Weighted Hilbert Spaces and Integration of Functions of Infinitely Many Variables

Klaus Ritter

Computational Stochastics

TU Kaiserslautern

I. Introduction

Given a probability measure ρ on a set D, consider the product measure

$$\mu = \rho^{\otimes \mathbb{N}}$$

on the sequence space $D^{\mathbb{N}}$. Compute

$$I(f) = \int_{D^{\mathbb{N}}} f(\mathbf{x}) \, \mu(d\mathbf{x})$$

for functions $f:D^{\mathbb{N}}\to\mathbb{R}$.

I. Introduction

Given a probability measure ρ on a set D, consider the product measure

$$\mu = \rho^{\otimes \mathbb{N}}$$

on the sequence space $D^{\mathbb{N}}$. Compute

$$I(f) = \int_{D^{\mathbb{N}}} f(\mathbf{x}) \, \mu(d\mathbf{x})$$

for functions $f:D^{\mathbb{N}} \to \mathbb{R}$.

Examples

 ρ uniform distribution on D = [0, 1],

 ρ standard normal distribution on $D=\mathbb{R}$.

I. Introduction

Given a probability measure ρ on a set D, consider the product measure

$$\mu = \rho^{\otimes \mathbb{N}}$$

on the sequence space $D^{\mathbb{N}}$. Compute

$$I(f) = \int_{D^{\mathbb{N}}} f(\mathbf{x}) \, \mu(d\mathbf{x})$$

for functions $f:D^{\mathbb{N}}\to\mathbb{R}$.

Motivation High-dimensional integration

$$I_s(f) = \int_{D^s} f(x_1, \dots, x_s) \left(\rho \otimes \dots \otimes \rho \right) (d(x_1, \dots, x_s))$$

is well studied. Here, the limit $s \to \infty$.

 $\begin{tabular}{ll} \textbf{Motivation} & \textbf{Random element (stochastic process, random field)} & \textbf{X} & \textbf{with a} \\ \hline \textbf{representation} & \end{tabular}$

$$X = \Gamma(\xi_1, \xi_2, \dots)$$

based on iid random variables ξ_j . Let ρ denote the distribution of ξ_1 . Then μ is the joint distribution of ξ_1, ξ_2, \ldots

 $\begin{tabular}{ll} \textbf{Motivation} & \textbf{Random element (stochastic process, random field)} & \textbf{X} & \textbf{with a} \\ \hline \textbf{representation} & \end{tabular}$

$$X = \Gamma(\xi_1, \xi_2, \dots)$$

based on iid random variables ξ_j . Let ρ denote the distribution of ξ_1 . Then μ is the joint distribution of ξ_1, ξ_2, \ldots

Examples

- Series expansion $X = \sum_{j=1}^{\infty} \xi_j \cdot e_j$ with deterministic functions e_j .
- ullet SDEs, SPDEs, Here Γ is nonlinear, in general.

 $\begin{tabular}{ll} \textbf{Motivation} & \textbf{Random element (stochastic process, random field)} & \textbf{X} & \textbf{with a} \\ \hline \textbf{representation} & \end{tabular}$

$$X = \Gamma(\xi_1, \xi_2, \dots)$$

based on iid random variables ξ_j . Let ρ denote the distribution of ξ_1 . Then μ is the joint distribution of ξ_1, ξ_2, \ldots

Examples

- Series expansion $X = \sum_{j=1}^{\infty} \xi_j \cdot e_j$ with deterministic functions e_j .
- ullet SDEs, SPDEs, Here Γ is nonlinear, in general.

Note

$$E(\varphi(X)) = I(f)$$

with

$$f(\mathbf{x}) = \varphi(\Gamma(x_1, x_2, \dots)).$$

OUTLINE

- II. The Function Classes
- III. Algorithms, Error, and Cost
- IV. Two Particular Results
- V. Embeddings

II. The Function Classes

A particular case

- ullet ho is the uniform distribution on D=[0,1],
- F_{γ} consists of functions $f:[0,1]^{\mathbb{N}}\to\mathbb{R}$ with smooth ANOVA terms in certain weighted Hilbert spaces.

