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Schrödinger operators

L0u = −u′′ + q(x)u,

where q is real-valued, in limit-point case at infinity, and
integrable at 0. We use the domain

D(L0) = {u ∈ L2(0,∞) | − u′′ + qu ∈ L2(0,∞), u(0) = 0}

so L0 = L∗0.
The spectrum σ(L0) is any closed, unbounded-above subset of R.
We are interested in the dissipative operator

L = L0 + is(x)·,

in which s ≥ 0, s ∈ L1(0,∞) ∩ L∞(0,∞).



Jacobi matrices
We start with J0 = J∗0 given formally by

J0 =



b1 a1 0 0 0 · · ·
a1 b2 a2 0 0 · · ·
0 a2 b3 a3 0 · · ·
· · · · · · · ·
· · · · · · · ·
· · · · · · · ·

 .

(an) is a sequence of non-zero reals and (bn) is a real sequence.
We are interested in the spectrum of

J = J0 + idiag(s1, s2, . . .),

in which s = (sj)j∈N ∈ `1(N).



Finite section method for Schrödinger operators
Replace L by an operator in L2(0,M), M � 1:

LMu = −u′′ + (q + is)u,

D(LM) = {u ∈ L2(0,M) | −u′′+qu ∈ L2(0,M), u(0) = 0 = u(M)}.
How does σ(LM) approximate σ(L)?

Note that the problem is very well studied in the self-adjoint case.

Finite section method for Jacobi matrices
We replace J = J0 + is by its leading M ×M sub-matrix JM and
ask, how does σ(JM) approximate σ(J), for M � 1?

Again, the question is well studied in the self-adjoint case and also
in some non-selfadjoint cases (e.g. Lindner 2006, Davies and
Chandler-Wilde 2012, Chandler-Wilde and Lindner 2013).



Some known results
I In the self-adjoint case, finite section method gives spectral

pollution in spectral gaps.
I There is at most one point of spectral pollution in each gap

for 1D Schrödinger and Jacobi operators.
I If finitely supported functions/vectors form a core then all

points of σ(L0) and σ(J0) will be approximated: both isolated
eigenvalues and essential spectrum - BEWZ (1992),
Stolz-Weidmann (1994).

I For the dissipative case, if finitely supported functions/vectors
form a core then isolated eigenvalues can be approximated -
e.g. M (2009), M& Scheichl (2013) for Schrödinger, Strauss
(2013) for Jacobi; also Descloux (1981), Pokrzywa (1980).

I For Feinberg-Zee model, finite section always works
(Chandler-Wilde and Davies, 2012).

I For pseudo-ergodic Jacobi operators, finite section always
works (Chandler-Wilde and Lindner, announced 2013).

I For random Jacobi operators, finite section works with
probability 1.



Main results

Theorem (M & Naboko, 2013)

Suppose that s ∈ `1(N) and sj ≥ 0 for all j . Suppose that λess is a
point of essential spectrum of J = J0 + is. Then every open
neighbourhood of λess in C contains eigenvalues of the leading
M ×M submatrix of J, for all sufficiently large M.

Theorem (M & Naboko, 2013)

Suppose L0 = L∗0, that min(q, 0) ∈ L∞(0,∞), q ∈ L2
loc ,

s ∈ L1(0,∞)∩L∞(0,∞), s ≥ 0 and s(x)→ 0 as x →∞. Suppose
that λess is a point of essential spectrum of L = L0 + is. Then
every open neighbourhood of λess in C contains eigenvalues of the
finite-interval operators LM , for all sufficiently large M.



Further results: error estimates

Theorem (M+Naboko, 2013)

Suppose that K is any compact set in C. Then∣∣∣∣∣∣
∑

λj (JM)∈K
{λj(JM)}n −

∑
λj (J

M
0 )∈K

{λj(JM
0 )}n

∣∣∣∣∣∣ ≤ Cn, n = 0, 1, 2,

where the Cn do not depend on the truncation index M.

This theorem would give an estimate of the quality of
approximation of the essential spectrum in the dissipative case, if
we had a stability result for a Hausdorff moment problem.
Unfortunately a result of De Giorgi (1986) shows that this cannot
generally be expected!



