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Practicalities

@ Lectures take place on Tuesdays and Thursdays, 9-10am,
MR14.

@ Course materials (lecture notes, example sheets, etc.) will be
provided at http://www.damtp.cam.ac.uk/research/
cia/teaching/bayesinvprobl9.html

@ Three example sheets and example classes (details to follow).
@ Revision class will be held in May.
@ Written exam will be held on 10 June 2019, 9-11am.

@ For further questions email hnk22@cam.ac.uk


http://www.damtp.cam.ac.uk/research/cia/teaching/bayesinvprob19.html
http://www.damtp.cam.ac.uk/research/cia/teaching/bayesinvprob19.html
mailto:hnk22@cam.ac.uk

Example classes

Example classes will take place on the following dates:
@ Monday 11 February 2019, 2-3pm, MR4
@ Monday 25 February 2019, 2-3pm, MR4
@ Monday 11 March 2019, 2-3pm, MR4

Return solutions to two questions (specified in advance)

@ Example sheets will be made available one week before the
deadline.

@ Hand in your answers by 4pm on the previous Friday.



What do we mean by inverse problems?

@ Direct problem: Given an object (cause), determine data
(effect).

@ Inverse problem: Observing (noisy) data, recover the object.

Direct problem
—

Inverse problem




Image processing is a classical example of an inverse
problem

Direct problem
—

Inverse problem




Inverse problems are ill-posed

Well-posed problems were introduced by Jacques Hadamard
(1923):

[) Existence. There should be at least one solution.

[I) Uniqueness. There should be at most one solution.

II) Stability. The solution must depend continuously on data.

If any of the above conditions is violated the problem is called
ill-posed



We assume linear measurement model

We consider the linear measurement model

mg = Au

@ The physical phenomena that relates the unknown and
measurement is modelled by a linear operator A: X — Y.

@ The ideal measurement is given by my = Au.
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We assume linear measurement model

We consider the linear measurement model

mg = Au

@ The physical phenomena that relates the unknown and
measurement is modelled by a linear operator A: X — Y.

@ The ideal measurement is given by my = Au.
@ We can only observe noisy measurements m= Au + n

We would like to recover the unknown u from a noisy measurement
m.

Main difficulty: A~' does not exist or is not continuous.



Examples of problems caused by ill-posedness

) A:RY — R(A) C RY. Assume there is unique
A-1: R(A) — RY. Because of the noise m ¢ R(A)
= We can't just invert A.
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Examples of problems caused by ill-posedness

) A:RY — R(A) C RY. Assume there is unique
A-1: R(A) — RY. Because of the noise m ¢ R(A)
= We can't just invert A.

I) A:RY — RX, d > k, i.e. the system is underdetermined.
= There are several possible solutions.

IIl) There exists A~' : R — RY, but the condition number
k = A\1/)\g is very large. Then Ais almost singular and
|A="n|| ~ ||n||/\q can be arbitrarily large.
= The naive reconstruction t = A~""m=u+ A""nis
dominated by the noise.



Examples: Deblurring (deconvolution)

Figure: The Hubble space telescope had a flaw in its mirror which
resulted in the images being blurred.

mo(x) = (Au)() = [ _alx = yu(u)oy



Signal deblurring for noiseless data

The noiseless data my(t) = [~ a(t — s)u(s)ds has Fourier
transform
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Signal deblurring for noiseless data

The noiseless data my(t) = [~ a(t — s)u(s)ds has Fourier
transform

The Convolution Theorem implies

Mo(&) = a(&)u(s),

and hence by inverse Fourier transform




Signal deblurring for noisy data

We can only observe noisy data and get

m(&) = a(§)u(s) + ().
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Signal deblurring for noisy data

We can only observe noisy data and get

m(&) = a(§)u(s) + ().

We assume that a is a Gaussian kernel

1 1 5

Then the estimate u given by the Convolution Theorem is

~ 1 [ . a?
Ut = u(t) + 5 [ Qe (it + G ) ok

—0o0

which may not be even well defined.



Examples: Heat distribution in an insulated rod

Consider the problem

Vi—Vix =0 in(0,7) x Ry
v(0,-)=v(m,-)=0 onR;
v(-,T)=my in(0,m)
v(-,0)=u in(0,m)
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Examples: Heat distribution in an insulated rod

Consider the problem

Vi—Vxix =0 in(0,7) x Ry
v(0,-)=v(m,-)=0 onR;
v(-,T)=my in(0,m)
v(-,0)=u in(0,m)
Forward problem: Determine the final distribution v(-, T) € L?(0, 7),
T > 0, when the initial distribution v(-,0) € L2(0, ) is given.

