Weighted Hilbert Spaces and Integration of Functions of Infinitely Many Variables

Klaus Ritter
Computational Stochastics
TU Kaiserslautern
I. Introduction

Given a probability measure ρ on a set D, consider the product measure

$$\mu = \rho^\otimes N$$

on the sequence space D^N. Compute

$$I(f) = \int_{D^N} f(x) \mu(dx)$$

for functions $f : D^N \to \mathbb{R}$.
I. Introduction

Given a probability measure \(\rho \) on a set \(D \), consider the product measure

\[
\mu = \rho \otimes^\mathbb{N}
\]
on the sequence space \(D^\mathbb{N} \). Compute

\[
I(f) = \int_{D^\mathbb{N}} f(x) \mu(dx)
\]

for functions \(f : D^\mathbb{N} \to \mathbb{R} \).

Examples

\(\rho \) uniform distribution on \(D = [0, 1] \),
\(\rho \) standard normal distribution on \(D = \mathbb{R} \).
I. Introduction

Given a probability measure ρ on a set D, consider the product measure

$$\mu = \rho^\otimes \mathbb{N}$$

on the sequence space $D^\mathbb{N}$. Compute

$$I(f) = \int_{D^\mathbb{N}} f(x) \, \mu(dx)$$

for functions $f : D^\mathbb{N} \to \mathbb{R}$.

Motivation High-dimensional integration

$$I_s(f) = \int_{D^s} f(x_1, \ldots, x_s) (\rho \otimes \cdots \otimes \rho)(dx_1, \ldots, x_s)$$

is well studied. Here, the limit $s \to \infty$.
Motivation Random element (stochastic process, random field) X with a representation

$$X = \Gamma(\xi_1, \xi_2, \ldots)$$

based on iid random variables ξ_j. Let ρ denote the distribution of ξ_1. Then μ is the joint distribution of ξ_1, ξ_2, \ldots.
Motivation Random element (stochastic process, random field) X with a representation

$$X = \Gamma(\xi_1, \xi_2, \ldots)$$

based on iid random variables ξ_j. Let ρ denote the distribution of ξ_1. Then μ is the joint distribution of ξ_1, ξ_2, \ldots.

Examples

- Series expansion $X = \sum_{j=1}^{\infty} \xi_j \cdot e_j$ with deterministic functions e_j.
- SDEs, SPDEs, Here Γ is nonlinear, in general.
Motivation Random element (stochastic process, random field) X with a representation

$$X = \Gamma(\xi_1, \xi_2, \ldots)$$

based on iid random variables ξ_j. Let ρ denote the distribution of ξ_1. Then μ is the joint distribution of ξ_1, ξ_2, \ldots.

Examples

- Series expansion $X = \sum_{j=1}^{\infty} \xi_j \cdot e_j$ with deterministic functions e_j.
- SDEs, SPDEs, . . . Here Γ is nonlinear, in general.

Note

$$\mathbb{E}(\varphi(X)) = I(f)$$

with

$$f(x) = \varphi(\Gamma(x_1, x_2, \ldots)).$$
OUTLINE

II. The Function Classes

III. Algorithms, Error, and Cost

IV. Two Particular Results

V. Embeddings
II. The Function Classes

A particular case

- ρ is the uniform distribution on $D = [0, 1]$,
- F_γ consists of functions $f: [0, 1]^N \to \mathbb{R}$ with smooth ANOVA terms in certain weighted Hilbert spaces.

Weights: $\gamma = (\gamma_j)_{j \in \mathbb{N}}$ with

$$\gamma_1 \geq \gamma_2 \geq \cdots > 0$$

and

$$\sum_{j=1}^{\infty} \gamma_j < \infty.$$
II. The Function Classes

A particular case

- ρ is the uniform distribution on $D = [0, 1]$,
- F_γ consists of functions $f : [0, 1]^N \to \mathbb{R}$ with smooth ANOVA terms in certain weighted Hilbert spaces.

