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Practicalities

@ Lectures take place on Tuesday, Thursday and Saturday,
12-1pm, MR13.

@ Course materials (lecture notes, example sheets, etc.) will be
provided at http://www.damtp.cam.ac.uk/research/
cia/inverse—-problems-michaelmas-2019

@ Four example sheets and example classes.
@ Written exam will be held in June.

@ For further questions email hnk22@cam.ac.uk or
yk362@cam.ac.uk


http://www.damtp.cam.ac.uk/research/cia/inverse-problems-michaelmas-2019
http://www.damtp.cam.ac.uk/research/cia/inverse-problems-michaelmas-2019
mailto:hnk22@cam.ac.uk
mailto:yk362@cam.ac.uk

Example classes

Example classes will be held in MR15 on the following dates:
@ Monday 28 October, 2-3.30pm
@ Monday 18 November, 2-3.30pm
@ Monday 2 December, 2-3.30pm
@ Monday 20 January, 2-3.30pm

Return solutions to two questions (specified in advance)

@ Example sheets will be made available one week before the
deadline.

@ Hand in your answers during the lecture on the previous
Thursday.



What do we mean by inverse problems?

@ Direct problem: Given an object (cause), determine data
(effect).

@ Inverse problem: Observing (noisy) data, recover the object.

Direct problem
—

Inverse problem




Image processing is a classical example of an inverse
problem

Direct problem
—

Inverse problem




Inverse problems are ill-posed

Well-posedness of a problem as defined by Jacques Hadamard
(1923):

[) Existence. There should be at least one solution.

[I) Uniqueness. There should be at most one solution.

II) Stability. The solution must depend continuously on data.

If any of the above conditions is violated the problem is called
ill-posed



We consider linear problems

We consider the linear inverse problem

f=Au

@ The physical phenomenon that relates the unknown and the
measurement is modelled by a linear operator A: X — Y.

@ The ideal measurement is given by f = Au.



We consider linear problems

We consider the linear inverse problem

f=Au

@ The physical phenomenon that relates the unknown and the
measurement is modelled by a linear operator A: X — Y.

@ The ideal measurement is given by f = Au.
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We would like to recover the unknown u from a noisy measurement
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We consider linear problems

We consider the linear inverse problem

f=Au

@ The physical phenomenon that relates the unknown and the
measurement is modelled by a linear operator A: X — Y.

@ The ideal measurement is given by f = Au.
@ We can only observe noisy measurements f, = Au+n

We would like to recover the unknown u from a noisy measurement
fn.

Main difficulty: A~' does not exist or is not continuous.



Examples: matrix inversion

) A:RY = R(A) C Rk, k > d, i.e. the system is
overdetermined. Because of the noise f, ¢ R(A)
= There is no solution.
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Examples: matrix inversion

) A:RY — R(A) C RX, k > d, i.e. the system is
overdetermined. Because of the noise f, ¢ R(A)
= There is no solution.

I) A:RY — R k < d, i.e. the system is underdetermined.
= There are several possible solutions.

IIl) There exists A~' : R — RY, but the condition number
k = A\1/\g is very large. Then Ais almost singular and
|A="n|| ~ ||n||/\q can be arbitrarily large.
= The naive reconstruction u = A~ 'f, = u+ A 'nis
dominated by the noise.



Examples: Deblurring (deconvolution)

Figure: The Hubble space telescope had a flaw in its mirror which
resulted in the images being blurred.

100 = (Au)() = [ alx=puy)ay



Signal deblurring for noiseless data

The noiseless data f(t) = [*_a(t — s)u(s)ds has Fourier transform

(&) = /_ h e Sf(t)dt.
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Signal deblurring for noiseless data

The noiseless data f(t) = [*_a(t — s)u(s)ds has Fourier transform

fe) = / e Ef(1)al.
The Convolution Theorem implies

f(&) = ae)u(e),

and hence by inverse Fourier transform
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Signal deblurring for noisy data

We can only observe noisy data and get

~

fn(€) = &(£)0(&) + ().
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Signal deblurring for noisy data

We can only observe noisy data and get

fn(€) = &(£)0(&) + ().

We assume that a is a Gaussian kernel

1 1 5
Then the estimate u given by the Convolution Theorem is

~ 1

w0 =ut) + 5 [ e (it + G )t

which may not be even well defined since the Fourier transform of
the noise will not decay fast enough.



