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|. Introduction

Given a probability measure p on a set 1), consider the product measure

H=7p

on the sequence space D". Compute

1)= [ fx) i)

for functions f : DY — R.
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Examples

p uniform distribution on D = [0, 1],

p standard normal distribution on D = R.
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|. Introduction

Given a probability measure p on a set 1), consider the product measure

p=p="

on the sequence space D". Compute

1)= [ fx) i)

for functions f : DY — R.

Motivation High-dimensional integration

I,(f) = . flay, . zs) (p@ - @ p)(d(zy, ...

IS well studied. Here, the limit s — o0.
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Motivation Random element (stochastic process, random field) X with a

representation
X =T(&,5%,...)

based on iid random variables ;. Let p denote the distribution of ;. Then

{4 is the joint distribution of £1, &o, . . . .

3/3



Motivation Random element (stochastic process, random field) X with a

representation
X =T(&,5%,...)

based on iid random variables ;. Let p denote the distribution of ;. Then
{4 is the joint distribution of £1, &o, . . . .

Examples
e Series expansion X = Z;il §; - e; with deterministic functions e;.
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based on iid random variables ;. Let p denote the distribution of ;. Then
{4 is the joint distribution of £1, &o, . . . .

Examples
e Series expansion X = Z;il §; - e; with deterministic functions e;.
e SDEs, SPDEs, .... Here I is nonlinear, in general.

Note
with
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II. The Function Classes

A particular case
e p is the uniform distribution on D = [0, 1],

e F, consists of functions f : [0, 1] — R with smooth ANOVA terms

In certain weighted Hilbert spaces.

Weights: v = () jen With

[V

Y1 = Y2 - >0

and
o0

Z”)/j < Q.

j=1
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II. The Function Classes

A particular case
e p is the uniform distribution on D = [0, 1],

e F, consists of functions f : [0, 1] — R with smooth ANOVA terms

In certain weighted Hilbert spaces.
Weights: v = () jen With
N =Y 2 >0

and

00
Z Vi < OQ.
j=1

Notation: For u C Nand x € D" letx, = () e, and 7, = [icu i
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ANOVA decomposition of f : [0, 1]Y — RR. Recursively, for finite sets v C N,

R B (CLIPED BYACH!

vCu
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Orthogonal decomposition f = > f..
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ANOVA decomposition of f : [0, 1]Y — RR. Recursively, for finite sets v C N,

R B (CLIPED BYACH!

vCu

By definition, f € F,Y Iff
HfH?y = Z Hf HLQ 01y < 1.
u

Orthogonal decomposition f = > f..

Example For
0
2
j=1
we have

0 9
77.

|flly <0 < g—‘7<oo.
j=1 1
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ANOVA decomposition of f : [0, 1]Y — RR. Recursively, for finite sets v C N,

R B (CLIPED BYACH!

vCu

By definition, f € F,Y Iff
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Finite-dimensional counterparts, i.e., with [0, 1]* instead of [0, 1]%,
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ANOVA decomposition of f : [0, 1]N — R. Recursively, for finite sets u C N,
fu(Xu) — /[ " f(X) dXN\u — Z fv(Xv)'
0,1]N\u

vCu

By definition, f € F,Y Iff
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HfH?y = Z % Hf HLQ 01y < 1.

Orthogonal decomposition f = > f..
Finite-dimensional counterparts, i.e., with [0, 1]* instead of [0, 1]%,
o v, = 1:
- . 2 - (u))12
- classical ANOVA: HquL2([0,1]u) instead of || fu HL2([0,1]U)’

- functions with bounded mixed derivatives: ..., Temlyakov (1994), ....

® v, \ 0: Sloan, Wozniakowski (1998), ..., Novak, WoZzniakowski (2008), .. ..
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The general setting Assume that

(A1) k # 0 reproducing kernel on D x D with D # (),
(A2) H(k)n H(1) = {0},

(A3) (7). family of weights y,, > 0 such that, with m = inf,.cp k(x, x),

Z% .ml¥ < 0.
u
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Consider the reproducing kernel

Z%Hk 5, Y;)

JE€EU

onX x X, where X = {x € DN : %" ~, [ k(z),25) < 00 }.

