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Kolmogorov linear n-width

Let X be a normed space and K ⊂ X a compact set.

If E is a finite dimensional space, it approximate K with accuracy

dist(K ,E )X := max
u∈K

min
v∈E
‖u − v‖X

The n-width of K in the metric X is

dn(K )X := inf
dim(E)=n

max
u∈K

min
v∈E
‖u − v‖X .

Benchmark for linear approximation methods applied to the elements from K .

Many other variants of n-widths exist (book by A. Pinkus).

If X = Lp(D) for some bounded Lipschitz domain D ⊂ Rd and K is the unit ball of
W s,p(D) it is known that

cn−s/d ≤ dn(K )X ≤ Cn−s/d .

Upper bound : approximation by a specific method.

Lower bound : diversity in K .

Curse of dimensionality : exponential growth in d of the needed n to reach accuracy ε.
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Parametric and stochastic PDE’s

We are interested in PDE’s of the general form

P(u, a) = 0,

where u is the unkown and a is a parameter which is either finite or infinite
dimensional. Typically

P : V × X →W ,

where V ,X ,W are Banach spaces and a ranges in some compact set K ⊂ X .

Model 1 : steady state linear diffusion equation.

−div(a∇u) = f on D ⊂ IRm and u|∂D = 0,

where f ∈ L2(D) is fixed.

In this example P(u, a) = f + div(a∇u) and the spaces are

X = L∞(D), V = H1
0 (D), W = V ′ = H−1(D).
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The solution map and solution manifold

Assuming well-posedness of the problem in the Banach space V for every a ∈ K allows
us to define the solution map from K to V

a 7→ u(a)

For Model 1, this is done by assuming that

0 < r ≤ a ≤ R, a ∈ K ⊂ X = L∞(D).

Then Lax-Milgram theory ensures existence in V = H1
0 (D).

A priori bound : the solution map is bounded from K to V . :

‖u(a)‖V ≤ Cr :=
‖f ‖V ′

r
, a ∈ K , where ‖v‖V := ‖∇v‖L2 .

Note that a 7→ u(a) is nonlinear.

We also define the solution manifold

M := u(K ) = {u(a) : a ∈ K } ⊂ V ,

that is, the set of all solutions as we vary the parameter.

Problem : estimate dn(M)V .
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Motivation : reduced modeling

The parameter may be deterministic (control, optimization, inverse problems) or
random (uncertainty modeling and propagation, risk assessment).

These applications often requires many queries of u(a), and therefore in principle
running many times a numerical solver. We want to avoid this.

Reduced modeling : find low dimension spaces that simultaneously approximate well
all solutions to the parametric PDE.

The Kolmogorov n-width dn(M)X is thus a benchmark for reduced modeling method.

Similar benchmark for approximation in an mean square sense : PCA.

The fact that “dn(M)X is small for moderate n” is often taken as a assumption to
justify the use of reduced modeling method, but rarely proved.

Reduced bases (Maday-Patera) : define a reduced modeling space
En = span{u1, . . . , un}, where the ui are particular instances (snapshots) from the
solution manifold

ui = u(ai )

for some a1, . . . , an ∈ K .
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Reduced bases and n-width

Greedy selection : having selected u1, . . . , un−1 ∈ M, choose the next instance by

‖un − PEn−1
un‖V = max

v∈M
‖v − PEn−1

v‖V ,

where PE is the orthogonal projector onto E

This algorithm is not realistic : one cannot compute ‖v − PEn−1
v‖V for all v ∈ M,

however can be estimate at moderate cost by a-posteriori error analysis. Therefore,
one rather applies a weak-greedy algorithm : un such that

‖un − PEn−1
un‖V ≥ γmax

v∈M
‖v − PEn−1

v‖V ,

for some fixed 0 < γ < 1.

Performance of reduced bases : σn(M)V := max{‖v − PEnv‖V : v ∈ M}

Comparison with n-width ? σn(M)V can be much larger than dn(M)V for an individual
n and M : There exists M and n such that σn(M)V ≥ 2ndn(M)V .

However, a more favorable comparison is possible in terms of convergence rates :

Theorem (Binev-Cohen-Dahmen-DeVore-Petrova-Wojtaszczyk, 2011) : For any s > 0
one has

sup
n≥1

nsdn(M)V <∞⇒ sup
n≥1

nsσn(M)X <∞,
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Our main result

For a compact set K ⊂ X and a continuous mapping u : K → V , we would like to
control the decay dn(M)V from dn(K )X , where M = u(K ).

Note that if u was a linear mapping, we would simply have

dn(M)V ≤ Cdn(K )X , C := ‖u‖L(X ,V ).

The following result shows that nonlinear holomorphic maps behave almost like linear
maps with respect to the asymptotic decay of N-widths.

