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In Magnetic Resonance Imaging (MRI) the mathematical reconstruction problem is as follows:
Given

f = Fg, g ∈ L2(RN ),

reconstruct g, where F is the Fourier transform. The MRI machine will only acquire point samples
of f and due to physical constraints one can only acquire a limited amount of samples per time unit.
The mathematical task is therefore to reconstruct g as accurately as possible with the given point
samples of f . The standard way of doing reconstruction is via the Shannon Sampling Theorem [4]
that assures that if g is compactly supported then g can be reconstructed perfectly from (countably
many) point samples of f at a certain rate depending on the support of g. As one can only sample
finitely many points, this type of reconstruction is based on approximating g with a trigonometric
polynomial. However, the speed of convergence is based on how well g can be approximated by
trigonometric polynomials. In many cases there will be other bases or frames that are more suitable
(typically wavelets or shearlets), and this is the motivation for a new generalized sampling theory [1]
that has just been launched. This theory allows one to reconstruct using arbitrary bases and frames,
and therefore one can often improve the quality of the reconstruction dramatically.

Combining these techniques with the novel ideas of Compressed Sensing [2] allows one to im-
prove the reconstruction even further and in particular it allows one to speed up the acquisition time.
The traditional way of doing Compressed Sensing is by subsampling Fourier samples uniformly at
random. This technique turns out to be less than optimal as it requires the sampling basis (trigono-
metric polynomials) and the reconstruction basis (wavelets) to be incoherent [3] (the inner products
of the sampling basis and the reconstruction basis should be small). By introducing a new type of
semi-random sampling scheme one can break this incoherence barrier and show that this technique
dramatically outperforms the traditional approach.

The key to the improvements of these new techniques is to use a "continuous/analog" model as
opposed to a "discrete" model. In particular, one ends up with an infinite-dimensional reconstruction
problem as opposed to the finite-dimensional method that is traditionally applied. Although the re-
construction can be dramatically improved using these techniques, both the analysis and the actual
computations are more difficult than for the more traditional methods.

There are a lot of open questions, in particular related to reconstruction in frames such as Curvelets,
Shearlets, Contourlets etc as well as Total Variation approaches. The project can be made as pure or
applied as one wants. In particular, there is a great need for “theorem/proof”-type of research as well
as actual coding, algorithm design and experiments with real life MRI data. (The pure part of the
project requires functional analysis, some wavelet theory and probability and the applied part requires
numerical analysis and programming skills.)
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