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Practicalities

Lectures take place on Tuesdays and Thursdays, 9-10am,
MR14.

Course materials (lecture notes, example sheets, etc.) will be
provided at http://www.damtp.cam.ac.uk/research/
cia/teaching/bayesinvprob19.html

Three example sheets and example classes (details to follow).

Revision class will be held in May.

Written exam will be held on 10 June 2019, 9-11am.

For further questions email hnk22@cam.ac.uk

http://www.damtp.cam.ac.uk/research/cia/teaching/bayesinvprob19.html
http://www.damtp.cam.ac.uk/research/cia/teaching/bayesinvprob19.html
mailto:hnk22@cam.ac.uk


Example classes

Example classes will take place on the following dates:

Monday 11 February 2019, 2-3pm, MR4

Monday 25 February 2019, 2-3pm, MR4

Monday 11 March 2019, 2-3pm, MR4

Return solutions to two questions (specified in advance)

Example sheets will be made available one week before the
deadline.

Hand in your answers by 4pm on the previous Friday.



What do we mean by inverse problems?

Direct problem: Given an object (cause), determine data
(effect).

Inverse problem: Observing (noisy) data, recover the object.



Image processing is a classical example of an inverse
problem



Inverse problems are ill-posed

Well-posed problems were introduced by Jacques Hadamard
(1923):

I) Existence. There should be at least one solution.

II) Uniqueness. There should be at most one solution.

III) Stability. The solution must depend continuously on data.

If any of the above conditions is violated the problem is called
ill-posed



We assume linear measurement model

We consider the linear measurement model

m0 = Au

The physical phenomena that relates the unknown and
measurement is modelled by a linear operator A : X → Y .
The ideal measurement is given by m0 = Au.

We can only observe noisy measurements m = Au + n

We would like to recover the unknown u from a noisy measurement
m.

Main difficulty: A−1 does not exist or is not continuous.



We assume linear measurement model

We consider the linear measurement model

m0 = Au

The physical phenomena that relates the unknown and
measurement is modelled by a linear operator A : X → Y .
The ideal measurement is given by m0 = Au.
We can only observe noisy measurements m = Au + n

We would like to recover the unknown u from a noisy measurement
m.

Main difficulty: A−1 does not exist or is not continuous.



We assume linear measurement model

We consider the linear measurement model

m0 = Au

The physical phenomena that relates the unknown and
measurement is modelled by a linear operator A : X → Y .
The ideal measurement is given by m0 = Au.
We can only observe noisy measurements m = Au + n

We would like to recover the unknown u from a noisy measurement
m.

Main difficulty: A−1 does not exist or is not continuous.



Examples of problems caused by ill-posedness

I) A : Rd → R(A) ( Rd . Assume there is unique
A−1 : R(A)→ Rd . Because of the noise m /∈ R(A)
⇒We can’t just invert A.

II) A : Rd → Rk , d > k , i.e. the system is underdetermined.
⇒ There are several possible solutions.

III) There exists A−1 : Rd → Rd , but the condition number
κ = λ1/λd is very large. Then A is almost singular and
‖A−1n‖ ≈ ‖n‖/λd can be arbitrarily large.
⇒ The naive reconstruction ũ = A−1m = u + A−1n is
dominated by the noise.
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Examples: Deblurring (deconvolution)

Figure: The Hubble space telescope had a flaw in its mirror which
resulted in the images being blurred.

m0(x) = (Au)(x) =

∫
R2

a(x − y)u(u)dy



Signal deblurring for noiseless data

The noiseless data m0(t) =
∫∞
−∞ a(t − s)u(s)ds has Fourier

transform

m̂0(ξ) =

∫ ∞
−∞

e−iξtm0(t)dt .

The Convolution Theorem implies

m̂0(ξ) = â(ξ)û(ξ),

and hence by inverse Fourier transform

u(t) =
1

2π

∫ ∞
−∞

eitξ m̂0(ξ)

â(ξ)
dξ.
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Signal deblurring for noisy data

We can only observe noisy data and get

m̂(ξ) = â(ξ)û(ξ) + n̂(ξ).

We assume that a is a Gaussian kernel

a(t) =
1√

2πα2
exp

(
− 1

2α2 t2
)
.

Then the estimate ũ given by the Convolution Theorem is

ũ(t) = u(t) +
1

2π

∫ ∞
−∞

n̂(ξ) exp
(

itξ +
α2

2
ξ2
)

dξ,

which may not be even well defined.
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Then the estimate ũ given by the Convolution Theorem is

ũ(t) = u(t) +
1

2π

∫ ∞
−∞

n̂(ξ) exp
(

itξ +
α2

2
ξ2
)

dξ,

which may not be even well defined.