Weights: $\gamma = (\gamma_j)_{j \in \mathbb{N}}$ with

$$\gamma_1 \geq \gamma_2 \geq \cdots > 0$$

and

$$\sum_{j=1}^{\infty} \gamma_j < \infty.$$

Notation: For $u \subseteq \mathbb{N}$ and $x \in D^\mathbb{N}$ let $x_u = (x_j)_{j \in u}$ and $\gamma_u = \prod_{j \in u} \gamma_j$.
ANOVA decomposition of \(f : [0, 1]^\mathbb{N} \rightarrow \mathbb{R} \). Recursively, for finite sets \(u \subset \mathbb{N} \),

\[
f_u(x_u) = \int_{[0,1]^{\mathbb{N}\setminus u}} f(x) \, dx_{\mathbb{N}\setminus u} - \sum_{v \subset u} f_v(x_v).
\]
ANOVA decomposition of $f : [0, 1]^N \rightarrow \mathbb{R}$. Recursively, for finite sets $u \subset \mathbb{N}$,

$$f_u(x_u) = \int_{[0,1]^N \setminus u} f(x) \, dx_{\mathbb{N}\setminus u} - \sum_{v \subsetneq u} f_v(x_v).$$

By definition, $f \in F_\gamma$ iff

$$\|f\|_\gamma^2 := \sum_u \gamma_u^{-1} \cdot \|f^{(u)}\|_{L^2([0,1]^u)}^2 \leq 1.$$

Orthogonal decomposition $f = \sum_u f_u$.
ANOVA decomposition of $f : [0, 1]^N \rightarrow \mathbb{R}$. Recursively, for finite sets $u \subset \mathbb{N}$,

$$f_u(x_u) = \int_{[0,1]^N \setminus u} f(x) \, dx_{N \setminus u} - \sum_{v \subsetneq u} f_v(x_v).$$

By definition, $f \in F_\gamma$ iff

$$\|f\|_\gamma^2 := \sum_u \gamma_u^{-1} \cdot \|f(u)\|^2_{L_2([0,1]^u)} \leq 1.$$

Orthogonal decomposition $f = \sum_u f_u$.

Example For

$$f(x) = \sum_{j=1}^{\infty} \eta_j \cdot x^2_j$$

we have

$$\|f\|_\gamma < \infty \Leftrightarrow \sum_{j=1}^{\infty} \frac{\eta^2_j}{\gamma_j} < \infty.$$
ANOVA decomposition of $f : [0, 1]^N \to \mathbb{R}$. Recursively, for finite sets $u \subset \mathbb{N}$,

$$f_u(x_u) = \int_{[0,1]^N \setminus u} f(x) \, dx_{\mathbb{N} \setminus u} - \sum_{v \subsetneq u} f_v(x_v).$$

By definition, $f \in F_\gamma$ iff

$$\|f\|_\gamma^2 := \sum_u \gamma_u^{-1} \cdot \|f^{(u)}\|_{L_2([0,1]_u)}^2 \leq 1.$$

Orthogonal decomposition $f = \sum_u f_u$.

Finite-dimensional counterparts, i.e., with $[0, 1]^s$ instead of $[0, 1]^N$,
ANOVA decomposition of $f : [0, 1]^N \to \mathbb{R}$. Recursively, for finite sets $u \subset \mathbb{N}$,

$$f_u(x_u) = \int_{[0,1]^N \setminus u} f(x) \, dx_{N \setminus u} - \sum_{v \subsetneq u} f_v(x_v).$$

By definition, $f \in F_{\gamma}$ iff

$$\|f\|_{\gamma}^2 := \sum_u \gamma_u^{-1} \cdot \|f^{(u)}\|_{L^2([0,1]^u)}^2 \leq 1.$$

Orthogonal decomposition $f = \sum_u f_u$.

Finite-dimensional counterparts, i.e., with $[0, 1]^s$ instead of $[0, 1]^N$,

- $\gamma_u = 1$:
 - classical ANOVA: $\|f_u\|_{L^2([0,1]^u)}^2$ instead of $\|f^{(u)}_u\|_{L^2([0,1]^u)}^2$.

6/3
ANOVA decomposition of $f : [0, 1]^N \to \mathbb{R}$. Recursively, for finite sets $u \subset \mathbb{N}$,

$$f_u(x_u) = \int_{[0,1]^{N \setminus u}} f(x) \, dx_{N \setminus u} - \sum_{v \subsetneq u} f_v(x_v).$$

By definition, $f \in F_\gamma$ iff

$$\|f\|_\gamma^2 := \sum_u \gamma_u^{-1} \cdot \| f_u \|_{L_2([0,1]^u)}^2 \leq 1.$$

Orthogonal decomposition $f = \sum_u f_u$.

