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Chapter 1

Introduction to Inverse Problems

Inverse problems arise from the need to gain information about an unknown object of inter-
est from given indirect measurements. Inverse problems have several applications varying
from medical imaging and industrial process monitoring to ozone layer tomography and
modelling of financial markets. The common feature for inverse problems is the need to
understand indirect measurements and to overcome extreme sensitivity to noise and mod-
elling inaccuracies. In this course we employ both deterministic and probabilistic approach
to inverse problems to find stable and meaningful solutions that allow us quantify how
inaccuracies in the data or model affect the obtained estimate.

1.1 Well-posed and ill-posed problems

We start by considering the problem of finding u ∈ Rd that satisfies the equation

f = Au, (1.1)

where f ∈ Rk is given. We refer to f as observed data or measurement and u as an unknown.
The physical phenomena that relates the unknown and the measurement is modelled by a
matrix A ∈ Rk×d. In real life the perfect data given in (1.1) is perturbed by noise and we
observe measurements

fn = Au+ n, (1.2)

where n ∈ Rk represents the observational noise.
We are interested in ill-posed inverse problems, where the inverse problem is more

difficult to solve than the direct problem of finding fn when u is given. To explain this
we first need to introduce well-posedness as defined by Jacques Hadamard:

Definition 1.1.1. A problem is called well-posed if

1. There exists at least one solution. (Existence)

2. There is at most one solution. (Uniqueness)

3. The solution depends continuously on data. (Stability)

The direct or forward problem is assumed to be well-posed. The inverse problems are
ill-posed and break at least one of the above conditions.

7
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1. Assume that d < k and A : Rd → R(A) ( Rk, where the range of A is a proper
subset of Rk. Furthermore, we assume that A has a unique inverse A−1 : R(A)→ Rk.
Because of the noise in the measurement fn 6∈ R(A) so that simply inverting A with
the data given in (1.2) is not possible. Note that usually only the statistical properties
of the noise n are known so we cannot just subtract it.

2. Assume next that d > k and A : Rd → Rk, in which case the system is underde-
termined. We then have more unknowns than equations which means that there are
several possible solutions.

3. Consider next case d = k and there exist A−1 : Rk → Rk but the condition number
κ = λ1/λk, where λ1 and λk are the biggest and smallest eigenvalues of A, is very
large. Such a matrix is said to be ill-conditioned and is almost singular. In this case
the problem is sensitive even to smallest errors in the measurement. Hence the naive
reconstruction ũ = A−1fn = u + A−1n does not produce a meaningful solution but
will be dominated by A−1n. Note that ‖A−1n‖2 ≈ ‖n‖2/λk can be arbitrarily large.

The last part illustrates one of the key perspectives of inverse problem theory; How can we
stabilise the reconstruction process while maintaining acceptable accuracy?

A deterministic way of achieving a unique and stable solution for the problem (1.2) is
to use regularisation theory. In the classical Tikhonov regularisation a solution is attained
by solving

min
u∈Rd

(
‖Au− fn‖2 + α‖Lu‖2

)
. (1.3)

Above α acts as a tuning parameter balancing the effect of the data fidelity term ‖Au− fn‖2
and the stabilising regularisation term ‖u‖2. The first half of the course will concentrate
on regularisation theory.

Another way of tackling problems arising from ill-posedness is Bayesian inversion. The
idea of statistical inversion methods is to rephrase the inverse problem as a question of
statistical inference. We then consider problem

F = AU +N, (1.4)

where the measurement, unknown and noise are now modelled as random variables. This
approach allows us to model the noise through its statistical properties. We can also encode
our a priori knowledge of the unknown in form of a probability distribution that assigns
higher probability to those values of u we expect to see. The solution to (6.1) is so-called
posterior distribution, which is the conditional probability distribution of u given a mea-
surement m. This distribution can then be used to obtain estimates that are most likely
in some sense. We will return to the Bayesian approach to inverse problems in the second
half of the course

