wavelets are constructed by the tensor product of
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the wavelet and the scaling function and the tensor product only between the
wavelets. Especially we have for R ∈ N, 0 ≤ j1, j2 ≤ 2R − 1 that

ψR,j1,j2,l(x1, x2) =


φR,j1(x1)ψR,j2(x2) l = 1

ψR,j1(x1)φR,j2(x2) l = 2

ψR,j1(x1)ψR,j2(x2) l = 3

(6)

and for the first level scaling function

φ(x1, x2) = φ(x1)φ(x2).

For the order of the reconstruction matrix we first take the first level scaling
function φ. Then, we increase by levels, in each level R we let first j1 go from
0, . . . , 2R − 1 and then j2 = 0, . . . , 2R − 1. Finally, we let l = 1, . . . , 3. Such
that we get for the order of the wavelets: φ, ψR,0,0,1, . . . , ψR,2R−1,0,1,ψR,0,1,1, . . .
ψR,2R−1,1,1, . . . ψR,2R−1,2R−1,1, ψR,0,0,2, . . . , ψR,2R−1,2R−1,3.

Due to the fact that the higher dimensional wavelets are constructed also by
means of the scaling functions, it is necessary to analyse the decay rate for the
scaling function as well. Moreover, this is also a main ingredient for the proof of
Theorem 4 as we represent the union of the wavelet spaces by the scaling space.

Lemma 2. Let φ = X[0,1] be the Haar scaling function. Then we have that the
Walsh transform obeys the following block and decay structure

|〈φR,j ,Wal(n, ·)〉| =

{
2−R/2 n < 2R, 0 ≤ j ≤ 2R − 1

0 otherwise.
(7)

Proof. The scalarproduct can be expressed as integral over the interval ∆R
j .

〈φR,j ,Wal(n, ·)〉 =

∫ 1

0
2R/2X[0,1](2

Rx− j) Wal(n, x)dx

= 2R/2
∫

∆R
j

Wal(n, x)dx.

We look at the two different cases
Case 1: n < 2R Remember from before that Wal(n, x) is constant to +1 or
−1 on the interval ∆R

j for j = 0, . . . , 2R − 1. Hence, we get that

|〈φR,j ,Wal(n, ·)〉| = |2R/2
∫

∆R
j

Wal(n, x)dx| = 2−R/2.

Case 2: n ≥ 2R This follows as in Case 3 of Theorem 1. With the difference
that we are looking at the integral over the interval ∆R

j instead of the two

integrals ∆R+1
2j and ∆R+1

2j+1. Nevertheless, they vanish for the same reason. �

With this in hand we can now state the structure of the reconstruction matrix
in two dimensions.



STABLE SAMPLING RATE 15

(a) Haar-Walsh (b) db2 - Walsh (c) db8 - Walsh

Figure 2. Reconstruction matrix in 2 dimensions

Corollary 1. Let ψR,j1,j2,l be the Haar wavelet defined as in (6). Then, the

Walsh transform has the following property for 0 ≤ j1, j2 ≤ 2R − 1

|〈ψR,j1,j2,1,Wal(n1, n2, ·, ·)〉| =

{
2−R n1 ≤ 2R, 2R ≤ n2 < 2R+1

0 otherwise

|〈ψR,j1,j2,2,Wal(n1, n2, ·, ·)〉| =

{
2−R 2R ≤ n1 < 2R+1, n2 ≤ 2R

0 otherwise

and for the third version

|〈ψR,j1,j2,3,Wal(n1, n2, ·, ·)〉| =

{
2−R 2R ≤ n1 < 2R+1, 2R ≤ n < 2R+1

0 otherwise.

Proof. The proof follows directly from the tensor product structure and Theorem
1 and Lemma 2. �

After this sorrow analysis of the behaviour of the wavelet and the scaling
function under the Walsh transform. We are able to proof Theorem 4.

Proof of Theorem 4. We want to analyse the subspace angle µ(RN ,SM ) for N =
M . In detail, we are interested in bounding µ(RM ,SM ) < θ for all θ ∈ (1,∞).
Hence, we try to show that µ(RM ,SM ) = 1 or equally 1/µ(RM ,SM ) = 1 for
M = 2dR. Due to the fact that the circle {r ∈ RM , ||r| = 1} is compact and the
orthogonal projection is continuous there exist ϕ ∈ RM , ||ϕ|| = 1 such that we
have

1

µ(RM ,SM )
= inf

r∈RM ,||r||=1
||PSM r|| = ||PSMϕ|| = 1− ||P⊥SMϕ||.