Weights: $\gamma = (\gamma_j)_{j \in \mathbb{N}}$ with

$$\gamma_1 \geq \gamma_2 \geq \cdots > 0$$

and

$$\sum_{j=1}^{\infty} \gamma_j < \infty.$$

II. The Function Classes

A particular case

- ullet ho is the uniform distribution on D=[0,1],
- F_{γ} consists of functions $f:[0,1]^{\mathbb{N}}\to\mathbb{R}$ with smooth ANOVA terms in certain weighted Hilbert spaces.

Weights: $\gamma = (\gamma_j)_{j \in \mathbb{N}}$ with

$$\gamma_1 \geq \gamma_2 \geq \cdots > 0$$

and

$$\sum_{j=1}^{\infty} \gamma_j < \infty.$$

Notation: For $u \subseteq \mathbb{N}$ and $\mathbf{x} \in D^{\mathbb{N}}$ let $\mathbf{x}_u = (x_j)_{j \in u}$ and $\gamma_u = \prod_{j \in u} \gamma_j$.

$$f_u(\mathbf{x}_u) = \int_{[0,1]^{\mathbb{N}\setminus u}} f(\mathbf{x}) \, d\mathbf{x}_{\mathbb{N}\setminus u} - \sum_{v \subseteq u} f_v(\mathbf{x}_v).$$

$$f_u(\mathbf{x}_u) = \int_{[0,1]^{\mathbb{N}\setminus u}} f(\mathbf{x}) \, d\mathbf{x}_{\mathbb{N}\setminus u} - \sum_{v \subseteq u} f_v(\mathbf{x}_v).$$

By definition, $f \in F_{\gamma}$ iff

$$||f||_{\gamma}^2 := \sum_{u} \gamma_u^{-1} \cdot ||f_u^{(u)}||_{L_2([0,1]^u)}^2 \le 1.$$

Orthogonal decomposition $f = \sum_{u} f_{u}$.

$$f_u(\mathbf{x}_u) = \int_{[0,1]^{\mathbb{N}\setminus u}} f(\mathbf{x}) \, d\mathbf{x}_{\mathbb{N}\setminus u} - \sum_{v \subseteq u} f_v(\mathbf{x}_v).$$

By definition, $f \in F_{\gamma}$ iff

$$||f||_{\gamma}^2 := \sum_{u} \gamma_u^{-1} \cdot ||f_u^{(u)}||_{L_2([0,1]^u)}^2 \le 1.$$

Orthogonal decomposition $f = \sum_{u} f_{u}$.

Example For

$$f(\mathbf{x}) = \sum_{j=1}^{\infty} \eta_j \cdot x_j^2$$

we have

$$||f||_{\gamma} < \infty \quad \Leftrightarrow \quad \sum_{j=1}^{\infty} \frac{\eta_j^2}{\gamma_j} < \infty.$$

$$f_u(\mathbf{x}_u) = \int_{[0,1]^{\mathbb{N}\setminus u}} f(\mathbf{x}) \, d\mathbf{x}_{\mathbb{N}\setminus u} - \sum_{v \subseteq u} f_v(\mathbf{x}_v).$$

By definition, $f \in F_{\gamma}$ iff

$$||f||_{\gamma}^2 := \sum_{u} \gamma_u^{-1} \cdot ||f_u^{(u)}||_{L_2([0,1]^u)}^2 \le 1.$$

Orthogonal decomposition $f = \sum_{u} f_{u}$.