Finite-dimensional counterparts, i.e., with $[0, 1]^s$ instead of $[0, 1]^N$,

- $\gamma_u = 1$:
 - classical ANOVA: $\| f_u \|_{L_2([0,1]^u)}^2$ instead of $\| f_u^{(u)} \|_{L_2([0,1]^u)}^2$,
 - functions with bounded mixed derivatives: \ldots, Temlyakov (1994), \ldots.
ANOVA decomposition of \(f : [0, 1]^N \rightarrow \mathbb{R} \). Recursively, for finite sets \(u \subset \mathbb{N} \),

\[
f_u(x_u) = \int_{[0,1]^N \setminus u} f(x) \, dx_{N \setminus u} - \sum_{v \subset u} f_v(x_v).
\]

By definition, \(f \in F_\gamma \) iff

\[
\| f \|^2_\gamma := \sum_u \gamma_u^{-1} \cdot \| f^{(u)} \|^2_{L_2([0,1]^u)} \leq 1.
\]

Orthogonal decomposition \(f = \sum_u f_u \).

Finite-dimensional counterparts, i.e., with \([0, 1]^s \) instead of \([0, 1]^N \),

- \(\gamma_u = 1 \):
 - classical ANOVA: \(\| f_u \|^2_{L_2([0,1]^u)} \) instead of \(\| f^{(u)}_u \|^2_{L_2([0,1]^u)} \),
 - functions with bounded mixed derivatives: \(\ldots, \) Temlyakov (1994), \(\ldots \).

- \(\gamma_u \downarrow 0 \): Sloan, Woźniakowski (1998), \(\ldots \), Novak, Woźniakowski (2008), \(\ldots \).
The general setting Assume that

(A1) $k \neq 0$ reproducing kernel on $D \times D$ with $D \neq \emptyset$,

(A2) $H(k) \cap H(1) = \{0\}$,

(A3) $(\gamma_u)_u$ family of weights $\gamma_u \geq 0$ such that, with $m = \inf_{x \in D} k(x, x)$,

$$\sum_u \gamma_u \cdot m^{|u|} < \infty.$$
The general setting Assume that

(A1) $k \neq 0$ reproducing kernel on $D \times D$ with $D \neq \emptyset$,

(A2) $H(k) \cap H(1) = \{0\}$,

(A3) $(\gamma_u)_u$ family of weights $\gamma_u \geq 0$ such that, with $m = \inf_{x \in D} k(x, x)$,

$$\sum_u \gamma_u \cdot m^{|u|} < \infty.$$

Consider the reproducing kernel

$$K_\gamma(x, y) = \sum_u \gamma_u \prod_{j \in u} k(x_j, y_j)$$

on $X \times X$, where $X = \{x \in D^\mathbb{N} : \sum_u \gamma_u \prod_{j \in u} k(x_j, x_j) < \infty\}$.
The general setting Assume that

(A1) \(k \neq 0 \) reproducing kernel on \(D \times D \) with \(D \neq \emptyset \),

(A2) \(H(k) \cap H(1) = \{0\} \),

(A3) \((\gamma_u)_u\) family of weights \(\gamma_u \geq 0 \) such that, with \(m = \inf_{x \in D} k(x, x) \),

\[
\sum_u \gamma_u \cdot m^{|u|} < \infty.
\]

Consider the reproducing kernel

\[
K_\gamma(x, y) = \sum_u \gamma_u \prod_{j \in u} k(x_j, y_j)
\]

on \(\mathcal{H} \times \mathcal{H} \), where \(\mathcal{H} = \{ x \in D^\mathbb{N} : \sum_u \gamma_u \prod_{j \in u} k(x_j, x_j) < \infty \} \).

Finally, let \(F_\gamma \) denote the unit ball in \(H(K_\gamma) \).
The general setting Assume that

(A1) $k \neq 0$ reproducing kernel on $D \times D$ with $D \neq \emptyset$,

(A2) $H(k) \cap H(1) = \{0\}$,

(A3) $(\gamma_u)_u$ family of weights $\gamma_u \geq 0$ such that, with $m = \inf_{x \in D} k(x, x)$,

$$\sum_u \gamma_u \cdot m^{|u|} < \infty.$$

Consider the reproducing kernel

$$K_\gamma(x, y) = \sum_u \gamma_u \prod_{j \in u} k(x_j, y_j)$$

on $\mathcal{X} \times \mathcal{X}$, where $\mathcal{X} = \{x \in D^\mathbb{N} : \sum_u \gamma_u \prod_{j \in u} k(x_j, x_j) < \infty \}$.

