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Setup

Consider the linear system
y = Ψ∗x ,

where

• x = (x1, x2, . . . , xN)> ∈ CN is the unknown object,

• y = (y1, y2, . . . , yN)> ∈ CN is the vector of measurements,

• Ψ ∈ CN×N is an measurement matrix (assumed to be an isometry).

Typically, we can access only a small subset of measurements

{yj , j ∈ Ω},

where Ω ⊆ {1, 2, . . . ,N}, |Ω| = m� N.

Problem: Recover x from the underdetermined system PΩΨ∗w = PΩy ,
where PΩ is the projection onto indices in Ω.
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Compressed sensing (CS)

Under appropriate conditions on x , Ψ and Ω, we can recover x from PΩy
in a stable and robust manner with efficient numerical algorithms.

• Origins: Candès, Romberg & Tao (2006), Donoho (2006).

• Since then, the subject of thousands of papers, dozens of survey articles,

and one textbook (Foucart & Rauhut, Birkhauser, 2013).

• Applications: medical imaging, seismology, analog-to-digital conversion,

microscopy, radar, sonar, communications,...

Key principles: sparsity, incoherence, uniform random subsampling
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Principles

Sparsity: There exists an isometry Φ ∈ CN×N (e.g. a wavelet transform)
such that x = Φz , where the vector z is s-sparse:

| {j : zj 6= 0} | ≤ s.

Incoherence: The coherence of U = (uij) = Ψ∗Φ is

µ(U) = max
i,j=1,...,N

|uij |2 ∈ [N−1, 1]

The pair (Ψ,Φ) is incoherent if µ(U) ≤ c/N.

Uniform random subsampling: The index set

Ω ⊆ {1, . . . ,N}, |Ω| = m,

is chosen uniformly at random.
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Reconstruction algorithm

Typically, one solves the convex optimization problem

min
w∈CN

‖Φ∗w‖l1 subject to ‖PΩΨ∗w − y‖l2 ≤ δ,

where ‖w‖l1 = |w1|+ |w2|+ . . .+ |wN | is the l1-norm, and

y = PΩΨ∗x + e

are noisy measurements with ‖e‖l2 ≤ δ.

• Other approaches: greedy methods (e.g. OMP, CoSaMP), thresholding

methods (e.g. IHT, HTP), message passing algorithms,....
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Compressed sensing theorem

Theorem (see Candès & Plan, Adcock & Hansen)

Let 0 < ε ≤ e−1 and suppose that

m & s · N · µ(U) · log(ε−1) · log N,

for some universal constant C. Then with probability greater than 1− ε
any minimizer x̂ of the problem

min
w∈CN

‖Φ∗w‖l1 subject to ‖PΩΨ∗w − y‖l2 ≤ δ
√

N/m,

satisfies
‖x − x̂‖l2 . σs(x) +

√
sδ,

where σs(x) = min{‖Φ∗x − z‖l1 : z is s-sparse}.

⇒ If U is incoherent, i.e. µ(U) = O
(
N−1

)
, then m ≈ s log N � N.
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Recovery from the Fourier transform

Applications: Magnetic Resonance Imaging (MRI), X-ray Computed
Tomography, Electron Microscopy, Seismology, Radio interferometry,....

Mathematically, all these problems can be reduced (possibly via the
Fourier slice theorem) to the following:

Given {f̂ (ω) : ω ∈ Ω}, recover the image f .

Here Ω ⊆ R̂d is a finite set and f̂ is the Fourier transform (FT).

However, f is a function (not a vector) and f̂ is its continuous FT.
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Standard CS approach

We approximate f ≈ x on a discrete grid, and let

• Ψ be the DFT,

• Φ be a discrete wavelet transform.

However, this setup is a discretization of the continuous model:

continuous FT ≈ discrete FT ⇒ measurements mismatch

Issues:

1. If measurements are simulated via the DFT ⇒ inverse crime.
• In MRI, see Guerquin–Kern, Häberlin, Pruessmann & Unser (2012)

2. If measurements are simulated via the continuous FT. Minimization
problem has no sparse solution ⇒ poor reconstructions.
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Poor reconstructions with standard CS

Example: Electron microscopy, f (x , y) = e−x−y cos2( 17πx
2 ) cos2( 17πy

2 ),
6.15% Fourier measurements.

Original (zoomed) Fin. dim. CS, Err = 12.7% Inf. dim. CS, Err = 0.6%
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Infinite-dimensional formulation

Consider two orthonormal bases of a Hilbert space H (e.g. L2(0, 1)d):

• Sampling basis: {ψj}j∈N, e.g. the Fourier basis ψj(x) = exp(2πij · x).

• Sparsity basis: {φj}j∈N, e.g. a wavelet basis.