Finite-dimensional counterparts, i.e., with $[0,1]^s$ instead of $[0,1]^\mathbb{N}$,

$$f_u(\mathbf{x}_u) = \int_{[0,1]^{\mathbb{N}\setminus u}} f(\mathbf{x}) \, d\mathbf{x}_{\mathbb{N}\setminus u} - \sum_{v \subseteq u} f_v(\mathbf{x}_v).$$

By definition, $f \in F_{\gamma}$ iff

$$||f||_{\gamma}^2 := \sum_{u} \gamma_u^{-1} \cdot ||f_u^{(u)}||_{L_2([0,1]^u)}^2 \le 1.$$

Orthogonal decomposition $f = \sum_{u} f_{u}$.

Finite-dimensional counterparts, i.e., with $[0,1]^s$ instead of $[0,1]^{\mathbb{N}}$,

- \bullet $\gamma_u = 1$:
 - classical ANOVA: $\|f_u\|_{L_2([0,1]^u)}^2$ instead of $\|f_u^{(u)}\|_{L_2([0,1]^u)}^2$,

$$f_u(\mathbf{x}_u) = \int_{[0,1]^{\mathbb{N}\setminus u}} f(\mathbf{x}) \, d\mathbf{x}_{\mathbb{N}\setminus u} - \sum_{v \subseteq u} f_v(\mathbf{x}_v).$$

By definition, $f \in F_{\gamma}$ iff

$$||f||_{\gamma}^2 := \sum_{u} \gamma_u^{-1} \cdot ||f_u^{(u)}||_{L_2([0,1]^u)}^2 \le 1.$$

Orthogonal decomposition $f = \sum_{u} f_{u}$.

Finite-dimensional counterparts, i.e., with $[0,1]^s$ instead of $[0,1]^{\mathbb{N}}$,

- \bullet $\gamma_u = 1$:
 - classical ANOVA: $\|f_u\|_{L_2([0,1]^u)}^2$ instead of $\|f_u^{(u)}\|_{L_2([0,1]^u)}^2$,
 - functions with bounded mixed derivatives: ..., Temlyakov (1994),

$$f_u(\mathbf{x}_u) = \int_{[0,1]^{\mathbb{N}\setminus u}} f(\mathbf{x}) \, d\mathbf{x}_{\mathbb{N}\setminus u} - \sum_{v \subseteq u} f_v(\mathbf{x}_v).$$

By definition, $f \in F_{\gamma}$ iff

$$||f||_{\gamma}^2 := \sum_{u} \gamma_u^{-1} \cdot ||f_u^{(u)}||_{L_2([0,1]^u)}^2 \le 1.$$

Orthogonal decomposition $f = \sum_{u} f_{u}$.

Finite-dimensional counterparts, i.e., with $[0,1]^s$ instead of $[0,1]^{\mathbb{N}}$,

- \bullet $\gamma_u = 1$:
 - classical ANOVA: $\|f_u\|_{L_2([0,1]^u)}^2$ instead of $\|f_u^{(u)}\|_{L_2([0,1]^u)}^2$,
 - functions with bounded mixed derivatives: ..., Temlyakov (1994),
- ullet $\gamma_u \searrow 0$: Sloan, Woźniakowski (1998), . . . , Novak, Woźniakowski (2008),

- (A1) $k \neq 0$ reproducing kernel on $D \times D$ with $D \neq \emptyset$,
- (A2) $H(k) \cap H(1) = \{0\},\$
- (A3) $(\gamma_u)_u$ family of weights $\gamma_u \geq 0$ such that, with $m = \inf_{x \in D} k(x, x)$,

$$\sum_{u} \gamma_u \cdot m^{|u|} < \infty.$$

(A1) $k \neq 0$ reproducing kernel on $D \times D$ with $D \neq \emptyset$,

(A2)
$$H(k) \cap H(1) = \{0\},\$$

(A3) $(\gamma_u)_u$ family of weights $\gamma_u \geq 0$ such that, with $m = \inf_{x \in D} k(x, x)$,

$$\sum_{u} \gamma_u \cdot m^{|u|} < \infty.$$

Consider the reproducing kernel

$$K_{\gamma}(\mathbf{x}, \mathbf{y}) = \sum_{u} \gamma_u \prod_{j \in u} k(x_j, y_j)$$

on $\mathfrak{X} \times \mathfrak{X}$, where $\mathfrak{X} = \left\{ \mathbf{x} \in D^{\mathbb{N}} : \sum_{u} \gamma_{u} \prod_{j \in u} k(x_{j}, x_{j}) < \infty \right\}$.