Examples: Heat distribution in an insulated rod

Consider the problem

vt − vxx = 0 in (0, π)× R+

v(0, ·) = v(π, ·) = 0 on R+

v(·,T ) = m0 in (0, π)

v(·,0) = u in (0, π)

Forward problem: Determine the final distribution v(·,T ) ∈ L2(0, π),
T > 0, when the initial distribution v(·,0) ∈ L2(0, π) is given.

Inverse problem: Determine the initial distribution v(·,0) ∈ L2(0, π)
from observed (noisy) final distribution v(·,T ) ∈ L2(0, π).
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Forward problem

The solution to the forward problem can be given explicitly:

v(x ,T ) =
∞∑

j=1

ûje−j2T sin(jx),

where {ûj}∞j=0 are the Fourier sine coefficients of the initial heat
distribution u.

The solution operator

AT : u 7→ v(·,T ) = m0, L2(0, π)→ L2(0, π)

satisfies the following conditions:
AT is injective,
R(AT ) is dense in L2(0, π),
AT is linear, bounded and compact⇒ no continuous inverse.
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Inverse problem

We notice that, for every s > 0,

‖v‖2Hs =
∞∑

j=1

j2se−2j2T |ûj |2

= T−s
∞∑

j=1

(j2T )se−2j2T |ûj |2

= CT−s‖u‖2L2

and hence R(AT ) ⊂ ∩s>0Hs. However, noise is not smooth and
hence m = v(·,T ) + n /∈ R(AT ).



Heat distribution at t = 0.02,0.06,0.1,0.2,0.5 and
t = 1



Another heat distribution at t = 0.02,0.06,0.1,0.2,0.5
and t = 1



Comparison of the two heat distributions



Examples: Computerised tomography (CT)

m0(θ, s) = (Au)(θ, s) =

∫
x ·θ=s

u(x)dx

See videos at www.siltanen-research.net/IPexamples/xray_tomography

www.siltanen-research.net/IPexamples/xray_tomography


Examples: Computerised tomography (CT)



Examples: Ozone layer tomography

Figure: Given star occultation measurements, what is the ozone profile?



Examples: Geodesic X-ray transform

m0(γ) = (Au)(γ) =

∫
u(γ(t))dt



Non-linear example: Electrical Impedance
Tomography (EIT)

Applying electric voltages f at
the boundary leads to PDE

∇ · (σ∇v) = 0 in Ω ∈ R2

v |∂Ω = f

Non-linear inverse problem:
Recover conductivity σ from
boundary measurements
Λσ(f ) = σ ∂v

∂~n |∂Ω



EIT in industry

Figure: EIT and similar methods can be used for example to detect
cracks in concrete and in industrial process monitoring.



Examples: Asteroid lightcurve inversion

Figure: The lightcurve inversion technique is used to find an object’s
rotation period, its shape and spin-axis orientation



Examples: Photo-acoustic tomography

Figure: Photo-acoustic tomography is an example of a hybrid inverse
problem that aims to combine high contrast and resolution of different
imaging methods.



Examples: Photo-acoustic tomography

Figure: Images of superficial blood vessels. Image by UCL Photoacoustic
Imaging Group



Solving an inverse problem: Deterministic approach

We want to approximate u from a measurement

m = Au + n,

where A : X → Y is linear and n is noise.

One approach is to use the least squares method

ũ = arg min
u∈X

{
‖Au −m‖2Y

}
.

Problem: Multiple minima and sensitive dependence on the
data m.



Solving an inverse problem: Deterministic approach

We want to approximate u from a measurement

m = Au + n,

where A : X → Y is linear and n is noise.

The problem is ill-posed so we add a regularising term and get

ũ = arg min
u∈E⊂X

{
‖Au −m‖2Y + α‖u‖2E

}
Regularisation gives a stable approximate solution for the inverse
problem.



Solving an inverse problem: Stochastic approach

We consider linear measurement model

m = Au + η,

where m,u, η are now treated as random variables.

Bayes’ formula

P(u ∈ A |m ∈ B) =
P(m ∈ B |u ∈ A)P(u ∈ A)

P(m ∈ B)



The solution is a probability distribution

Finite dimensional Gaussian example

X = Rd and Y = Rk

η is white Gaussian noise

We choose Gaussian prior

Posterior has density

πm(u) = π(u |m) ∝ exp
(
− 1

2
‖m − Au‖2Rk −

1
2
‖u‖2Σ

)

We can use the mean of the posterior as a point estimator but
having the whole posterior allows uncertainty quantification.



Bayesian analysis has many applications

Studying the whole posterior distribution instead of just a point
estimate offers us more information.

Uncertainty quantification

Confidence and credible
sets
E.g. Weather and climate
predictions

Using the whole posterior

Geological sensing
Bayesian search theory Figure: Search for the wreckage

of Air France flight AF 447,
Stone et al.