Theorem (M & Scheichl, 2013)

Suppose L0 = L∗0 and that q ∈ L∞(0,∞) is eventually periodic.
Suppose that s ∈ ∩L∞(0,∞), s ≥ 0 and s is compactly supported
in [0,∞). If λess is an interior point of the essential spectrum of L
then there exist λM ∈ σ(LM) such that

|λess − λM | = O(M−1).



Theorem (M, 2009)

Suppose that q is real-valued and limit-point at infinity and that
(λM)M∈N is a polluting sequence, i.e. a sequence with
λM ∈ σ(LM) having a convergent subsequence whose limit does
not lie in σ(L). If s(x)→ 0 as x →∞ then

Im (λM)→ 0, M →∞ on the subsequence.

Moreover this result also holds for Schrödinger opertors on exterior
domains in Rd . Note that s ∈ L1 is not required.

Theorem (M& Scheichl, 2013)

Suppose that q is eventually periodic, and that (λM)M∈N is a
polluting sequence. If s is compactly supported then

Im (λM) ≤ C exp(−αM)

on the subsequence, where C , α > 0 depend on L but not on M.



Proof of Theorem 1

JM =


b1 + is1 a1 0 0 0 · · ·

a1 b2 + is2 a2 0 0 · · ·
0 a2 b3 + is3 a3 0 · · ·
· · · · · · · ·
· · · · · aM−1

· · · · aM−1 bM + isM


Standard calculations show that

λ ∈ σ(JM)⇐⇒ mM(λ) = f (λ),

where

f (λ) =
1

a1a2
(b1 + is1 − λ), mM(λ) = 〈(JM

red − λI )−1e1, e1〉;
here

JM
red =


b2 + is2 a2 0 0 0 · · ·

a2 b3 + is3 a3 0 0 · · ·
0 a3 b4 + is4 a3 0 · · ·
· · · · · · · ·
· · · · · aM−1

· · · · aM−1 bM + isM





Assume s1 > 0 for simplicity. Observe that

Im mM(λ) ≤ 0
Im f (λ) ≥ s1/(a1a2) > 0

}
Imλ ≤ 0,

so
1

|mM(λ)− f (λ)| ≤
a1a2

s1
, Imλ ≤ 0.

Let λk + iµk , k = 1, . . . ,M be the eigenvalues of JM and consider
the function

FM(λ) =
BM(λ)

mM(λ)− f (λ)
,

where BM is the Blaschke factor

BM(λ) =
∏
k

(
1− 2iµk

λ− λk + iµk

)
.



I The FM are holomorphic in C+ ∪ R and bounded by their
maximum moduli on R.

I The µk admit an M-independent trace bound

M∑
k=1

µk =
M∑

k=1

sk ≤ ‖s‖`1 .

I If no JM has eigenvalues in a neighbourhood U of λess ∈ R
then for λ ∈ U ∪ C+,

exp(−2‖s‖`1C ) ≤ |BM(λ)| ≤ exp(2‖s‖`1C ), C > 0 indep. of M,

so the BM and 1/BM form normal families on U .

I Hence the FM form a normal family in U ∩ C+ with bound
exp(2‖s‖`1C )s1/(a1a2) indep. of M, attained on R.

I Also 1
|mM(λ)−f (λ)| ≤ a1a2

s1
for Imλ ≤ 0 and so the FM form a

normal family on all of U .



I Hence the 1/(mM(λ)− f (λ)) form a normal family on U .

I Titchmarsh-Weyl nesting circle analysis shows

lim
M→∞

{
1

mM(λ)− f (λ)

}
=

1

m(λ)− f (λ)
, λ ∈ U ,

where

m(λ) = Titchmarsh-Weyl coefficient for the Jacobi operator J.

I Hence 1/(m(λ)− f (λ)) is holomorphic in U .

I Hence m(λ) is meromorphic in U and does not see the
essential spectrum at λess of J. This is impossible. �



Remark
We use the fact that s ∈ `1 implies sk → 0 together with a
Glazman decomposition trick to prove that the Titchmarsh-Weyl
convergence analysis holds off the real axis, away from eigenvalues.
This slightly expands the set in which the convergence is proved by
Gesztesy and Clark (2004).



Remark
In the Schrödinger case, we replace the M-independent bound∑M

k=1 sk ≤ ‖s‖`1(N) by a Hilbert-Schmidt bound

‖√s(LM
0 + δI )−1‖2 ≤ C .