- (A1) $k \neq 0$ reproducing kernel on $D \times D$ with $D \neq \emptyset$,
- (A2) $H(k) \cap H(1) = \{0\},\$
- (A3) $(\gamma_u)_u$ family of weights $\gamma_u \geq 0$ such that, with $m = \inf_{x \in D} k(x, x)$,

$$\sum_{u} \gamma_u \cdot m^{|u|} < \infty.$$

Consider the reproducing kernel

$$K_{\gamma}(\mathbf{x}, \mathbf{y}) = \sum_{u} \gamma_u \prod_{j \in u} k(x_j, y_j)$$

on $\mathfrak{X} \times \mathfrak{X}$, where $\mathfrak{X} = \left\{ \mathbf{x} \in D^{\mathbb{N}} : \sum_{u} \gamma_{u} \prod_{j \in u} k(x_{j}, x_{j}) < \infty \right\}$.

Finally, let F_{γ} denote the unit ball in $H(K_{\gamma})$.

- (A1) $k \neq 0$ reproducing kernel on $D \times D$ with $D \neq \emptyset$,
- (A2) $H(k) \cap H(1) = \{0\},\$
- (A3) $(\gamma_u)_u$ family of weights $\gamma_u \geq 0$ such that, with $m = \inf_{x \in D} k(x, x)$,

$$\sum_{u} \gamma_u \cdot m^{|u|} < \infty.$$

Consider the reproducing kernel

$$K_{\gamma}(\mathbf{x}, \mathbf{y}) = \sum_{u} \gamma_u \prod_{j \in u} k(x_j, y_j)$$

on $\mathfrak{X} \times \mathfrak{X}$, where $\mathfrak{X} = \left\{ \mathbf{x} \in D^{\mathbb{N}} : \sum_{u} \gamma_{u} \prod_{j \in u} k(x_{j}, x_{j}) < \infty \right\}$.

The ANOVA-case:
$$D=[0,1]$$
, $\gamma_u=\prod_{j\in u}\gamma_j$ with $\sum_j\gamma_j<\infty$,

$$k(x,y) = 1/3 + (x^2 + y^2)/2 - \max(x,y).$$

(A1) $k \neq 0$ reproducing kernel on $D \times D$ with $D \neq \emptyset$,

(A2)
$$H(k) \cap H(1) = \{0\},\$$

(A3) $(\gamma_u)_u$ family of weights $\gamma_u \geq 0$ such that, with $m = \inf_{x \in D} k(x, x)$,

$$\sum_{u} \gamma_u \cdot m^{|u|} < \infty.$$

Consider the reproducing kernel

$$K_{\gamma}(\mathbf{x}, \mathbf{y}) = \sum_{u} \gamma_u \prod_{j \in u} k(x_j, y_j)$$

on $\mathfrak{X} \times \mathfrak{X}$, where $\mathfrak{X} = \left\{ \mathbf{x} \in D^{\mathbb{N}} : \sum_{u} \gamma_{u} \prod_{j \in u} k(x_{j}, x_{j}) < \infty \right\}$.

See Hickernell, Wang (2001), Hickernell, Müller-Gronbach, Niu, R (2010), Kuo, Sloan, Wasilkowski, Woźniakowski (2010), . . .