The ANOVA-case: $D = [0, 1]$, $\gamma_u = \prod_{j \in u} \gamma_j$ with $\sum_j \gamma_j < \infty$,

$$k(x, y) = 1/3 + (x^2 + y^2)/2 - \max(x, y).$$
The general setting Assume that

(A1) $k \neq 0$ reproducing kernel on $D \times D$ with $D \neq \emptyset$,

(A2) $H(k) \cap H(1) = \{0\}$,

(A3) $(\gamma_u)_u$ family of weights $\gamma_u \geq 0$ such that, with $m = \inf_{x \in D} k(x, x)$,

$$\sum_{u} \gamma_u \cdot m^{|u|} < \infty.$$

Consider the reproducing kernel

$$K_{\gamma}(x, y) = \sum_{u} \gamma_u \prod_{j \in u} k(x_j, y_j)$$

on $\mathcal{X} \times \mathcal{X}$, where $\mathcal{X} = \{x \in D^\mathbb{N} : \sum_{u} \gamma_u \prod_{j \in u} k(x_j, x_j) < \infty\}$.

III. Algorithms, Error, and Cost

The naive Monte Carlo approach

- Truncation, i.e., fix $c \in D$ and consider

$$I^{(s)}(f) = \int_{D^s} f(x_1, \ldots, x_s, c, \ldots) (\rho \otimes \cdots \otimes \rho)(d(x_1, \ldots, x_s)).$$

- With $\xi_{i,j}$ being independent and distributed according to ρ,

$$Q(f) = \frac{1}{m} \sum_{i=1}^{m} f((\xi_{i,1}, \ldots, \xi_{i,s}, c, \ldots)).$$
III. Algorithms, Error, and Cost

The naive Monte Carlo approach

- Truncation, i.e., fix \(c \in D \) and consider

\[
I^{(s)}(f) = \int_{D^s} f(x_1, \ldots, x_s, c, \ldots) (\rho \otimes \cdots \otimes \rho)(d(x_1, \ldots, x_s)).
\]

- With \(\xi_{i,j} \) being independent and distributed according to \(\rho \),

\[
Q(f) = \frac{1}{m} \cdot \sum_{i=1}^{m} f((\xi_{i,1}, \ldots, \xi_{i,s}, c, \ldots)).
\]

Note: \(Q \) requires \(m \) independent samples in the \(s \)-dimensional subspace

\[
D_c^{(s)} = \{ x \in D^N : x_{s+1} = \cdots = c \}.
\]

In general, randomized algorithms that evaluate \(f \) in the hierarchy of subspaces \(D_c^{(1)} \subset D_c^{(2)} \subset \ldots \).
Here, for simplicity, **randomized quadrature formulas**

\[Q(f) = \sum_{i=1}^{m} b_i \cdot f(\xi_i) \]

with \(b_i \in \mathbb{R} \) and \(\bigcup_{s=1}^{\infty} D_c^{(s)} \)-valued random variables \(\xi_i \).
Here, for simplicity, **randomized quadrature formulas**

\[
Q(f) = \sum_{i=1}^{m} b_i \cdot f(\xi_i)
\]

with \(b_i \in \mathbb{R} \) and \(\bigcup_{s=1}^{\infty} D_{c}^{(s)} \)-valued random variables \(\xi_i \).

Error and **cost** of \(Q \) on a class \(F \) of functions \(f : D^N \rightarrow \mathbb{R} \)

\[
\text{error}^2(Q, F) = \sup_{f \in F} \mathbb{E}|I(f) - Q(f)|^2
\]
Here, for simplicity, **randomized quadrature formulas**

$$Q(f) = \sum_{i=1}^{m} b_i \cdot f(\xi_i)$$

with $b_i \in \mathbb{R}$ and $\bigcup_{s=1}^{\infty} D_c^{(s)}$-valued random variables ξ_i.