The minimal element ϕ can be represented by

ϕ =
2R−1∑
j=0

d⊗
i=1

αjφR,j with
2R−1∑
j=0

|αj |2 = 1,
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where the multi index notation is used. Then we have that

P⊥SMϕ =
∞∑

n=2R+1

〈
2R−1∑
j=0

d⊗
i=1

αjφR,j ,Wal(n, ·)〉

=

∞∑
n=2R+1

2R−1∑
j=0

d∑
i=1

αji〈φR,ji ,Wal(ni, ·)〉.

With (7) we get that this sum vanishes. Hence,

µ(RM ,SM ) = 1

as desired. �

4. Numerical Experiments

In this section we want to underline the differences between generalized sam-
pling and the PBDW technique with examples using both Fourier and Walsh
samples. We emphasise that some of the examples are chosen particularly to
highlight the differences between the two methods. Hence, the examples may
not reflect typical practical scenarios. In Figure 3 we look at an extreme case
and consider the task of recovering the Haar wavelet from Fourier coefficient.
Generalized sampling will obviously recover the function perfectly given that we
choose the Haar basis for the reconstruction space. Although in this very special
case, since one gets perfect recovery, the recovered solution is consistent with
the samples, this is not the case in general. In particular, generalized sampling
will usually provide non-consistent solution. The PBDW-method on the other
hand is always consistent. The effect of this is that, even when the reconstruc-
tion space is fixed, the solution changes with the number of samples. Moreover,
in this example it becomes closer, as the number of samples increase, to the
solution provided by simply truncating the Fourier series.

The next example in Figure 4 considers Walsh samples. The original function
displayed in Figure 4a is continuous with two jump discontinuities. Moreover,
the continuous part is very well represented with Daubechies 8 wavelets, as
demonstrated by the generalized sampling reconstruction in Figure 4b. Never-
theless, there are some artefacts at the jumps. Walsh functions represent the
jumps better but lead to heavy artefacts along the continuous part of the func-
tion 3c. Hence, both spaces have pros and cons and can represent the signal
well in different areas. The PBDW-method allows us to take advantages from
both spaces, as it does not force the solution to stay in the reconstruction space.
This leads to a different reconstruction quality as in 4d and 4f. In this case we
also get better results with more samples even though we reconstruct the same
amount of coefficients.

In the last example we used the code from [24] and consider reconstruction
of images from Fourier samples. In Figure 5 we see that the PBDW-method
provides good results in the 2D setting and with Fourier measurements. The
function is very smooth outside the discontinuous part. Therefore it can be nicely



STABLE SAMPLING RATE 17

(a) Original Signal (b) Generalized Sam-
pling with 64 samples

(c) Truncated Fourier
Transform from 64 sam-
ples

(d) PBDW-method from
64 samples

(e) Truncated Fourier
Transform from 256
samples

(f) PBDW-method from
256 samples

Figure 3. Reconstruction from Fourier measurements with Haar
wavelets and dimRN = 32
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(a) Original Signal (b) Generalized Sam-
pling with 128 samples

(c) Truncated Walsh
Transform from 128
samples

(d) PBDW-method from
128 samples

(e) Truncated Walsh
Transform from 256
samples

(f) PBDW-method from
256 samples

Figure 4. Reconstruction from binary measurements with
Daubechies wavelets 8 and dimRN = 64
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(a) Original Signal (b) Truncated Fourier
transform with 1282

samples

(c) Generalized sam-
pling from 1282 samples

(d) PBDW-method from
1282 samples

(e) Truncated Fourier
Transform from 2562

samples

(f) PBDW-method from
2562 samples

Figure 5. Reconstruction from Fourier measurements with
Daubechies wavelets 4 and dimRN = 642
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represented with wavelets in this area. Nevertheless, there are some obvious
artefacts around the discontinuity in Figure 5c. The artefacts that arise from
the truncated Fourier transform are also easy to spot in Figure 5b and less clear
in Figure 5e due to the increased amount of samples. With the PBDW-method
it is possible to merge the advantages of both systems and decrease the error,
as seen in Figures 5d and 5f. We can also see that an increased amount of
samples leads to better performance of the PBDW-method even if the amount
of reconstructed coefficients stays the same.
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