Finally, let F, denote the unit ball in H (K).
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The general setting Assume that

(A1) k # 0 reproducing kernel on D x D with D # (),
(A2) H(k)N H(1)={0},
(A3) (7). family of weights y,, > 0 such that, with m = inf,.cp k(x, x),

Z% -ml* < 0.
u

Consider the reproducing kernel

Z%Hk 5, Y;)

JE€EU
onX x X, where X = {x € DN : %" ~, [ k(z),25) < 00 }.
The ANOVA-case: D = [0, 1], v, = ] [ ¢, 5 with 3 ;75 < o0,

k(z,y) =1/3 + (2% +y%)/2 — max(z, y).
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The general setting Assume that

(A1) k # 0 reproducing kernel on D x D with D # (),
(A2) H(k)N H(1)={0},
(A3) (7). family of weights y,, > 0 such that, with m = inf,.cp k(x, x),

Z% -ml* < 0.
u

Consider the reproducing kernel

Z%Hk 5, Y;)

JE€EU

onX x X, where X = {x € DN : %" ~, [ k(z),25) < 00 }.

See Hickernell, Wang (2001), Hickernell, Muller-Gronbach, Niu, R (2010),
Kuo, Sloan, Wasilkowski, Wozniakowski (2010), ...
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I1l. Algorithms, Error, and Cost

The naive Monte Carlo approach

e Truncation, i.e., fix ¢ € D and consider

I9(f) = . flx1,. .., 25,6, ) (pR - R p)(d(xy,...,Ts)).

e With §; ; being independent and distributed according to p,

QU =~ S F (G )
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I1l. Algorithms, Error, and Cost

The naive Monte Carlo approach

e Truncation, i.e., fix ¢ € D and consider

10(f) =

= Dsf(xl,...,xs,c,...)(p®°°°®p)(d($17--o,$s))-

e With §; ; being independent and distributed according to p,

1 m
QN = = 3 F (G s )

Note: () requires m independent samples in the s-dimensional subspace
D¥ ={xeDV:z,=---=c}

In general, randomized algorithms  that evaluate f in the hierarchy of

subspaces Dé” C D£2) C....
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Here, for simplicity, randomized quadrature formulas
m
QU ) =) bi- f(&)
i=1

with b; € R and U;X;l Dgs)-valued random variables &;.

9/4



Here, for simplicity, randomized quadrature formulas
m
QU ) =) bi- f(&)
i=1

with b; € R and U;X;l Dgs)-valued random variables &;.

Error and cost of Q on a class I of functions f : DY — R

error®(Q, F) = sup E}](f) — Q(f)‘2

JEF

9/3



Here, for simplicity, randomized quadrature formulas
m
QU ) =) bi- f(&)
i=1

with b; € R and U;X;l Dgs)-valued random variables &;.

Error and cost of () on a class F' of functions f

error’(Q, F') = sup E|I(f) — Q(f)

JEF

2

)

cost(Q, F') = sup ZE(inf{s cN:¢& e DY,

Fek o

9/2



Here, for simplicity, randomized quadrature formulas
m
QU ) =) bi- f(&)
i=1

with b; € R and U;X;l Dgs)-valued random variables &;.

Error and cost of () on a class F' of functions f

error’(Q, F') = sup E|I(f) — Q(f)

JEF

2

)

cost(Q, F') = sup ZE(inf{s cN:¢& e DY,

Fek o

The n-th minimal error

en(F') = inf{error(Q, F') : cost(Q, F') < n}.
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V. Two Particular Results

As before,
e pis the uniform distribution on D = [0, 1],

e F, consists of functions f : [0, 1] — R with smooth ANOVA terms

In weighted Hilbert spaces.
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V. Two Particular Results

As before,
e pis the uniform distribution on D = [0, 1],

e F, consists of functions f : [0, 1] — R with smooth ANOVA terms

In weighted Hilbert spaces.
Questions
e Do we have lim,,_,, e, (F,) = 0?
e If so, sharp upper and lower bound on e,,(F)?

