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Sums versus integrals

How do you compute Sn = 1 + 1
2 + 1

3 + · · ·+ 1
n for n = 108

(= cube root of the Avogadro number 1023)?

You do not compute the sum for some large n ,
say n = 20,50,100, having hopes you will guess the result in
this way, because you know that the series diverges.



Sums versus integrals

How do you compute Sn = 1 + 1
2 + 1

3 + · · ·+ 1
n for n = 108?

You will use Euler’s formula Sn = log n + C + o(1) with
C = 0.5772 . . . to get

S ≈ log 108 + C = 18.9979

or you will simply replace the sum by an integral to obtain

S ≈ 1 +
1
2

+
1
3

+
1
4

+
1
5

+

∫ 108

6

1
x

dx

= 1 +
1
2

+
1
3

+
1
4

+
1
5

+ log 108 − log 6 = 18.9123.



A large Toeplitz matrix

How do you compute the eigenvalues of the n × n Hermitian
Toeplitz matrix

Tn =


0 1 2 . . . n − 1
1 0 1 . . . n − 2
2 1 0 . . . n − 3
...

...
...

. . .
...

n − 1 n − 2 n − 3 . . . 0


for n = 108?
This time you compute the eigenvalues for some large n in
order to get a conjecture, and then you look into one of the
books by Böttcher et al. having hopes to find a theorem which
confirms your conjecture. But you won’t find such a theorem
there, because Tn is not the truncation of an infinite Toeplitz
matrix that is generated by an L1 function.



Numerical results and the conjecture

The eigenvalues λ1(Tn) ≤ λ2(Tn) ≤ . . . ≤ λn(Tn) of Tn for
3 ≤ n ≤ 33. They behave like constants times n2,

λn(Tn) ∼ µ1n2,

λk (Tn) ∼ −νkn2 for k = 1,2, . . . .



Guessing the constants

To get the constants µ1 and ν1, ν2, we plot eigenvalues / n2.

Guess: µ1 = 0.347, ν1 = −0.203, ν2 = −0.064.



From matrices to integral operators

To prove what we have seen, we have recourse to an old but
apparently forgotten trick due to

Harold Widom 1958

and independently to

Lawrence Shampine 1965.

Incidentally, Shampine wrote all the codes associated with
differential equations in Matlab and the default solvers of Maple.



From matrices to integral operators: the trick

Given a matrix An = (ajk )n−1
j,k=0, consider the integral operator

defined by

(Knf )(x) =

∫ 1

0
a[nx ],[ny ] f (y) dy on L2(0,1).



From matrices to integral operators: the trick

The nonzero eigenvalues of

An = (ajk )n−1
j,k=0

are just n times the eigenvalues of Kn given by

(Knf )(x) =

∫ 1

0
a[nx ],[ny ] f (y) dy on L2(0,1).



From matrices to integral operators

In the case at hand,

Tn =


0 1 2 . . . n − 1
1 0 1 . . . n − 2
2 1 0 . . . n − 3
...

...
...

. . .
...

n − 1 n − 2 n − 3 . . . 0


is the matrix

Tn = (|j − k |)n−1
j,k=0.



From matrices to integral operators

Thus, we replace the matrix Tn = (|j − k |)n−1
j,k=0 by the integral

operator on L2(0,1) given by

(Knf )(x) =

∫ 1

0

∣∣∣ [nx ]− [ny ]
∣∣∣f (y) dy , x ∈ (0,1).

The nonzero eigenvalues of Tn are just n times the eigenvalues
of Kn. It is easily seen that Kn/n converges uniformly to the
integral operator

(Kf )(x) =

∫ 1

0
|x − y |f (y) dy , x ∈ (0,1).

Consequently, the extreme eigenvalues of Kn are
asymptotically n times the extreme eigenvalues of K , and
hence those of Tn are n2 times the extreme eigenvalues of K .



From matrices to integral operators

The extreme eigenvalues of Tn are asymptotically n2 times the
extreme eigenvalues of K .

This already proves part of the conjectured behaviour: the
eigenvalues behave like constants times n2,

λn(Tn) ∼ µ1n2,

λk (Tn) ∼ −νkn2 for k = 1,2, . . . .

We are left with determining the constants µ1, ν1, ν2, . . ., which
are the eigenvalues of

(Kf )(x) =

∫ 1

0
|x − y |f (y) dy , x ∈ (0,1).