Theorem (Cohen-DeVore, 2014) : Let X ,V be complex Banach spaces and let

K ⊂ O ⊂ X ,

with K compact and O open sets. Assume that there is an extension

u : O → V

is uniformly bounded and holomorphic (Frechet differentiable in the sense of complex
Banach space). Then, for all t > 0,

sup
n≥1

ntdn(K )X <∞⇒ sup
n≥1

nsdn(M)X <∞, s < t − 1.



Remarks and applications.

Loss of 1 in the rate : s < t − 1. This may be a defect from our method of proof.

“Cartesian proof” : uses scalar parametrization of K and polynomial approximations of
the resulting map. A more direct geometrical proof would be welcome.

This result gives upper bounds on dn(M)V . Lower bounds are an open problem.

In this result, the compact set K may consist only of real valued a, however the open
set O ⊂ X need to contain complex valued a.

Applies to Model 1, with O := {a ∈ X = L∞(D) : Re(a(x)) > r > 0, x ∈ D}. Indeed,
Lax-Milgram still applies and ensures that the solution map is uniformly bounded on
O. In addition

a→ A : v → div(a∇v)→ A−1 → u(a) = A−1f ,

is a chain of holomorphic maps between O → L(V ,V ′)→ L(V ′,V )→ V .

For other models, in particular nonlinear equations, the bounded holomorphic
extension may be more problematic. Example :

u3 − div(exp(a)∇u) = f ,

with A ≤ a ≤ B for all a ∈ K ⊂ X = L∞(D).

One way to construct it is by using the implicit function theorem : if P is holomorphic
from X × V to W and if ∂uP(u(a), a) : V →W is invertible for all a ∈ K , then the
IFT in complex Banach space allows to extend a 7→ u(a) on open balls around each
a ∈ K , and by compactness this gives O.
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Proof : 1. scalar parametrization

Assume that dn(K )X <∼ n−s . Then, there exists a family (ψj )j≥1 of functions in X such
that any a ∈ K is of the form

a = a(z) :=
∑
j≥1

zjψj , z := (zj )j≥1 ∈ U := ⊗j≥1{|zj | ≤ 1}.

and such that
‖ψj‖X <∼ j−s

In other words, K is contained in the simpler box shaped domain

Q := {a(z) : z ∈ U }.

Hint : use Auerbach lemma (any finite dimensional space Xn ⊂ X has a basis
(ei )i=1,...,n with dual basis (ẽi )i=1,...,n such that ‖ei‖X = ‖ẽi‖X ′ = 1).

Strong geometrical simplification !

This is at the origin of the loss of 1 in the rate : ‖ψj‖X <∼ j−s does not allow us to

retrieve better than dn(Q)X <∼ n−(s−1).

We are not ensured that Q ⊂ O and therefore that u is defined on Q. We first assume
that this holds and fix this problem later. Therefore dn(M)V ≤ dn(u(Q))V
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Proof : 2. polynomial approximation

We show that dn(u(Q))V <∼ n−t for t < s − 1, using the parametrization of u(Q) by
the scalar solution map

z ∈ U 7→ u(z) = u(a(z)) ∈ V .

Strategy : build a numerical approximation of this map by an optimal truncation of
power series u(z) =

∑
ν∈F tνzν, where

zν :=
∏
j≥1

z
νj
j and tν :=

1

ν!
∂νu|z=0 ∈ V with ν! :=

∏
j≥1

νj ! and 0! := 1.

where F is the set of all finitely supported sequences of integers (finitely many
νj 6= 0). This series is indexed by countably many integers.

Objective : identify a set Λ ⊂ F with #(Λ) = n such that u is well approximated
(uniformly in z ∈ U) by the partial expansion

uΛ(y) :=
∑
ν∈Λ

tνz
ν.

Resulting upper bound on n-width : with En := span{tν : ν ∈ Λ}, we have

dn(u(Q))V ≤ sup
z∈U

min
w∈En

‖u(z) − w‖V ≤ sup
z∈U

∥∥∥u(z) − ∑
ν∈Λ

tνz
ν
∥∥∥
V
.
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Proof : 3. best n-term approximation and summability

By triangle inequality we have

dn(u(Q))V ≤ sup
z∈U
‖u(z) − uΛ(z)‖V ≤ sup

z∈U
‖
∑
ν/∈Λ

tνz
ν‖V ≤

∑
ν/∈Λ
‖tν‖V .

Best n-term approximation in the `1(F) norm : use for Λ the n largest ‖tν‖V .

Observation (Stechkin) : if (‖tν‖V )ν∈F ∈ `p(F) for some p < 1, then for this Λ,∑
ν/∈Λ
‖tν‖V ≤ Cn−t , t :=

1

p
− 1, C := ‖(‖tν‖V )‖p .