Let f ∈ H be the object to recover. Write

• xj = 〈f , φj〉 for the coefficients of f , i.e. f =
∑

j∈N xjφj ,

• yj = 〈f , ψj〉 for the measurements of f .

Define the infinite matrix U = {〈φj , ψi 〉}i,j∈N ∈ B(`2(N)) and note that

Ux = y .
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New concepts

Uniform random subsampling: It is meaningless to draw Ω ⊆ N, |Ω| = m
uniformly at random. It is also infeasible in practice due to bandwidth
limitations. Hence, we fix the sampling bandwidth N and let

Ω ⊆ {1, . . . ,N}, |Ω| = m,

be drawn uniformly at random.

Sparsity: Given finite sampling bandwidth, we cannot expect to recover
any s-sparse infinite vector x stably. Let M be the sparsity bandwidth,
and suppose that x is (s,M)-sparse:

| {j = 1, . . . ,M : xj 6= 0} | ≤ s, xj = 0, j > M.

Coherence: Define µ(U) = sup |uij |2 as before.
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Uneven sections and the balancing property

Let PN : l2(N)→ l2(N) be the projection onto the first N elements, i.e.
PNx = {x1, . . . , xN , 0, 0, . . .}, x ∈ l2(N).

Key idea: Given a sparsity bandwidth M, we need to take the sampling
bandwidth N sufficiently large.

Definition (The balancing property)

N ∈ N and K ≥ 1 satisfy the strong balancing property with respect to
s,M ∈ N if

(i) ‖PMU∗PNUPM − PM‖l∞ ≤ 1
8

(
log2(4

√
sKM)

)−1/2
,

(ii) ‖P⊥MU∗PNUPM‖l∞ ≤ 1
8 .

Why: The uneven section PNUPM dictates the stability of the mapping
from sampling bandwidth N to sparsity bandwidth M.

• Typically cannot take M = N, i.e. the finite section PNUPN .
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Infinite-dimensional CS theorem

Theorem (BA, Hansen)

Suppose that N ∈ N and K = N/m ≥ 1 satisfy the strong balancing
property with respect to s,M ∈ N and also, for some for 0 < ε ≤ e−1,

m & s · N · µ(U) · log(ε−1) · log(K M̃
√

s)

where M̃ = min{i ∈ N : maxk≥i ‖PNUP{i}‖ ≤ 1/(32K
√

s)}. If x̂ is any
minimizer of

inf
z∈l1(N)

‖z‖l1 subject to ‖PΩUz − y‖l2 ≤ δ
√

K ,

then
‖x − x̂‖l2 . σs,M(x) +

√
sδ,

where σs,M(x) = min{‖x − z‖l1 : z is (s,M)-sparse}.
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Is this useful?
Consider the Fourier/wavelets problem.

Image Reconstruction

Unfortunately, for any wavelet basis with Fourier samples,

µ(U) = O (1), N →∞.

⇒ one must take m ≈ s · N · µ(U) = O (N) measurements.
17 / 44
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Lack of incoherence

Recall that
µ(U) = sup

i,j∈N
|uij |2.

Hence µ(U) is a fixed quantity, independent of N.

This means that the bound

m & s · N · µ(U)× log factors,

is � s unless the sparsity bandwidth M, and therefore N, is small.

Hence, any such problem we run into the coherence barrier: when
subsampling uniformly at random, the number of samples required is
typically much larger than the sparsity s.
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But CS is known to work in practice for MRI

To use CS here, one must sample according to a variable density (Lustig,
Donoho & Pauli (2007)). Rather than choosing Ω uniformly at random,
one oversamples at low frequencies.

Example: same image and same number of samples.

Image index set Ω ⊆ Z2
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Infinite-dimensional CS requires new concepts

As shown by the previous example, neither

• Incoherence

• Uniform random subsampling

are applicable in this infinite-dimensional setting.

Claim: In the previous example, sparsity alone does not explain the
reconstruction quality observed. In fact, the structure/ordering of the
sparsity plays a crucial role.
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The Flip Test

Recall: Sparsity means that there are s important coefficients, and their
locations do not matter.

The Flip Test (BA, Hansen, Poon & Roman (2013)):

1. Take an image f with coefficients x . Form the measurements y = PΩUx
and compute the approximation f1 ≈ f by the usual CS reconstruction
with appropriate Ω

min
z∈CN

‖z‖l1 subject to ‖PΩUz − y‖l2 ≤ δ.

2. Permute the order of the wavelet coefficients by flipping the entries of x ,

to get a vector x̃ .

3. Form measurements ỹ = PΩUx̃ and use exactly the same CS

reconstruction to get the approximation x̃1 ≈ x̃ .

4. Reverse the flipping operation to get the approximation f2 ≈ f .

21 / 44
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3. Form measurements ỹ = PΩUx̃ and use exactly the same CS

reconstruction to get the approximation x̃1 ≈ x̃ .