Eigenvalues of the integral operator

These can be determined in the standard way.

Twice differentiating the equation

λf (x) =

∫ 1

0
|x − y |f (y) dy

=

∫ x

0
(x − y)f (y) dy +

∫ 1

x
(y − x)f (y) dy

we get λf ′′(x) = 2f (x) with the general solution

f (x) = A cos(ωx) + B sin(ωx), λ = −2/ω2.

Inserting this in the integral equation yields a homogeneous
linear system for A and B with coefficients depending on ω.
The system has a nontrivial solution if and only if
2 + 2 cosω + ω sinω = 0.

λ > 0⇐⇒ ω ∈ iR, λ < 0⇐⇒ ω ∈ R



The positve eigenvalues of the integral operator

µ1 = −2/ω2 with ω = iσ ⇐⇒ µ = 2/σ2 with

2 + 2 cosω + ω sinω = 2 + 2 coshσ − σ sinhσ = 0.

µ1 = 0.3471 (the guess was µ1 = 0.347)



The negative eigenvalues of the integral operator

νk = −2/ω2
k , where ωk is the k th positive solution of

2 + 2 cosω+ω sinω = 0. In particular, νk = −2/(kπ)2 for odd k .

ν1 = −2/π2 = −0.2026 (guess: −0.203),
ν2 = −0.0638 (guess: −0.064)



Numerical result and theory

The eigenvalues of Tn for 2 ≤ n ≤ 33 (asterisks) and the values
of µ1n2, −ν1n2, −ν2n2 (circles).



Andrei Markov 1890

The story started in Saint Petersburg with Dmitri Ivanovich
Mendeleev, best known for the creation of the periodic table of
elements. He posed a mathematical problem, which was solved
by Andrei Andreevich Markov, then also living in Saint
Petersburg.

Paper “On a question by D. I. Mendeleev” by Andrei Markov:

Pn = Cn[x ] analytic polynomials of degree ≤ n

‖f‖∞ = maxx∈[−1,1] |f (x)|

‖f ′n‖∞ ≤ n2 ‖fn‖∞ for all fn ∈ Pn

The constant n2 is best possible.



Vladimir Markov 1916

The inequality ‖f ′n‖∞ ≤ n2 ‖fn‖∞ implies

‖f ′′n ‖∞ ≤ (n − 1)2‖f ′n‖∞ ≤ n2(n − 1)2‖fn‖∞

but the constant n2(n − 1)2 is not best possible. Vladimir
Markov, the younger brother of Andrei Markov, proved:

‖f ′′n ‖∞ ≤
n2(n2−1)

3 ‖fn‖∞ for all fn ∈ Pn

‖f (ν)n ‖∞ ≤
n2(n2−1)(n2−22)···(n2−(ν−1)2)

(2ν−1)!! ‖fn‖∞ for all fn ∈ Pn

The constant is best possible. It equals T (ν)
n (1) with

Tn(x) = cos(n arccos x). Denote the constant by µ(ν)n . Then

µ
(ν)
n ∼ 1

(2ν−1)!! n2ν as n→∞.



Erhard Schmidt

Die asymptotische Bestimmung des Maximums des Integrals
über das Quadrat der Ableitung eines normierten Polynoms,
dessen Grad ins Unendliche wächst. 1932

Über die nebst ihren Ableitungen orthogonalen
Polynomensysteme und das zugehörige Extremum. 1944

Studied ‖f ′n‖ ≤ best constant ‖fn‖ for

Hermite Laguerre Legendre∫∞
−∞ |f (x)|2e−x2

dx
∫∞

0 |f (x)|2e−x dx
∫ 1
−1 |f (x)|2 dx

η
(1)
n λ

(1)
n γ

(1)
n

and proved

η
(1)
n =

√
2 n1/2, λ

(1)
n ∼ 2

π n, γ
(1)
n ∼ 1

π n2.



Turán and Shampine

Laguerre case: ‖f (ν)n ‖ ≤ λ
(ν)
n ‖fn‖.

Erhard Schmidt 1944: λ(1)n ∼ 2
π n.

Pál Turán 1960:

λ
(1)
n =

1
2 sin π

4n+2
∼ 1

2 π
4n

=
2
π

n.

Lawrence Shampine 1965:

λ
(2)
n ∼ 1

ω2
0

n2

where ω0 is the smallest positive zero of 1 + cosω coshω = 0.