Proof : with (tk )k>0 the decreasing rearrangement, we combine

∑
ν/∈Λ
‖tν‖V =

∑
k>n

tk =
∑
k>n

t1−p
k tpk ≤ t1−p

n Cp and ntpn ≤
n∑

k=1

tpk ≤ Cp .

The `p summability of (‖tν‖V )ν∈F is based on the following fundamental result : if u
is bounded and holomorphic on O and Q ⊂ O, then for any p < 1,

(‖ψj‖X )j>0 ∈ `p(N)⇒ (‖tν‖V )ν∈F ∈ `p(F).

Here ‖ψj‖X <∼ j−s implies that (‖ψj‖X )j>0 ∈ `p(N) for any p such that sp > 1 and

thus we obtain that dn(u(Q))V <∼ n−t for any t = 1
p
− 1 < s − 1.
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Observation (Stechkin) : if (‖tν‖V )ν∈F ∈ `p(F) for some p < 1, then for this Λ,∑
ν/∈Λ
‖tν‖V ≤ Cn−t , t :=

1

p
− 1, C := ‖(‖tν‖V )‖p .

Proof : with (tk )k>0 the decreasing rearrangement, we combine

∑
ν/∈Λ
‖tν‖V =

∑
k>n

tk =
∑
k>n

t1−p
k tpk ≤ t1−p

n Cp and ntpn ≤
n∑

k=1

tpk ≤ Cp .

The `p summability of (‖tν‖V )ν∈F is based on the following fundamental result : if u
is bounded and holomorphic on O and Q ⊂ O, then for any p < 1,

(‖ψj‖X )j>0 ∈ `p(N)⇒ (‖tν‖V )ν∈F ∈ `p(F).

Here ‖ψj‖X <∼ j−s implies that (‖ψj‖X )j>0 ∈ `p(N) for any p such that sp > 1 and

thus we obtain that dn(u(Q))V <∼ n−t for any t = 1
p
− 1 < s − 1.



Proof : 4. estimates of Taylor coefficients (Cohen-DeVore-Schwab, 2011)

The map z 7→ u(z) is bounded on U and holomorphic in each variable zj , since we
have assumed that Q = a(U) ⊂ O. For any sequence ρ = (ρj )j≥1 such that ρj ≥ 1, we
consider the polydisc

Uρ := ⊗j≥1{|zj | ≤ ρj }.
If
∑

j≥1(ρj − 1)‖ψj‖X ≤ ε for ε > 0 sufficiently small, then a(Uρ) ⊂ O, and therefore
u is bounded and holomorphic on Uρ.

Use Cauchy formula. In 1 complex variable if z 7→ u(z) is holomorphic and bounded in
a neighbourhood of disc {|z | ≤ b}, then for all z in this disc

u(z) =
1

2iπ

∫
|z ′|=b

u(z ′)

z − z ′
dz ′,

which leads by n differentiation at z = 0 to |u(n)(0)| ≤ n!b−n max|z|≤b |u(z)|.

Recursive application of this to all variables zj such that νj 6= 0, with b = ρj gives

‖∂νu|z=0‖V ≤ Cν!
∏
j>0

ρ
−νj
j = Cν!ρ−ν

where C is the uniform bound for u on O, and therefore

‖tν‖V ≤ C inf
{
ρ−ν ; ρ s.t.

∑
j≥1

(ρj − 1)‖ψj‖X ≤ ε, x ∈ D
}
.

Optimizing on ρ gives a specific ρ = ρ(ν) for which we prove that

(‖ψj‖X )j≥1 ∈ `p(N)⇒ (ρ(ν)−ν)ν∈F ∈ `p(F).
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Proof : 5. localization

In the case where Q is not contained in O, we fix this problem by local
parametrizations : using the compactness of K , we build a covering

K ⊂ ∪Pi=1Qi ,

with
Qi :=

{
ai +
∑
j≥1

zjψ
∗
j : z ∈ U

}
⊂ O,

and such that ‖ψ∗j ‖X <∼ j−s .

Therefore
M = u(K ) ⊂ ∪i=1,...,PMi , Mi = u(Qi ).

and using the same techniques, we prove

dn(Mi )V <∼ n−t , i = 1, . . . ,P, t < s − 1.

This amounts to using piecewise polynomial approximations of the solution map on a
fixed partition of K .

We obtain the same result for dn(M)V up to a multiplicative constant, since

dnP (M)V ≤ sup
i=1,...,P

dn(Mi )V .
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Conclusions

The n-width is asymptotically (almost) preserved by holomorphic maps.

Open questions : exponential rates, lower bounds, less smooth u...

The proof is based on a parametrization and a non-linear approximation process.

Other, more direct, approaches to evaluate dn(M)X ?

Similar result for low-rank approximation in the mean square sense ?



THANKS !

QUESTIONS ?


