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The Problem

Let M be a smooth manifold and let X ∈ X(M) be a smooth vector field with flow

map θt i.e.
d

dt
θt(p) = Xθt(p).

Let Φh be a numerical integrator for X i.e. Φh is a one-parameter family of

diffeomorphisms that is smooth in h, Φ0 = id and d
dh

∣∣∣
h=0

Φh = X.

• Find a vector field X̃ such that the flow map θ̃t of X̃ is close to the numerical

solution i.e. d(θ̃h(p),Φh(p)) is small for some metric d on M.

• Determine the geometric properties of X̃ from the geometric properties of Φh.
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The Estimates

Theorem 1 (ACH) Let X ∈ X(M) and let Φh be a consistent integrator for X and suppose

K ⊂ M is a compact and connected subset. Then,

(i) for sufficiently small h > 0 there exists a family of smooth vector fields {Xi} on U , an

open set containing K, such that for X̃N (h) = X0 + hX1 + . . . hNXN we have

d(θ̃h(p), Φh(p)) ≤ CNhN , p ∈ K, CN > 0,

where θ̃h is the flow map of X̃N (h) and d is some metric on M.

(ii) if M, X and Φh are analytic. Then for sufficiently small h > 0 there exists an analytic

vector field X̃(h) and C, γ > 0 such that

d(Φh(p), θ̃h(p)) ≤ Che−γ/h

for all p ∈ K .
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Preliminaries

If ϕ : M → M is smooth and τ is a covariant tensor field then the pull-back ϕ∗τ is

given by

(ϕ∗τ)p(X1, . . . ,Xn) = τϕ(p)(ϕ∗X1, . . . , ϕ∗Xn), X1, . . . ,Xn ∈ TpM.

Let X ∈ X(M) and τ a covariant tensor field on M. The Lie derivative of τ with

respect to X is given by

(LXτ)p = lim
t→0

θ∗t (τθt(p)) − τp

t
,

where θt is the flow map of X.

By a k−form we mean a smooth covariant alternating k-tensor field on M. The set

of k-forms is denoted by Ωk(M).
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Cartan’s Subgroups

• Diff(M), the group of all diffeomorphisms on M.

• The diffeomorphisms preserving a symplectic 2-form ω on M, that is the set of

diffeomorphisms ϕ such that ϕ∗ω = ω.

• The diffeomorphisms preserving a volume form µ on M, that is the set of

diffeomorphisms ϕ such that ϕ∗µ = µ.

• The diffeomorphisms preserving a given contact 1-form α up to a scalar function, that is

the set of diffeomorphisms ϕ such that (ϕ∗α)p = cϕ(p)αp.

• The group of diffeomorphisms preserving a given symplectic form ω up to an arbitrary

constant multiple, that is the set of diffeomorphisms ϕ such that ϕ∗ω = cϕω.

• The group of diffeomorphisms preserving a given volume form µ up to an arbitrary

constant multiple, that is the set of diffeomorphisms ϕ such that ϕ∗ω = cϕω.
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Diff (M) as a Lie group

Recall that TidDiff(M) = X(M) i.e.

TidDiff(M) =

{
d

dt

∣∣∣
t=0

θt : θt is a flow map

}
.

Note that

TidDiff(M) =

{
d

dt

∣∣∣
t=0

Φt : Φt is a one parameter family

}
.

Definition 2 Let S ⊂ Diff(M) be a set of smooth one parameter families of

diffeomorphisms. Define

TidS = {X ∈ X(M) : X =
d

dt

∣∣∣
t=0

Φt, Φt ∈ S},

where TidS will be called the tangent space at the identity.
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Subsets of Diff(M) Subsets of X(M)

Let ω ∈ Ω2(M) be symplectic.

{ϕ ∈ Diff(M) : ϕ∗ω = ω} {X ∈ X(M) : LXω = 0}

{ϕ ∈ Diff(M) : ϕ∗ω = cϕω} {X ∈ X(M) : LXω = βXω}

Let µ ∈ Ωn(M) be a volume form.

{ϕ ∈ Diff(M) : ϕ∗µ = µ} {X ∈ X(M) : LXµ = 0}

{ϕ ∈ Diff(M) : ϕ∗µ = cϕµ} {X ∈ X(M) : LXµ = βXµ}

Let α ∈ Ω1(M) be a contact form.

{ϕ ∈ Diff(M) : (ϕ∗α)p = cϕ(p)αp} {X ∈ X(M) : (LXα)p = βX(p)αp}

Let f ∈ C∞(M).

{ϕ ∈ Diff(M) : f ◦ ϕ = f} {X ∈ X(M) : f∗X = 0}

Let σ : Diff(M) → Diff(M) be smooth.

{ϕ ∈ Diff(M) : σ(ϕ) = ϕ−1} {X ∈ X(M) : σ∗X = −X}
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Theorem 3 (ACH) Suppose that X ∈ A ⊂ X(M) where A is a linear subspace.

Let S ⊂ Diff(M) be a set of smooth one parameter families of diffeomorphisms

such that S is a semi group and that A = TidS. Let Φh be an integrator for X and

suppose also that Φh ∈ S. Then the perturbed vector field X̃(h) ∈ A.
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WARNING!!!

Note that if A = TidS there may exist S̃ such that S 6= S̃ and A = TidS̃. The

reason is that exp : X(M) → Diff(M) is not locally onto.

Example: Let ω be a symplectic 2-form on M. Let

A = {X ∈ X(M) : LXω = 0} and

S = {ϕt ∈ Diff(M) : ϕ∗

t ω = ω,ϕt is a flowmap}. Then A = TidS.

Let X ∈ A and let the integrator Φh be Euler’s method applied to X and let

S̃ = S ∪ Φh. By consistency

d

dh

∣∣∣
h=0

Φh = X.