Inverse problem: Determine the initial distribution v(-,0) € L2(0, )
from observed (noisy) final distribution v(-, T) € L?(0, 7).



Forward problem

The solution to the forward problem can be given explicitly:
vix,T) = Z *Tsin(jx),

where {U;}>°, are the Fourier sine coefficients of the initial heat
distribution v.



Forward problem

The solution to the forward problem can be given explicitly:
vix,T) = Z *Tsin(jx),

where {U;}>°, are the Fourier sine coefficients of the initial heat
distribution v.

The solution operator
Ar:u—v(,T)=my, L30,7)— L3(0,n)

satisfies the following conditions:
@ Arisinjective,
@ R(Ar)is dense in L2(0, ),
@ Aris linear, bounded and compact = no continuous inverse.



Inverse problem

We notice that, for every s > 0,

2 22T 2
IvIEs = Z! ]
Jj=1

— =,. _ 02T~
=T SZ(IZT)Se 2j T|Uj|2
=
= CT~°||ull

and hence R(Ar) C Ns=oH*. However, noise is not smooth and
hence m=v(:, T)+ n ¢ R(Ar).



Heat distribution at t = 0.02,0.06,0.1,0.2,0.5 and
t=1




Another heat distribution at t = 0.02,0.06,0.1,0.2,0.5
and t =1




Comparison of the two heat distributions




Examples: Computerised tomography (CT)

mo(0,s) = (Au)(0, s) = / u(x)dx

Xx-0=s

See videos at www.siltanen-research.net/IPexamples/xray_tomography


www.siltanen-research.net/IPexamples/xray_tomography

Examples: Computerised tomography (CT)
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Examples: Ozone layer tomography

Figure: Given star occultation measurements, what is the ozone profile?



Examples: Geodesic X-ray transform
/A‘f\s”ad
0,980

K3

&

¥
&
Earthquake &

A0 sanem &

<
ao® «

— o

..
-?pcs

mo(1) = (Au)(7) = / u((8))at



Non-linear example: Electrical Impedance
Tomography (EIT)

Applying electric voltages f at

the boundary leads to PDE Non-linear inverse problem:

Recover conductivity o from
V. (eVv)=0 inQe R2 boundary measurements

VlaQ — f A (f) - U |8Q



EIT in industry
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Figure: EIT and similar methods can be used for example to detect
cracks in concrete and in industrial process monitoring.



Examples: Asteroid lightcurve inversion

Figure: The lightcurve inversion technique is used to find an object’s
rotation period, its shape and spin-axis orientation



Examples: Photo-acoustic tomography
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Figure: Photo-acoustic tomography is an example of a hybrid inverse
problem that aims to combine high contrast and resolution of different
imaging methods.



Examples: Photo-acoustic tomography

Figure: Images of superficial blood vessels. Image by UCL Photoacoustic
Imaging Group



Solving an inverse problem: Deterministic approach

We want to approximate u from a measurement
m = Au+ n,
where A: X — Y is linear and nis noise.
One approach is to use the least squares method
U= in {||Au— m|3}.
arg min {| v}

Problem: Multiple minima and sensitive dependence on the
data m.



Solving an inverse problem: Deterministic approach

We want to approximate u from a measurement
m = Au+ n,
where A: X — Y is linear and nis noise.
The problem is ill-posed so we add a regularising term and get
U=a i Au— m|? ul|2
g min {] 13 + alul2}

Regularisation gives a stable approximate solution for the inverse
problem.



Solving an inverse problem: Stochastic approach

We consider linear measurement model

m= Au+n,
where m, u,n are now treated as random variables.
Bayes’ formula

P(me Blue A)P(u e A)
P(m e B)

Plue Alme B) =



The solution is a probability distribution

Finite dimensional Gaussian example
@ X=R%and Y =RX
@ 7 is white Gaussian noise

@ We choose Gaussian prior

Posterior has density

1 1
7"(u) = (| m) o exp (= 5 llm = AulZ - 5 ul})

We can use the mean of the posterior as a point estimator but
having the whole posterior allows uncertainty quantification.



Bayesian analysis has many applications

Studying the whole posterior distribution instead of just a point
estimate offers us more information.

Uncertainty quantification

@ Confidence and credible
sets

@ E.g. Weather and climate
predictions

Using the whole posterior

@ Geological sensing

@ Bayesian search theory Figure: Search for the wreckage
of Air France flight AF 447,

Stone et al.