1 + cosω coshω = 0

ω0 ≈ 1.8737, 1/ω2
0 ≈ 0.2848



Peter Dörfler (Austria) since 1987

Laguerre case: ‖f (ν)n ‖ ≤ λ
(ν)
n ‖fn‖ with ‖f‖2 =

∫∞
0 |f (x)|2e−x dx .

1
2ν!

√
4

2ν + 1
≤ lim inf

n→∞

λ
(ν)
n

nν
≤ lim sup

n→∞

λ
(ν)
n

nν
≤ 1

2ν!

√
2ν

2ν − 1

Recall:

Schmidt

lim
n→∞

λ
(1)
n

n
=

2
π

Shampine

lim
n→∞

λ
(2)
n

n2 =
1
ω2

0



Peter Dörfler (Austria) since 1987

Laguerre case: ‖f (ν)n ‖ ≤ λ
(ν)
n ‖fn‖ with ‖f‖2 =

∫∞
0 |f (x)|2e−x dx .

Let {L0,L1, . . . ,Ln} be the orthonormal basis of Laguerre
polynomials in Pn:

Lk (x) = 1−
(

k
1

)
x
1!

+

(
k
2

)
x2

2!
+ · · ·+ (−1)k

(
k
k

)
xk

k !
.

Then
L′k = −L0 − L1 − · · · − Lk−1

and hence the matrix representation of D : Pn → Pn in this
basis is the Toeplitz matrix

0 −1 −1 . . . −1
0 −1 . . . −1

. . .
−1

0

 .



Peter Dörfler (Austria) since 1987

Laguerre case: ‖f (ν)n ‖ ≤ λ
(ν)
n ‖fn‖ with ‖f‖2 =

∫∞
0 |f (x)|2e−x dx .

Let {L0,L1, . . . ,Ln} be the orthonormal basis of Laguerre
polynomials in Pn:

Matrix representation of Dν : Pn → Pn in this basis is the
Toeplitz matrix

Tn = (−1)ν



0
(

0
ν−1

) (
1

ν−1

)
. . .

(
n−1
ν−1

)
0

(
0

ν−1

)
. . .

(
n−2
ν−1

)
. . .

...(
0

ν−1

)
0


.

We have λ(ν)n = ‖Tn‖∞ = smax(Tn).



How I became involved: letter by Peter Dörfler 2008



From matrices to integral operators

Harold Widom 1950s and Lawrence Shampine 1965:

Given a matrix An = (ajk )n−1
j,k=0, consider the integral operator

defined by

(Knf )(x) =

∫ 1

0
a[nx ],[ny ] f (y) dy on L2(0,1).



From matrices to integral operators

We have matrices An = (ajk )n−1
j,k=0 and integral operators

(Knf )(x) =

∫ 1

0
a[nx ],[ny ] f (y) dy on L2(0,1).

‖An‖∞ = n ‖Kn‖∞

If (1/nα)Kn → K in the norm (uniformly),

then (1/nα) ‖Kn‖∞ → ‖K‖∞, and hence ‖Kn‖∞ ∼ ‖K‖∞ nα.

‖An‖∞ ∼ ‖K‖∞ nα+1



Matrices and integral operators in the Laguerre case

An = Tn is an upper-triangular Toeplitz matrix with

ajk =

(
k − j
ν − 1

)
for j < k .

We have

1
nν−1 a[nx ],[ny ]

=
1

nν−1

(
[ny ]− [nx ]

ν − 1

)
=

1
(ν − 1)!

[ny ]− [nx ]

n
[ny ]− [nx ]− 1

n
· · · [ny ]− [nx ]− ν + 2

n

⇒
1

(ν − 1)!
(y − x)ν−1 for x < y .



Emergence of Volterra operators

‖Tn‖∞ = n‖Kn‖∞ and (1/nν−1) Kn → K =: Lν in the norm

Theorem

We have λ(ν)n ∼ ‖Lν‖∞ nν where Lν is given on L2(0,1) by

(Lν f )(x) =
1

(ν − 1)!

∫ 1

x
(y − x)ν−1f (y) dy .

Thus, limn→∞
λ
(ν)
n

nν exists and equals ‖Lν‖∞. Note that

(L∗ν f )(x) =
1

(ν − 1)!

∫ x

0
(x − y)ν−1f (y) dy

and ‖Lν‖∞ = ‖L∗ν‖∞.