Hence TidS̃ = A.
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The Lie derivative

Note that the previous example shows that the set S in Theorem 3 must have some

structure, for if we relax the semi-group hypothesis in Theorem 3 and require S only

to be a set then S̃ is a set and TidS̃ = A so the perturbed vector field of Euler’s

method would be symplectic, a contradiction.

Proposition 4 Let Φt be a one parameter family of diffeomorphisms that is smooth

in t and satisfies Φ0 = id. Suppose that X ∈ X(M) and d
dt

∣∣
t=0

Φt = X. Let τ

be a smooth covariant k-tensor field. Then

(LXτ)p = lim
t→0

Φ∗

t (τΦt(p)) − τp

t
.
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Corollary 5 Let τ ∈ Ωk(M) be a smooth k-form. Let

S1 = {Φt : Φ∗

t τ = τ}

S2 = {Φt : Φ∗

t τ = cΦ(t)τ, cΦ ∈ C∞(R)}

S3 = {Φt : (Φ∗

t τ)p = cΦ(t, p)τp, cΦ ∈ C∞(R,M)}.

Also, let

A1 = {X ∈ X(M) : LXτ = 0}

A2 = {X ∈ X(M) : LXτ = αXτ, αX constant}

A3 = {X ∈ X(M) : LXτ = αXτ, αX ∈ C∞(M)}.

Then TidS1 = A1, TidS2 = A2 and TidS3 = A3
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Corollary 6 Let X ∈ X(M) and τ ∈ Ωk(M). Let Φh be a numerical integrator

for X.

(i) If LXτ = 0 and Φ∗

hτ = τ, then the perturbed vector field X̃(h) satisfies

LX̃τ = 0.

(ii) If LXτ = αXτ and Φ∗

hτ = cΦ(h)τ, where αX is constant and cΦ is smooth,

then the perturbed vector field X̃(h) satisfies LX̃τ = αX̃τ.

(iii) If LXτ = αXτ where αX ∈ C∞(M) and

(Φ∗

hτ)p = cΦ(h, p)τp, cΦ ∈ C∞(R ×M)}, then the perturbed vector field

X̃(h) satisfies LX̃τ = αX̃τ where αX ∈ C∞(M).

SciCADE 07 Page 12



Theorem 7 (ACH) Let X ∈ X(M) with corresponding flow map θt, and let Φh be a

numerical integrator for X with corresponding perturbed vector field X̃(h) and flow

map θ̃t. Then

(i) if ω is a symplectic 2-form on M such that θ∗t ω = ω and Φ∗

hω = ω then the

perturbed vector field X̃(h) is symplectic e.g. it satisfies LX̃(h)ω = 0, and

θ̃∗t ω = ω.

(ii) if µ is a volume form on M such that θ∗t µ = µ and Φ∗

hµ = µ then the

perturbed vector field X̃(h) is divergence free e.g. it satisfies div X̃(h) = 0,

and θ̃∗t µ = µ.

(iii) if ω is a symplectic 2-form on M such that θ∗t ω = α(t)ω and Φ∗

hω = β(h)ω,

where α, β : R → R are smooth, then the perturbed vector field X̃(h) satisfies

LX̃(h)ω = ρω, where ρ is a real constant and θ̃∗t ω = α̃(t)ω, where α̃ is

smooth.
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(iv) if µ is a volume form on M such that θ∗t µ = α(t)µ and Φ∗

hµ = β(h)µ, where

α, β : R → R are smooth, then the perturbed vector field X̃(h) satisfies

LX̃(h)µ = ρµ, where ρ is a real constant and θ̃∗t µ = α̃(t)µ, where α̃ is

smooth.

(v) if τ is a contact 1-form on M such that (θ∗t τ)p = α(t, p)τp and

(Φ∗

hτ)p = β(h, p)τp, where α, β ∈ C∞(R ×M) then the perturbed vector

field X̃(h) satisfies LX̃(h)τ = ρτ, where ρ ∈ C∞(M) and

(̃θ∗t τ)p = α̃(t, p)τp, where α ∈ C∞(R ×M).

(vi) if f : M → R is a smooth function such that f∗X = 0 and f ◦ Φh = f. Then

the perturbed vector field X̃(h) satisfies f∗X̃(h) = 0 and f ◦ θ̃t = f.
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Smooth homomorphisms and their anti fixed points

Theorem 8 (ACH) Let M be a compact manifold. Let X ∈ X(M) with

corresponding flow map θt and let Φh be a numerical integrator for X. Let

σ : Diff(M) → Diff(M) be a smooth homomorphism and define

A = {X ∈ X(M) : σ∗X = −X}, S = {ϕ ∈ Diff(M) : σ(ϕ) = ϕ−1}.

Suppose that θt ∈ S. If Φh ∈ S then the perturbed vector field X̃(h) ∈ A and

θ̃t ∈ S, where θ̃t is the flow map of X̃(h).
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Let ρ : M → M be a diffeomorphism. Denote the mapping Ψ 7→ ρ ◦ Ψ ◦ ρ−1 by

σ. Note that this is a homomorphism on Diff(M), since σ(Ψ ◦Φ) = σ(Ψ) ◦ σ(Φ).

Theorem 9 (ACH) Let M be a compact manifold. Let X ∈ X(M) and let Φt be a

numerical integrator for X . Suppose that σ is defined as above and that

σ(θX,h) = θ−1
X,h and σ(Φh) = Φ−1

h

then the perturbed vector field X̃(h) of Φh satisfies σ∗X̃(h) = −X̃(h) and

σ(θ̃X,t) = θ̃−1
X,t, where θ̃ is the flow of X̃(h).
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