4. Reverse the flipping operation to get the approximation f2 ≈ f .

21 / 44



Compressed sensing Towards infinity To infinity and beyond! Back to finite dimensions Conclusions

The Flip Test

Recall: Sparsity means that there are s important coefficients, and their
locations do not matter.

The Flip Test (BA, Hansen, Poon & Roman (2013)):

1. Take an image f with coefficients x . Form the measurements y = PΩUx
and compute the approximation f1 ≈ f by the usual CS reconstruction
with appropriate Ω

min
z∈CN

‖z‖l1 subject to ‖PΩUz − y‖l2 ≤ δ.

2. Permute the order of the wavelet coefficients by flipping the entries of x ,

to get a vector x̃ .
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Numerical results

Sparsity is unaffected by permuations, so f1 and f2 should give the same
reconstructions:

unflipped reconstruction f1 flipped reconstruction f2

• 10% subsampling at 1024× 1024 with a variable density strategy
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New assumptions for compressed sensing

Conventional assumptions of CS:

• Incoherence

• Sparsity

• Uniform random subsampling

New assumptions:

• Local coherence in levels

• Sparsity in levels

• Multilevel random subsampling
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Asymptotic incoherence

Definition
An infinite matrix U is asymptotically incoherent if

µ(P⊥K U), µ(UP⊥K )→ 0, K →∞.

• High coherence occurs only in the leading K × K submatrix of U.

Absolute values of the entries of U (both examples are coherent):

Fourier/wavelets, O(K−1) Fourier/polynomials, O(K−2/3)

25 / 44
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Local coherence in levels

We divide PNUPM into rectangular blocks. Let

• N = (N1, . . . ,Nr ) ∈ Nr with 0 = N0 < N1 < . . . < Nr = N,

• M = (M1, . . . ,Mr ) ∈ Nr with 0 = M0 < M1 < . . . < Mr = M.

Notation: for a, b ∈ N, let Pb
a = PaP⊥b .

Definition

The (k, l)th local coherence of U is given by

µ(k, l) =


√
µ(P

Nk−1

Nk
UP

Ml−1

Ml
)µ(P

Nk−1

Nk
U) l 6= r√

µ(P
Nk−1

Nk
UP⊥Ml−1

)µ(P
Nk−1

Nk
U) l = r

k, l = 1, . . . , r .

Asymptotically incoherent matrices are globally coherent, but locally
incoherent as k or l tends to infinity.
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Multilevel random subsampling

We divide up the first N rows of U into the same levels indexed by N,
and define

• m = (m1, . . . ,mr ) ∈ Nr with mk ≤ Nk − Nk−1,

• Ωk ⊆ {Nk−1 + 1, . . . ,Nk}, |Ωk | = mk be chosen uniformly at
random.

We call ΩN,m =
⋃

k Ωk an (N,m)-multilevel sampling scheme.

• Note that variable density strategies can be modelled by multilevel
schemes with mk/(Nk − Nk−1)→ 0 as k →∞.

28 / 44
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Sparsity in levels

The flip test shows we must incorporate structure into the new sparsity
assumption.

To do this, we divide PMx up into levels corresponding to the column
blocks of U indexed by M. Let

s = (s1, . . . , sr ) ∈ Nr , sk ≤ Mk −Mk−1.

We say that x = (x1, . . . , xN)> is (s,M)-sparse if

|{j : xj 6= 0} ∩ {Mk−1 + 1, . . . ,Mk}| ≤ sk , k = 1, . . . , r .

Write σs,M(x) = min{‖x − z‖l1 : z is (s,M)-sparse}
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Images are asymptotically sparse in wavelets

Definition
An infinite vector x is asymptotically sparse in levels if x is sparse in
levels with sk/(Mk −Mk−1)→ 0 as k →∞.

Wavelet coefficients are not just sparse, but asymptotically sparse when
the levels correspond to wavelet scales.

1 2 3 4 5 6 7 8 9 10

20

40

60

80

100

Left: image. Right: percentage of wavelet coefficients per scale > 10−3.

31 / 44



Compressed sensing Towards infinity To infinity and beyond! Back to finite dimensions Conclusions

Towards the main theorem

We need the concept of a relative sparsity.

Definition

Let x ∈ CN be (s,M)-sparse. Given N, we define the relative sparsity

Sk = max
η∈Θ
‖PNk−1

Nk
Uη‖2,

where Θ = {η : ‖η‖l∞ ≤ 1, η is (s,M)-sparse}.

This concept takes into account interference between different sparsity
levels, i.e. the fact that U is not block diagonal.