Norms of Volterra operators

(L1f )(x) =
∫ 1

x f (y) dy and (L∗1f )(x) =
∫ x

0 f (y) dy

λ
(1)
n ∼ ‖L1‖∞ n and we know from Schmidt that λ(1)n ∼ (2/π) n.

Consequently,

‖L1‖∞ =
2
π

=
1
ω0
, cosω = 0.

Paul Halmos 1967: Proved

‖L1‖∞ = 2/π

in a straightforward way.



The proof by Halmos

We have ‖L1‖2∞ = ‖L∗1L1‖∞ = maximal µ such that L∗1L1f = µf
has a nontrivial solution. We put µ = 1/ω2.

We get

(L∗1L1f )(x) =

∫ x

0

∫ 1

y
f (t) dt dy =

1
ω2 f (x) (=⇒ f (0) = 0).

Twice differentiating we arrive at the boundary problem

y ′′ + ω2y = 0, y(0) = 0, y ′(1) = 0.

The smallest ω > 0 for which this problem has a nontrivial
solution is ω = π/2.

Thus,

‖L1‖2∞ = µ =
1
ω2 =

4
π2 ,

implying that

‖L1‖∞ =
2
π
.



The question by Halmos

(L1f )(x) =

∫ 1

x
f (y) dy and (L∗1f )(x) =

∫ x

0
f (y) dy

(Lν f )(x) =
1

(ν − 1)!

∫ 1

x
(y − x)ν−1f (y) dy

(L∗ν f )(x) =
1

(ν − 1)!

∫ x

0
(x − y)ν−1f (y) dy

Paul Halmos 1967:

After proving that ‖L1‖∞ = 2/π, he asked what the norms of
the iterates Lν1 are.

Note that Lν1 = Lν .



ν = 1 and ν = 2

We know that

‖L1‖∞ =
2
π

=
1
ω0
, cosω = 0.

We know from Bö/Dörfler that λ(2)n ∼ ‖L2‖∞ n2, and we know
from Shampine that λ(2)n ∼ (1/ω2

0) n2. Thus,

‖L2‖∞ =
1
ω2

0
, 1 + cosω coshω = 0.



Eigenvalues of differential operators

Theorem (Thorpe 1998)
We have

‖Lν‖∞ =
1
ων0

where ω0 is the smallest positive number such that

(−1)νg(2ν)(x) = ω2ν g(x),

g(0) = g′(0) = · · · = g(ν−1)(0) = 0
g(ν)(1) = g(ν+1)(1) = · · · = g(2ν−1)(1) = 0

has a nontrivial solution.



Estimates for the norms of Volterra operators

Bö/Dörfler 2009:

For all ν ≥ 1,

1
(ν − 1)!

1√
(2ν + 1)(2ν − 1)

≤ ‖Lν‖∞ ≤
1

(ν − 1)!

1√
(2ν)(2ν − 1)

.

We have even better estimates. These yield

ν ‖Lν‖∞
1 0.6 . . .
2 0.284 . . .
3 0.09081 . . .
4 0.022213 . . .

10 1.413169 . . .× 10−7

20 2.0811690 . . .× 10−19

60 6.034043870 . . .× 10−83

The indicated digits are correct.



Discrete proof

Tn is a Toeplitz matrix formed by binomial coefficients.

The estimate is

‖T ∗n Tn‖22
‖Tn‖22

≤ ‖Tn‖2∞ ≤ ‖Tn‖22,

where ‖ · ‖2 is the Hilbert-Schmidt norm (= Frobenius norm).
Thus,

• compute ‖Tn‖22
• and establish a lower bound for ‖T ∗n Tn‖22.



Discrete proof



Discrete proof



Discrete proof



Discrete proof



Discrete proof



Discrete proof



Discrete proof



Discrete proof



Continuous proof I

We work instead with

(Lν f )(x) =
1

(ν − 1)!

∫ 1

x
(y − x)ν−1f (y) dy .

The estimate is

‖L∗νLν‖22
‖Lν‖22

≤ ‖Lν‖2∞ ≤ ‖Lν‖22,

where ‖ · ‖2 is the Hilbert-Schmidt norm. Thus,

• compute ‖Lν‖22
• and establish a lower bound for ‖L∗νLν‖22.