III. Algorithms, Error, and Cost

The naive Monte Carlo approach

ullet Truncation, i.e., fix $c \in D$ and consider

$$I^{(s)}(f) = \int_{D^s} f(x_1, \dots, x_s, c, \dots) (\rho \otimes \dots \otimes \rho) (d(x_1, \dots, x_s)).$$

• With $\xi_{i,j}$ being independent and distributed according to ρ ,

$$Q(f) = \frac{1}{m} \cdot \sum_{i=1}^{m} f((\xi_{i,1}, \dots, \xi_{i,s}, c, \dots)).$$

III. Algorithms, Error, and Cost

The naive Monte Carlo approach

ullet Truncation, i.e., fix $c \in D$ and consider

$$I^{(s)}(f) = \int_{D^s} f(x_1, \dots, x_s, c, \dots) (\rho \otimes \dots \otimes \rho) (d(x_1, \dots, x_s)).$$

• With $\xi_{i,j}$ being independent and distributed according to ρ ,

$$Q(f) = \frac{1}{m} \cdot \sum_{i=1}^{m} f((\xi_{i,1}, \dots, \xi_{i,s}, c, \dots)).$$

Note: Q requires m independent samples in the s-dimensional subspace

$$D_c^{(s)} = \{ \mathbf{x} \in D^{\mathbb{N}} : x_{s+1} = \dots = c \}.$$

In general, randomized algorithms that evaluate f in the hierarchy of subspaces $D_c^{(1)} \subset D_c^{(2)} \subset \dots$

$$Q(f) = \sum_{i=1}^{m} b_i \cdot f(\xi_i)$$

with $b_i \in \mathbb{R}$ and $\bigcup_{s=1}^{\infty} D_c^{(s)}$ -valued random variables ξ_i .

$$Q(f) = \sum_{i=1}^{m} b_i \cdot f(\xi_i)$$

with $b_i \in \mathbb{R}$ and $\bigcup_{s=1}^{\infty} D_c^{(s)}$ -valued random variables ξ_i .

Error and **cost** of Q on a class F of functions $f:D^{\mathbb{N}} \to \mathbb{R}$

$$\operatorname{error}^{2}(Q, F) = \sup_{f \in F} \operatorname{E} |I(f) - Q(f)|^{2}$$

$$Q(f) = \sum_{i=1}^{m} b_i \cdot f(\xi_i)$$

with $b_i \in \mathbb{R}$ and $\bigcup_{s=1}^{\infty} D_c^{(s)}$ -valued random variables ξ_i .

Error and **cost** of Q on a class F of functions f

$$\operatorname{error}^{2}(Q, F) = \sup_{f \in F} \operatorname{E} |I(f) - Q(f)|^{2},$$
$$\operatorname{cost}(Q, F) = \sup_{f \in F} \sum_{i=1}^{m} \operatorname{E} (\inf\{s \in \mathbb{N} : \xi_{i} \in D_{c}^{(s)}\}).$$

$$Q(f) = \sum_{i=1}^{m} b_i \cdot f(\xi_i)$$

with $b_i \in \mathbb{R}$ and $\bigcup_{s=1}^{\infty} D_c^{(s)}$ -valued random variables ξ_i .

Error and **cost** of Q on a class F of functions f

$$\operatorname{error}^{2}(Q, F) = \sup_{f \in F} E |I(f) - Q(f)|^{2},$$

$$cost(Q, F) = \sup_{f \in F} \sum_{i=1}^{m} E(\inf\{s \in \mathbb{N} : \xi_i \in D_c^{(s)}\}).$$

The n-th minimal error

$$e_n(F) = \inf\{\operatorname{error}(Q, F) : \operatorname{cost}(Q, F) \le n\}.$$

IV. Two Particular Results

As before,

- ullet ho is the uniform distribution on D=[0,1],
- F_{γ} consists of functions $f:[0,1]^{\mathbb{N}}\to\mathbb{R}$ with smooth ANOVA terms in weighted Hilbert spaces.