Examples: Heat distribution in an insulated rod

Consider the problem

Vi—Vix =0 in(0,7) x Ry
v(0,-)=v(m,-)=0 onR;
v(-, T)="f in(0,7)
v(-,0)=u in(0,m)
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T > 0, when the initial distribution v(-,0) € L2(0, ) is given.



Examples: Heat distribution in an insulated rod

Consider the problem

Vi— Vi =0 in(0,7) x Ry
v(0,-)=v(m,-)=0 onR;
v(-, T)="f in(0,7)
v(-,0)=u in(0,m)

Forward problem: Determine the final distribution v(-, T) € L?(0, 7),
T > 0, when the initial distribution v(-,0) € L2(0, ) is given.

Inverse problem: Determine the initial distribution v(-,0) € L2(0, )
from observed (noisy) final distribution v(-, T) € L?(0, 7).



Forward problem

The solution to the forward problem can be given explicitly:
vix,T) = Z *Tsin(jx),

where {U;}°, are the Fourier (sine) coefficients of the initial heat
distribution v.



Forward problem

The solution to the forward problem can be given explicitly:
vix,T) = Z *Tsin(jx),

where {U;}°, are the Fourier (sine) coefficients of the initial heat
distribution v.

The solution operator
Ar:uw—v(, T)=f, L%0,7)— L%(0,7)

satisfies the following conditions:
@ Arisinjective,
@ R(Ar)is dense in L2(0, ),
@ Aris linear, bounded and compact = no continuous inverse.



Inverse problem

We notice that, for every s > 0,

2 22T 2
IvIEs = Z! ]
Jj=1

— =,. _ 02T~
=T SZ(IZT)Se 2j T|Uj|2
=
< CT~°||ull

and hence R(Ar) C Ns=oH*. However, noise is not smooth and
hence f, = v(-, T) + n ¢ R(Ar).



Heat distribution at t = 0.02,0.06,0.1,0.2,0.5 and
t=1




Another heat distribution at t = 0.02,0.06,0.1,0.2,0.5
and t =1




Comparison of the two heat distributions




Examples: Computerised tomography (CT)




The data are collected by rotating the X-ray source
and detectors around the object

Video by Samuli Siltanen. For more videos see
www.siltanen-research.net/IPexamples/xray_tomography
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www.siltanen-research.net/IPexamples/xray_tomography

Examples: Ozone layer tomography

Figure: Given star occultation measurements, what is the ozone profile?



Examples: Geodesic X-ray transform
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Examples: Photo-acoustic tomography

Ultrasonic
emission
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Figure: Photo-acoustic tomography is an example of a hybrid inverse
problem that aims to combine high contrast and resolution of different
imaging methods.



Examples: Photo-acoustic tomography

Figure: Images of superficial blood vessels. Image by UCL Photoacoustic
Imaging Group



Solving an inverse problem: Deterministic approach

We want to approximate u from a measurement
fn=Au+ n,

where A: X — Y is linear and bounded, X and Y are Hilbert
spaces and n € Y is noise.

One approach is to use the least squares method
U= in{||Au— |3 }.
arg min { | nlly )

Problem: Multiple minima (if A is not injective) and no stability with
respect to the data f;.



Solving an inverse problem: Deterministic approach

We want to approximate u from a measurement
fn=Au+ n,

where A: X — Y is linear and bounded, X and Y are Hilbert
spaces and n € Y is noise.

To regularise the problem we add a regularisation term and define
U= in {||Au — |3 + aR(u
arg min {| ol + aR(u)}

Regularisation gives a stable approximate solution for the inverse
problem.



Solving an inverse problem: Stochastic approach

We consider linear measurement model
F=AU+N,
where F, U, N are now treated as random variables.

Bayes’ formula

Using Bayes’ theorem the prior distribution can be updated to a
posterior distribution

P(f, € Blu e A)P(u € A)
P(f, € B) '

Pluc A|f € B) =



The solution is a probability distribution

Finite dimensional Gaussian example
@ X=R%and Y = R¥
@ N is white Gaussian noise

@ We choose Gaussian prior

Posterior has density
o) = (| 1) o exp  — 51t — AulZe — Tl
2 R 20
We notice that, in this case, solving the mode of the posterior leads

to similar optimisation problem as regularisation (with
R(u) = [[ull$).
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