Continuous proof II

‖Lν‖22 =

∫ 1

0

∫ 1

0
|k(x , y)|2 dx dy

=
1

[(ν − 1)!]2

∫ 1

0

∫ 1

0
(y − x)2ν−2

+ dx dy

=
1

[(ν − 1)!]2

∫ 1

0

∫ y

0
(y − x)2ν−2 dx dy

=
1

[(ν − 1)!]2

∫ 1

0

(y − x)2ν−1

2ν − 1

∣∣∣∣0
y

dy

=
1

[(ν − 1)!]2

∫ 1

0

y2ν−1

2ν − 1
dy

=
1

[(ν − 1)!]2
1

2ν(2ν − 1)
.



Continuous proof III

‖L∗νLν‖22 =

∫ 1

0

∫ 1

0

∣∣∣∣∣
∫ 1

0
k(t , x)k(t , y) dt

∣∣∣∣∣
2

dy dx

=
2

[(ν − 1)!]2

∫ 1

0

∫ x

0

(∫ y

0
(x − t)ν−1(y − t)ν−1dt

)2

dy dx

[t = ys,0 ≤ s ≤ 1]

=
2

[(ν − 1)!]2

∫ 1

0

∫ x

0

(∫ 1

0
(x − ys)ν−1yν(1− s)ν−1ds

)2

dy dx

[the big trick : x − ys ≥ x − xs for 0 ≤ s, 0 ≤ y ≤ x ]

≥ 2
[(ν − 1)!]2

∫ 1

0

∫ x

0

(∫ 1

0
xν−1(1− s)ν−1yν(1− s)ν−1ds

)2

dy dx

=
2

[(ν − 1)!]2
1

4ν(2ν + 1)(2ν − 1)2 .



The conjecture by Lao and Whitley

Our estimate

1
(ν − 1)!

1√
(2ν + 1)(2ν − 1)

≤ ‖Lν‖∞ ≤
1

(ν − 1)!

1√
(2ν)(2ν − 1)

immediately implies that

‖Lν‖∞ ∼
1

(ν − 1)!

1
2ν

=
1

2 ν!
.

During a discussion with Hermann Brunner, we learned that
this asymptotic behavior was

conjectured by Lao/Whitley 1997

and that three independent proofs were subsequently given by

Thorpe 1998, Little/Read 1998, Kershaw 1999.

Fortunately, we didn’t know this when proving our estimates.
Our (continuous) proof is the simplest of all.



Laguerre norm with weight & Bessel functions

‖f (ν)n ‖ ≤ λ
(ν)
n (α) ‖fn‖ with ‖f‖2 =

∫∞
0 |f (x)|2xαe−x dx , α > −1

Dörfler 2002:

λ
(1)
n (α) ∼ 1

jα n where jα is the smallest positive root of the
Bessel function J(α−1)/2. Very complicated proof.

α = 0: J−1/2(x) =
√

2
πx cosx and thus j0 = π

2 (Schmidt).

Theorem (Bö/Dörfler 2010)

We have λ(ν)n (α) ∼ ‖Lν,α‖∞ nν where

(Lν,αf )(x) =
1

(ν − 1)!

∫ 1

x
xα/2y−α/2(y − x)ν−1f (y) dy .

Matrix of Dv no longer Toeplitz, Lν,α still Volterra, but no longer
convolution, sharp estimates and asymptotics of ‖Lν,α‖∞.



Norm of Volterrra operators and zeros Bessel
functions

Proceeding along the lines of the proof by Halmos for
‖L1‖∞ = 2/π we can determine the norm of the Volterra
operator

(Lν,αf )(x) =
1

(ν − 1)!

∫ 1

x
xα/2y−α/2(y − x)ν−1f (y) dy

for ν = 1, in which case it is

(L1,αf )(x) =

∫ 1

x
xα/2y−α/2f (y) dy

We arrive at a boundary value problem for the Bessel
differential equation

x2y ′′ + xy ′ +
(

x2 − (α− 1)2/4
)

y = 0.

This yields ‖L1,α‖∞ = 1/jα and thus Dörfler’s 2002 result
λ
(1)
n (α) ∼ (1/jα) n in a straightforward way.



Gegenbauer (= ultraspherical) norm

‖f (ν)n ‖ ≤ γ
(ν)
n (α) ‖fn‖

with ‖f‖2 =
∫ 1
−1 |f (x)|2(1− x)α(1 + x)α dx , α > −1

Only known results:

γ
(1)
n (0) ∼ 1

π n2 (Schmidt 1944 )

γ
(2)
n (0) ∼ 1

4ω2
0

n4, 1 + cosω coshω = 0 (Shampine 1965 )

Theorem (Bö/Dörfler 2010)

We have γ(ν)n (α) ∼ ‖Gν,α‖∞ n2ν where

(Gν,αf )(x) =
1

2ν(ν − 1)!