In this course we will concentrate on continuous inverse problems where in (1.1) and
(1.2) A : X → Y is a linear forward operator acting between some spaces X and Y , typically
Hilbert or Banach spaces, the measured data fn ∈ Y is a function and u ∈ X is the quantity
we want to reconstruct from the data. Linear inverse problems include such important
applications as computer tomography, magnetic resonance imaging and image deblurring
in microscopy or astronomy. There are, however, many other important applications, such
as seismic imaging, where the forward operator is non-linear (e.g., parameter identification
problems for PDEs). Next we will take a look at some examples of linear inverse problems
to see what kind of challenges we face when trying to solve them.
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1.2 Examples of inverse problems

1.2.1 Signal deblurring

The deblurring (or deconvolution) problem of recovering an input signal u form an observed
signal

fn(t) =

∫ ∞
−∞

a(t− s)u(s)ds+ n(t)

occurs in many imaging, and image- and signal processing applications. Here the function
a is known as the blurring kernel.

The noiseless data is given by f(t) =
∫∞
−∞ a(t − s)u(s)ds and its Fourier transform is

f̂(ξ) =
∫∞
−∞ e

−iξtf(t)dt. The convolution theorem implies

f̂(ξ) = â(ξ)û(ξ),

and hence by inverse Fourier transform

u(t) =
1

2π

∫ ∞
−∞

eitξ
f̂(ξ)

â(ξ)
dξ.

However, we can only observe noisy measurements and hence we have on the frequency
domain f̂n(ξ) = â(ξ)û(ξ) + n̂(ξ). The estimate uest based on the convolution theorem is
given by

uest(t) = u(t) +
1

2π

∫ ∞
−∞

eitξ
n̂(ξ)

â(ξ)
dξ,

which is often not even well defined, since usually the kernel a decreases exponentially (or
has compact support), making the denominator small, whereas the Fourier transform of the
noise will be non-zero.

1.2.2 Heat equation

Next we study the problem of recovering the initial condition u of the heat equation from
a noisy observation fn of the solution at some time T > 0. We consider the heat equation
on a torus Td, with Dirichlet boundary conditions

dv
dt −∆v = 0 onTd × R+

v(x, t) = 0 on ∂Td × R+

v(x, T ) = f(x) onTd

v(x, 0) = u(x) onTd

where ∆ denotes the Laplace operator and D(∆) = H1
0 (Td) ∩ H2(Td). Note that the

operator −∆ is positive and self-adjoint on Hilbert space H = L2(Td).
Given a function u ∈ L2(Td) we can decompose it as a Fourier series

u(x) =
∑
n∈Zd

une
2πi〈n,x〉,
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where un = 〈u, e2πi〈n,x〉〉 are the Fourier coefficients, and the identity holds for almost every
x ∈ Td. The L2 norm of u is given by the Parseval’s identity ‖u‖2L2 =

∑ |un|2. Remember
that the Sobolev space Hs(Td), s ∈ N, consist of all L2(Td) integrable functions whose
αth order weak derivatives exist and are L2(Td) integrable for all |α| 6 s. The fractional
Sobolev space Hs(Td) is given by the subspace of functions u ∈ L2(Td), such that

‖u‖2Hs =
∑
n∈Zd

(1 + 4π2|n|2)s|un|2 <∞. (1.5)

Note that for a positive integer s, the above definition agrees with the definition given using
the weak derivatives. For s < 0, we define Hs(Td) via duality or as the closure of L2(Td)
under the norm (1.5). The resulting spaces are separable for all s ∈ R.

The eigenvectors of −∆ in Td form the orthonormal basis of L2(Td) and the eigenval-
ues are given by 4π2|n|2, n ∈ Zd. We can also work on real-valued functions where the
eigenfunctions {ϕj}∞j=1 comprise sine and cosine functions. The eigenvalues of −∆, when

ordered on a one-dimensional lattice, then satisfy λj � j
2
d . The notation � means that

there exist constants C1, C2 > 0, such that C1j
2
d 6 λj 6 C2j

2
d .

The solution to the forward heat equation can be written as

v(t) =
∞∑
j=1

uje
−λjtϕj .