Consider

Ay =sup{r > 0:sup (e,(Fy) -n") < oo}
neN

as a substitute for the order of convergence of the minimal errors
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Thm. Hickernell, Miller-Gronbach, Niu, R (2010), Baldeaux, Gnewuch (2014)

Assume that 7y; = 7~ “ with a > 1. Then, for randomized algorithms,

Ay =min((a—1)/2,3/2).
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Thm. Hickernell, Miller-Gronbach, Niu, R (2010), Baldeaux, Gnewuch (2014)

Assume that 7y; = 7~ “ with a > 1. Then, for randomized algorithms,
Ay =min((a—1)/2,3/2).

Rem.

e Almost optimal algorithms: multi-level plus scrambled lattice rules. The

starting point is

fr(x) = +Z — feoa(x ))

(=1

with fo(x) = f(x1,...,29¢,1/2,...). Use scrambled lattice rules
for integration of f, — fy,_1. Apply tractability results.
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Thm. Hickernell, Miller-Gronbach, Niu, R (2010), Baldeaux, Gnewuch (2014)

Assume that 7y; = 7~ “ with a > 1. Then, for randomized algorithms,
Ay =min((a—1)/2,3/2).

Rem.
e Almost optimal algorithms: multi-level plus scrambled lattice rules.

e Fixed subspace sampling is suboptimal. More precisely,

3-(a—1)
2 (a+2)

for the order of convergence of the respective minimal errors.

fix
AR <

Question: Performance of deterministic algorithms?
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Thm. Hickernell, Miller-Gronbach, Niu, R (2011), Gnewuch (2012),
Dick, Gnewuch (2014), Hefter, R (2014)

Assume that ; = 7~ % with a > 1. Then, for deterministic algorithms,

Ay =min((a —1)/2,1).
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Thm. Hickernell, Miller-Gronbach, Niu, R (2011), Gnewuch (2012),
Dick, Gnewuch (2014), Hefter, R (2014)

Assume that ; = 7~ % with a > 1. Then, for deterministic algorithms,
Ay =min((a —1)/2,1).
Proof, Step 1 Result is known for the unit ball in H (L~ ), where

Z’Yqu 5, Y5) H (1 + 74z, ;)
71=1

JEU
with
{(z,y) = min(z, y).

Furthermore, with equivalent norms for every v > 0,

H(1+~k) = H(1+~£) =W,([0,1]).
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Thm. Hickernell, Miller-Gronbach, Niu, R (2011), Gnewuch (2012),
Dick, Gnewuch (2014), Hefter, R (2014)

Assume that ; = 7~ % with a > 1. Then, for deterministic algorithms,
Ay =min((a —1)/2,1).
Proof, Step 1 Result is known for the unit ball in H (L~ ), where

Z’Yqu 5, Y5) H (1 + 74z, ;)
71=1

JEU
with
{(z,y) = min(z, y).

Furthermore, with equivalent norms for every v > 0,
H(1+~k)=H(1+4~¢) = Wy([0,1]).

Question : H(K,) = H(L~)? Answer : No, in general. 191



V. Embeddings
Thm. Hefter, R (2014)
(1)
S oo & H(K,) = H(L,)

j=1
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V. Embeddings

Thm. Hefter, R (2014)
(1)
- 1/2
Y 7/ <0 & H(Ky) =H(L,).

j=1

(ii) In general, there exist 0 < ¢ < 1 < ¢ such that
H(Kc’v) C H(Lv) C H(KE’Y)

and
H(Ley) © H(Ky) © H(Ley)

Here Koy (x,y) = [[,Z, (1 + cv;k(x5, y;)), and likewise for L.
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V. Embeddings

Thm. Hefter, R (2014)

(1)
- 1/2
Y 7/ <0 & H(Ky) =H(L,).
j=1

(ii) In general, there exist 0 < ¢ < 1 < ¢ such that
H(Kc’v) C H(Lv) C H(KE’Y)
and
H(Ley) © H(Ky) © H(Ley)
Here Koy (x,y) = [[,Z, (1 + cv;k(x5, y;)), and likewise for L.

Rem. General result on embeddings between weighted tensor product

spaces available.
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Summary

® |ntegration

I(f)= [ [f(x)p® (dx)

DN
of functions f : DY — R.

e Function classes: weighted superpositions of tensor product

reproducing kernel Hilbert spaces,
Ky(x,y) = > v | [ Rz, 0).
(! JEU
e Sharp bound on minimal errors for randomized and deterministic

algorithms (here: for a specific example).

e New type of embedding results.
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