Error and **cost** of Q on a class F of functions f

$$\text{error}^2(Q, F) = \sup_{f \in F} \mathbb{E}|I(f) - Q(f)|^2,$$

$$\text{cost}(Q, F) = \sup_{f \in F} \sum_{i=1}^{m} \mathbb{E}(\inf\{s \in \mathbb{N} : \xi_i \in D_c^{(s)}\}).$$
Here, for simplicity, **randomized quadrature formulas**

\[
Q(f) = \sum_{i=1}^{m} b_i \cdot f(\xi_i)
\]

with \(b_i \in \mathbb{R}\) and \(\bigcup_{s=1}^{\infty} D_c^{(s)}\)-valued random variables \(\xi_i\).

Error and **cost** of \(Q\) on a class \(F\) of functions \(f\)

\[
\text{error}^2(Q, F) = \sup_{f \in F} \mathbb{E}|I(f) - Q(f)|^2,
\]

\[
\text{cost}(Q, F) = \sup_{f \in F} \sum_{i=1}^{m} \mathbb{E}(\inf\{s \in \mathbb{N} : \xi_i \in D_c^{(s)}\})
\]

The \(n\)-th **minimal error**

\[
e_n(F) = \inf\{\text{error}(Q, F) : \text{cost}(Q, F) \leq n\}.
\]
IV. Two Particular Results

As before,

- ρ is the uniform distribution on $D = [0, 1]$,
- F_γ consists of functions $f : [0, 1]^N \to \mathbb{R}$ with smooth ANOVA terms in weighted Hilbert spaces.
IV. Two Particular Results

As before,

- \(\rho \) is the uniform distribution on \(D = [0, 1] \),

- \(F_\gamma \) consists of functions \(f : [0, 1]^N \to \mathbb{R} \) with smooth ANOVA terms in weighted Hilbert spaces.

Questions

- Do we have \(\lim_{n \to \infty} e_n(F_\gamma) = 0? \)

- If so, sharp upper and lower bound on \(e_n(F_\gamma) \)?
IV. Two Particular Results

As before,

- \(\rho \) is the uniform distribution on \(D = [0, 1] \),
- \(F_\gamma \) consists of functions \(f: [0, 1]^N \rightarrow \mathbb{R} \) with smooth ANOVA terms in weighted Hilbert spaces.

Questions

- Do we have \(\lim_{n \to \infty} e_n(F_\gamma) = 0? \)
- If so, sharp upper and lower bound on \(e_n(F_\gamma) \)?

Consider

\[
\lambda_\gamma = \sup \{ r > 0 : \sup_{n \in \mathbb{N}} (e_n(F_\gamma) \cdot n^r) < \infty \}
\]

as a substitute for the order of convergence of the minimal errors.
Assume that $\gamma_j = j^{-\alpha}$ with $\alpha > 1$. Then, for randomized algorithms,

$$\lambda_\gamma = \min((\alpha - 1)/2, 3/2).$$

Assume that $\gamma_j = j^{-\alpha}$ with $\alpha > 1$. Then, for randomized algorithms,

$$\lambda_\gamma = \min((\alpha - 1)/2, 3/2).$$

Rem.

- Almost optimal algorithms: multi-level plus scrambled lattice rules. The starting point is

$$f_L(x) = f_0(x) + \sum_{\ell=1}^{L} (f_\ell(x) - f_{\ell-1}(x)).$$

with $f_\ell(x) = f(x_1, \ldots, x_{2^\ell}, 1/2, \ldots)$. Use scrambled lattice rules for integration of $f_\ell - f_{\ell-1}$. Apply tractability results.
Assume that $\gamma_j = j^{-\alpha}$ with $\alpha > 1$. Then, for randomized algorithms,

$$
\lambda_\gamma = \min\left(\frac{(\alpha - 1)}{2}, \frac{3}{2}\right).
$$

Rem.

- Almost optimal algorithms: multi-level plus scrambled lattice rules.
- Fixed subspace sampling is suboptimal. More precisely,

$$
\lambda_{\gamma}^{\text{fix}} \leq \frac{3 \cdot (\alpha - 1)}{2 \cdot (\alpha + 2)}
$$

for the order of convergence of the respective minimal errors.

Assume that $\gamma_j = j^{-\alpha}$ with $\alpha > 1$. Then, for randomized algorithms,

$$\lambda_\gamma = \min\left(\frac{\alpha - 1}{2}, \frac{3}{2}\right).$$

Rem.

- Almost optimal algorithms: multi-level plus scrambled lattice rules.
- Fixed subspace sampling is suboptimal. More precisely,

$$\lambda_\gamma^{\text{fix}} \leq \frac{3 \cdot (\alpha - 1)}{2 \cdot (\alpha + 2)}$$

for the order of convergence of the respective minimal errors.