IV. Two Particular Results

As before,

- ullet ho is the uniform distribution on D=[0,1],
- F_{γ} consists of functions $f:[0,1]^{\mathbb{N}}\to\mathbb{R}$ with smooth ANOVA terms in weighted Hilbert spaces.

Questions

- Do we have $\lim_{n\to\infty} e_n(F_{\gamma}) = 0$?
- If so, sharp upper and lower bound on $e_n(F_{\gamma})$?

IV. Two Particular Results

As before,

- ullet ho is the uniform distribution on D=[0,1],
- F_{γ} consists of functions $f:[0,1]^{\mathbb{N}}\to\mathbb{R}$ with smooth ANOVA terms in weighted Hilbert spaces.

Questions

- Do we have $\lim_{n\to\infty} e_n(F_{\gamma}) = 0$?
- If so, sharp upper and lower bound on $e_n(F_{\gamma})$?

Consider

$$\lambda_{\gamma} = \sup\{r > 0 : \sup_{n \in \mathbb{N}} \left(e_n(F_{\gamma}) \cdot n^r \right) < \infty \}$$

as a substitute for the order of convergence of the minimal errors.

$$\lambda_{\gamma} = \min((\alpha - 1)/2, 3/2).$$

$$\lambda_{\gamma} = \min((\alpha - 1)/2, 3/2).$$

Rem.

 Almost optimal algorithms: multi-level plus scrambled lattice rules. The starting point is

$$f_L(\mathbf{x}) = f_0(\mathbf{x}) + \sum_{\ell=1}^L (f_\ell(\mathbf{x}) - f_{\ell-1}(\mathbf{x})).$$

with $f_{\ell}(\mathbf{x}) = f(x_1, \dots, x_{2^{\ell}}, 1/2, \dots)$. Use scrambled lattice rules for integration of $f_{\ell} - f_{\ell-1}$. Apply tractability results.

$$\lambda_{\gamma} = \min((\alpha - 1)/2, 3/2).$$

Rem.

- Almost optimal algorithms: multi-level plus scrambled lattice rules.
- Fixed subspace sampling is suboptimal. More precisely,

$$\lambda_{\gamma}^{\text{fix}} \le \frac{3 \cdot (\alpha - 1)}{2 \cdot (\alpha + 2)}$$

for the order of convergence of the respective minimal errors.

$$\lambda_{\gamma} = \min((\alpha - 1)/2, 3/2).$$

Rem.

- Almost optimal algorithms: multi-level plus scrambled lattice rules.
- Fixed subspace sampling is suboptimal. More precisely,

$$\lambda_{\gamma}^{\text{fix}} \le \frac{3 \cdot (\alpha - 1)}{2 \cdot (\alpha + 2)}$$

for the order of convergence of the respective minimal errors.

Question: Performance of deterministic algorithms?

Thm. Hickernell, Müller-Gronbach, Niu, R (2011), Gnewuch (2012), Dick, Gnewuch (2014), Hefter, R (2014)

Assume that $\gamma_j = j^{-\alpha}$ with $\alpha > 1$. Then, for deterministic algorithms,

$$\lambda_{\gamma} = \min((\alpha - 1)/2, 1).$$

Thm. Hickernell, Müller-Gronbach, Niu, R (2011), Gnewuch (2012), Dick, Gnewuch (2014), Hefter, R (2014)

Assume that $\gamma_j = j^{-\alpha}$ with $\alpha > 1$. Then, for deterministic algorithms,

$$\lambda_{\gamma} = \min((\alpha - 1)/2, 1).$$

Proof, Step 1 Result is known for the unit ball in $H(L_{\gamma})$, where

$$L_{\gamma}(\mathbf{x}, \mathbf{y}) = \sum_{u} \gamma_u \prod_{j \in u} \ell(x_j, y_j) = \prod_{j=1}^{\infty} (1 + \gamma_j \ell(x_j, y_j))$$

with

$$\ell(x,y) = \min(x,y).$$

Furthermore, with equivalent norms for every $\gamma > 0$,

$$H(1 + \gamma k) = H(1 + \gamma \ell) = W_2^1([0, 1]).$$

Thm. Hickernell, Müller-Gronbach, Niu, R (2011), Gnewuch (2012), Dick, Gnewuch (2014), Hefter, R (2014)