Now

‖√s(LM
0 + δI )−1‖22 =

∞∑
k=1

∫ M

0

s(x)(φM
k (x))2dx(

λM
k + δ

)2
≤
∞∑

k=1

∫ M

0

s(x)(φM
k (x))2dx

λM
k + δ

=

∫ M

0
s(x)GM(x , x)dx ,

where GM is the kernel of the resolvent (LM
0 + δI )−1. Some results

of Chernyavskaya and Shuster (1994) on G (x , x) can be adapted
to give bounds on GM(x , x):

1

4
+ o(M−1) ≤ GM(x , x) ≤ 3

2
+ o(M−1).



Dissipative problems vs. self-adoint: spectral pollution

Example (Perturbed Schrödinger in R2; Boulton & Levitin
(2007))
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Figure: Contour plot of q(x , y) = cos(x) + cos(y)− 5e−x2−y2

.

Add dissipation:

q(x , y) 7→ q(x , y) + i ∗ 1

4
∗ (1− tanh(|x | − 30))(1− tanh(|y | − 30))
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Example (Spectral pollution in 1D)

−u′′ +
(

sin(x)− 40

1 + x2
+ is(x)

)
u = λu, x ∈ (0,∞);

cos(π/8)y(0) + sin(π/8)y ′(0) = 0;

here s(·) is the function

s(x) =

{
1 (x < 50)
0 (x ≥ 50).

Essential spectrum has band-gap structure; first three bands are

I1 = [−0.3785,−0.3477]; I2 = [0.5948, 0.9181];

I3 = [1.2932, 2.2852].



Numerics show spurious eigenvalue in one of the spectral gaps:
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Figure: Numerical results for M = 100.



The abstract dissipative barrier method.
Suppose L is selfadjoint and that Q is a projection which is
|L|1/2-compact.

Theorem (Strauss, JST to appear)

I If (L + iQ − zI )u = 0 and δ =
√

Im (z)(1− Im (z)) then

[Re (z)− δ,Re (z) + δ] ∩ σ(L) 6= ∅.
I Suppose σ(L) ∩ (a, b) = {λ} where λ is an eigenvalue of L of

multiplicity d. Suppose ‖(I − Q)E ({λ})‖ ≤ ε. Then L + iQ
has d eigenvalues ε-close to λ+ i .

I The other eigenvalues of L + iQ are separated from λ+ i and
lie in discs D(a, 1) and D(b, 1).

I When using a projection method, pollution for L + iQ occurs
in the same sets as for L.
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Example

In H = L2[−π, π] we consider the multiplication operator given by

(Lu)(x) = a(x)u(x) + 10

∫ π

−π
u(s)ds,

where

a(x) =

{ −2π − x , −π ≤ x ≤ 0,
2π − x , 0 < x ≤ 2π.

For the operator Q we use the projection onto a set of Galerkin
eigenfunctions whose eigenvalues lie in (−π, π). (We use a smaller
set than the basis used to find the eigenvalues of L + iQ.)
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Spec(T+iQ51,L201)

Spec(T+iQ51,L401)

Spec(T+iQ51,L801)

Spec(T+iQ51,L1601)



Example: Magnetohydrodynamics Operator

Example

On H = (L2(0, 1))3, consider the operator T =
− d

dx (υ2
a + υ2

s )
d
dx + k2υ2

a −i( d
dx (υ2

a + υ2
s )− 1)k⊥ −i( d

dx υ2
s − 1)k‖

−ik⊥((υ2
a + υ2

s )
d
dx + 1) k2υ2

a + k2
⊥υ2

s k⊥k‖υ2
s

−ik‖(υ2
s

d
dx + 1) k⊥k‖υ2

s k2
‖υ

2
s


We have

Specess(T ) = Range(υ2
ak‖) ∪ Range

(
υ2

aυ
2
s k⊥

υ2
a + υ2

s

)
;

There is an eigenvalue λ ≈ 0.27917 in the gap.

Michael Strauss Approximating Eigenvalues in Gaps



Coefficients: ρ0 = 1, k⊥ = 1, k‖ = 1, g = 1,

va(x) =
√

7/8− x/2, vs(x) =
√

1/2 + x/2;

essential spectrum:

σess =

[
7

64
,

1

4

]
∪
[

3

8
,

7

8

]
.
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