Question: Performance of deterministic algorithms?

Assume that $\gamma_j = j^{-\alpha}$ with $\alpha > 1$. Then, for deterministic algorithms,

$$\lambda_\gamma = \min\left((\alpha - 1)/2, 1\right).$$

Assume that \(\gamma_j = j^{-\alpha} \) with \(\alpha > 1 \). Then, for deterministic algorithms,

\[
\lambda_\gamma = \min \left(\frac{(\alpha - 1)}{2}, 1 \right).
\]

Proof, Step 1 Result is known for the unit ball in \(H(L_\gamma) \), where

\[
L_\gamma(x, y) = \sum_u \gamma_u \prod_{j \in u} \ell(x_j, y_j) = \prod_{j=1}^{\infty} \left(1 + \gamma_j \ell(x_j, y_j) \right)
\]

with

\[
\ell(x, y) = \min(x, y).
\]

Furthermore, with equivalent norms for every \(\gamma > 0 \),

\[
H(1 + \gamma k) = H(1 + \gamma \ell) = W_2^1([0, 1]).
\]
Assume that $\gamma_j = j^{-\alpha}$ with $\alpha > 1$. Then, for deterministic algorithms,

$$\lambda_\gamma = \min((\alpha - 1)/2, 1).$$

Proof, Step 1 Result is known for the unit ball in $H(L_\gamma)$, where

$$L_\gamma(x, y) = \sum_u \gamma_u \prod_{j \in u} \ell(x_j, y_j) = \prod_{j=1}^{\infty} (1 + \gamma_j \ell(x_j, y_j))$$

with

$$\ell(x, y) = \min(x, y).$$

Furthermore, with equivalent norms for every $\gamma > 0$,

$$H(1 + \gamma k) = H(1 + \gamma \ell) = W_2^1([0, 1]).$$

Question: $H(K_\gamma) = H(L_\gamma)$? **Answer:** No, in general.
V. Embeddings

Thm. Hefter, R (2014)

(i)

\[
\sum_{j=1}^{\infty} \gamma_j^{1/2} < \infty \iff H(K_\gamma) = H(L_\gamma).
\]
V. Embeddings

Thm. Hefter, R (2014)

(i)

$$\sum_{j=1}^{\infty} \gamma_j^{1/2} < \infty \iff H(K_{\gamma}) = H(L_{\gamma}).$$

(ii) In general, there exist $0 < c' < 1 < \tilde{c}$ such that

$$H(K_{c'\gamma}) \subseteq H(L_{\gamma}) \subseteq H(K_{\tilde{c}\gamma})$$

and

$$H(L_{c'\gamma}) \subseteq H(K_{\gamma}) \subseteq H(L_{\tilde{c}\gamma}).$$

Here $K_{c\gamma}(x, y) = \prod_{j=1}^{\infty} (1 + c\gamma_j k(x_j, y_j))$, and likewise for $L_{c\gamma}$.
V. Embeddings

Thm. Hefter, R (2014)

(i) \[\sum_{j=1}^{\infty} \gamma_j^{1/2} < \infty \iff H(K_\gamma) = H(L_\gamma). \]

(ii) In general, there exist \(0 < c' < 1 < \tilde{c}\) such that

\[H(K_{c'\gamma}) \subseteq H(L_\gamma) \subseteq H(K_{\tilde{c}\gamma}) \]

and

\[H(L_{c'\gamma}) \subseteq H(K_\gamma) \subseteq H(L_{\tilde{c}\gamma}). \]

Here \(K_{c\gamma}(x, y) = \prod_{j=1}^{\infty} (1 + c\gamma_j k(x_j, y_j))\), and likewise for \(L_{c\gamma}\).

Rem. General result on embeddings between weighted tensor product spaces available.
Summary

- Integration

\[I(f) = \int_{D^N} f(x) \rho^N(dx) \]

of functions \(f : D^N \rightarrow \mathbb{R} \).

- Function classes: weighted superpositions of tensor product reproducing kernel Hilbert spaces,

\[K_{\gamma}(x, y) = \sum_{u} \gamma_u \prod_{j \in u} k(x_j, y_j). \]

- Sharp bound on minimal errors for randomized and deterministic algorithms (here: for a specific example).

- New type of embedding results.