32 / 44
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Main theorem

Theorem (BA, Hansen, Poon & Roman (2013))

Suppose that N = Nr , K = maxk=1,...,r

{
Nk−Nk−1

mk

}
satisfy the strong

balancing property with respect to M = Mr and s = s1 + . . .+ sr , and

• we have

mk & (Nk − Nk−1)

(
r∑

l=1

µ(k , l) · sl

)
· log(ε−1) · log(K M̃

√
s),

• we have mk & m̂k · log(ε−1) · log(K M̃
√

s), where m̂k satisfies

1 &
r∑

k=1

(
Nk − Nk−1

m̂k
− 1

)
· µ(k , l) · Sk , l = 1, . . . , r .

Then with probability at least 1− sε, we have

‖x − x̂‖l2 . σs,M(x) +
√

sδ.
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Interpretation
The key parts of the theorem are the estimates

mk & (Nk − Nk−1)

(
r∑

l=1

µ(k , l) · sl

)(
log(ε−1) + 1

)
· log(M̃), (1)

and mk & m̂k · (log(ε−1)) · log(M̃), where

1 &
r∑

k=1

(
Nk − Nk−1

m̂k
− 1

)
· µ(k , l) · Sk , l = 1, . . . , r . (2)

Main point: The local numbers of samples mk depend on

• the local sparsities s1, . . . , sr ,

• the relative sparsities S1, . . . ,Sr ,

• the local coherences µ(k , l),

rather than the global sparsity s and global coherence µ.

Sharpness: Estimates reduce to inf.-theoretic limits in certain cases.
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The Fourier/wavelets case

Recall this is the usual setup for CS in MRI and other applications.

Theorem (BA, Hansen, Poon & Roman (2013))

Let M correspond to wavelet scales and s the sparsities within them. Let
A > 1 be a constant depending on the smoothness and number of
vanishing moments of the wavelet used. Then, subject to appropriate, but
mild, conditions one can find Nk = O (Mk) such that it suffices to take

mk &

sk +
∑
l 6=k

slA
−|k−l|

 · log(ε−1) · log(Ñ). (?)

Remark: This theorem explains why CS works in such applications.

• (?) is in agreement with the flip test.

• In the presence of asymptotic sparsity, the subsampling fraction
mk/(Nk − Nk−1) decreases as k →∞.
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Type II CS problems

Unlike in MRI, CT, etc, many CS applications are finite-dimensional, and
there is substantial freedom to design the matrix Ψ.

• E.g. Single-pixel camera (Rice), lensless imaging (Bell Labs),
fluorescence microscopy

• Hardware constraints: Ψ must be binary.

CS ‘gospel’: Gaussian random measurements are the ‘optimal’ choice.

• We should try to redesign MRI to produce random Gaussians.

Question: Is there a better choice when there is sparsity and structure?

Answer: No. Multilevel subsampled Fourier or Hadamard matrices lead
to significant improvements.
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Example: 12.5% measurements using DB4 wavelets
256×256 512×512 1024×1024

Err = 41.6% Err = 25.3% Err = 11.6%

Err = 21.9% Err = 10.9% Err = 3.1%

Top row: Gaussian. Bottom row: Multilevel Fourier
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Structured sampling vs. structured recovery

Multilevel subsampling with Fourier/Hadamard matrices

• Use standard recovery algorithm (l1 minimization)

• Exploit asymptotic sparsity in levels structure in the sampling
process, e.g. multilevel subsampled Fourier/Hadamard

Other structured CS algorithms: Model-based CS, Baraniuk et al. (2010),
Bayesian CS, Ji, Xue & Carin (2008), He & Carin (2009), Turbo AMP,
Som & Schniter (2012)

• Exploit the connected tree structure of wavelet coefficients

• Use standard measurements, e.g. random Gaussians/Bernoullis

• Modify the recovery algorithm (e.g. CoSaMP or IHT)
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Comparison: 12.5% sampling at 256× 256 resolution

Original `1 Gauss., Err = 15.7% Model-CS, Err = 17.9%

BCS, Err = 12.1% TurboAMP, Err = 17.7% Mult. Four., Err = 8.8%
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Comparison: 12.5% sampling at 256× 256 resolution

Original `1 Bern., Err = 41.2% Model-CS, Err = 41.8%

BCS, Err = 29.6% TurboAMP, Err = 39.3% Mult. Four., Err = 18.2%
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Conclusions

1. Finite-dimensional CS is based on sparsity, incoherence and uniform
random subsampling. However, in applications arising from continuous
models, these are often not appropriate.

2. In infinite dimensions, more suitable properties are sparsity in levels,
local coherence and multilevel random subsampling.

3. The mathematical framework introduced provides a theoretical
explanation for the success of CS in some key applications.

4. Moreover, the insight gained from infinite dimensions about the key
role played by structure leads to new and better approaches to
finite-dimensional problems.
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