Assume that $\gamma_j = j^{-\alpha}$ with $\alpha > 1$. Then, for deterministic algorithms,

$$\lambda_{\gamma} = \min((\alpha - 1)/2, 1).$$

Proof, Step 1 Result is known for the unit ball in $H(L_{\gamma})$, where

$$L_{\gamma}(\mathbf{x}, \mathbf{y}) = \sum_{u} \gamma_u \prod_{j \in u} \ell(x_j, y_j) = \prod_{j=1}^{\infty} (1 + \gamma_j \ell(x_j, y_j))$$

with

$$\ell(x,y) = \min(x,y).$$

Furthermore, with equivalent norms for every $\gamma > 0$,

$$H(1 + \gamma k) = H(1 + \gamma \ell) = W_2^1([0, 1]).$$

Question: $H(K_{\gamma}) = H(L_{\gamma})$? Answer: No, in general.

V. Embeddings

Thm. Hefter, R (2014)

$$\sum_{j=1}^{\infty} \gamma_j^{1/2} < \infty \quad \Leftrightarrow \quad H(K_{\gamma}) = H(L_{\gamma}).$$

V. Embeddings

Thm. Hefter, R (2014)

(i)

$$\sum_{j=1}^{\infty} \gamma_j^{1/2} < \infty \quad \Leftrightarrow \quad H(K_{\gamma}) = H(L_{\gamma}).$$

(ii) In general, there exist $0 < c' < 1 < \tilde{c}$ such that

$$H(K_{c'\gamma}) \subseteq H(L_{\gamma}) \subseteq H(K_{\tilde{c}\gamma})$$

and

$$H(L_{c'\gamma}) \subseteq H(K_{\gamma}) \subseteq H(L_{\tilde{c}\gamma}).$$

Here $K_{c\gamma}(\mathbf{x}, \mathbf{y}) = \prod_{j=1}^{\infty} (1 + c\gamma_j k(x_j, y_j))$, and likewise for $L_{c\gamma}$.

V. Embeddings

Thm. *Hefter, R (2014)*

(i)

$$\sum_{j=1}^{\infty} \gamma_j^{1/2} < \infty \quad \Leftrightarrow \quad H(K_{\gamma}) = H(L_{\gamma}).$$

(ii) In general, there exist $0 < c' < 1 < \tilde{c}$ such that

$$H(K_{c'\gamma}) \subseteq H(L_{\gamma}) \subseteq H(K_{\tilde{c}\gamma})$$

and

$$H(L_{c'\gamma}) \subseteq H(K_{\gamma}) \subseteq H(L_{\tilde{c}\gamma}).$$

Here $K_{c\gamma}(\mathbf{x}, \mathbf{y}) = \prod_{j=1}^{\infty} (1 + c\gamma_j k(x_j, y_j))$, and likewise for $L_{c\gamma}$.

Rem. General result on embeddings between weighted tensor product spaces available.

Summary

Integration

$$I(f) = \int_{D^{\mathbb{N}}} f(\mathbf{x}) \, \rho^{\otimes \mathbb{N}}(d\mathbf{x})$$

of functions $f:D^{\mathbb{N}} \to \mathbb{R}$.

 Function classes: weighted superpositions of tensor product reproducing kernel Hilbert spaces,

$$K_{\gamma}(\mathbf{x}, \mathbf{y}) = \sum_{u} \gamma_{u} \prod_{j \in u} k(x_{j}, y_{j}).$$

- Sharp bound on minimal errors for randomized and deterministic algorithms (here: for a specific example).
- New type of embedding results.