∫ 1

x
x1/2+αy1/2−α(y2 − x2)ν−1f (y) dy .

Moreover,

‖Gν,α‖∞ =
1
2ν
‖Lν,α‖∞.

In particular: ‖G1,α‖∞ = 1/(2jα).



Polynomials in several variables

E ⊂ [0,1]2 closed subset with interior points and such that

We denote by Pn(E) the linear space of polynomials

f (x , y) =
∑

(j/n,k/n)∈E

fjkx jyk .

Canonical choices:

∑
j,k≤n fjkx jyk ∑

j+k≤n fjkx jyk



Powers of the basic set

For δ > 0, we put Eδ = {(sδ, tδ) : (s, t) ∈ E}.

For example,



Markov inequalities

We equip Pn(E) with one of the norms

‖f‖2 =

∫ ∞
0

∫ ∞
0
|f (x , y)|2xαyβe−xe−y dx dy

(Laguerre with weight),

‖f‖2 =

∫ 1

−1

∫ 1

−1
|f (x , y)|2(1− x2)α(1− y2)β dx dy

(Gegenbauer),

where α > −1 and β > −1.

Consider the inequality

‖∂νx ∂
µ
y f‖ ≤ C‖f‖ for f ∈ Pn(E).

Let λ(α,β)E ,n (∂νx ∂
µ
y ) and γ(α,β)E ,n (∂νx ∂

µ
y ) denote the best constant C in

this inequality for the weighted Laguerre norm and the
Gegenbauer norm, respectively.



The Volterra integral operators occurring

On L2(0,1),

(Lν,αf )(x) =
1

(ν − 1)!

∫ 1

x
xα/2y−α/2(y − x)ν−1f (y) dy ,

(Gν,αf )(x) =
1

2ν(ν − 1)!

∫ 1

x
x1/2+αy1/2−α(y2 − x2)ν−1f (y) dy .

The tensor products Lν,α ⊗ Lµ,β and Gν,α ⊗Gµ,β are defined on
L2((0,1)2) in the usual manner. It is easily seen, that these
tensor products leave the subspace L2(E) invariant. We denote
the restrictions of the tensor products to L2(E) by
Lν,α ⊗ Lµ,β|L2(E) and Gν,α ⊗Gµ,β|L2(E).



Asymptotics of the best constants

Theorem (Bö/Dörfler 2011)
If ν ≥ 1 and µ ≥ 1, then

λ
(α,β)
E ,n (∂νx ∂

µ
y ) ∼ nν+µ ‖Lν,α ⊗ Lµ,β|L2(E)‖∞,

γ
(α,β)
E ,n (∂νx ∂

µ
y ) ∼ n2ν+2µ ‖Gν,α ⊗Gµ,β|L2(E)‖∞,

and we also have

‖Gν,α ⊗Gµ,β|L2(E)‖∞ =
1

2ν+µ
‖Lν,α ⊗ Lµ,β|L2(E2)‖∞.

Notice that we have E on the left and E2 on the right. This
motivates the consideration of the entire scale Ωδ instead of the
sole triangle Ω.



Estimates

We have

‖Lν,α ⊗ Lµ,β|L2(Ωδ)‖22

=
δ2

Γ(2δ(ν + µ) + 1)

Γ(α + 1) (2ν − 2)! Γ(2δν)

Γ(α + 2ν) [(ν − 1)!]2
×

×Γ(β + 1) (2µ− 2)! Γ(2δµ)

Γ(β + 2µ) [(µ− 1)!]2

and

‖(Lν,α ⊗ Lµ,β|L2(Ωδ))∗(Lν,α ⊗ Lµ,β|L2(Ωδ))‖22

≥ 4δ2

Γ(4δ(ν + µ) + 1)

Γ(α + 1)2 [(2ν − 2)!]2 Γ(4δν)

Γ(α + 2ν)2 (α + 2ν + 1) [(ν − 1)!]4
×

× Γ(β + 1)2 [(2µ− 2)!]2 Γ(4δµ)

Γ(β + 2µ)2 (β + 2µ+ 1) [(µ− 1)!]4
.



Thank You!