We notice that

‖v(t)‖2Hs �
∞∑
j=1

j
2s
d e−2λjt|uj |2 = t−s

∞∑
j=1

(λjt)
se−2λjt|uj |2 6 Ct−s

∞∑
j=1

|uj |2 = Ct−s‖u‖L2

which implies that v(t) ∈ Hs(Td) for all s > 0.

We now have observation model

fn = Au+ n,

where A = eT∆ and n is the observational noise. The noise is not usually smooth (the often
assumed white noise is not even an L2 function) and hence measurement fn is not in the
image space D(eT∆) ⊂ ∩s>0H

s(Td).

1.2.3 Differentiation

Consider the problems of evaluation the derivative of a function f ∈ L2[0, π/2]. Let

Df = f ′,

where D : L2[0, π/2]→ L2[0, π/2].

Proposition 1.2.1. The operator D is unbounded from L2[0, π/2]→ L2[0, π/2].

Proof. Take a sequence fn(x) = sin(nx), n = 1, . . . ,∞. Clearly, fn ∈ L2[0, π/2] for all n and
‖fn‖ =

√
π
4 . However, Dfn(x) = n cos(nx) and ‖Dfn‖ = n→∞ as n→∞. Therefore, D

is unbounded.
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This shows that differentiation is ill-posed from L2 to L2. It does not mean that it can
not be well-posed in other spaces. For instance, it is well-posed from H1 (the Sobolev space
of L2 functions whose derivatives are also L2) to L2. Indeed, ∀u ∈ H1 we get

‖Df‖L2 = ‖f ′‖L2 6 ‖f‖H1 = ‖f‖L2 + ‖f ′‖L2 .

However, since in practice we typically deal with functions corrupted by nonsmooth
noise, the L2 setting is practice-relevant, while the H1 setting is not.

Differentiation can be written as an inverse problem for an integral equation. For in-
stance, the derivative u of some function f ∈ L2[0, 1] with f(0) = 0 satisfies

f(x) =

∫ x

0
u(t) dt,

which can be written as an operator equation Au = f with (A·)(x) :=
∫ x

0 ·(t) dt.

1.2.4 Matrix inversion

In finite dimensions, the inverse problem (1.1) is a linear system. Linear systems are formally
well-posed in the sense that the error in the solution is bounded by some constant times
the error in the right-hand side, however, this constant depends on the condition number
of the matrix A and can get arbitrary large for matrices with large condition numbers. In
this case, we speak of ill-conditioned problems.

Consider the problem (1.1) with u ∈ Rn and f ∈ Rn being n-dimensional vectors with
real entries and A ∈ Rn×n being a matrix with real entries. Assume further A to be
symmetric and positive definite.

We know from the spectral theory of symmetric matrices that there exist eigenvalues
λ1 > λ2 > . . . > λn > 0 and corresponding (orthonormal) eigenvectors aj ∈ Rn for
j ∈ {1, . . . , n} such that A can be written as

A =

n∑
j=1

λjaja
>
j . (1.6)

It is well known from numerical linear algebra that the condition number κ = λ1/λn is a
measure of how stable (1.1) can be solved, which we will illustrate what follows.

We assume that we measure fδ instead of f , with ‖f − fδ‖2 6 δ‖A‖ = δλ1, where ‖ · ‖2
denotes the Euclidean norm of Rn and ‖A‖ the operator norm of A (which equals the largest
eigenvalue of A). Then, if we further denote with uδ the solution of Auδ = fδ, the difference
between uδ and the solution u to (1.1) is

u− uδ =

n∑
j=1

λ−1
j aja

>
j (f − fδ).

Therefore, we can estimate

‖u− uδ‖22 =

n∑
j=1

λ−2
j ‖aj‖22︸ ︷︷ ︸

=1

|a>j (f − fδ)|2 6 λ−2
n ‖f − fδ‖22,

due to the orthonormality of eigenvectors, the Cauchy-Schwarz inequality, and λn 6 λj .
Thus, taking square roots on both sides yields the estimate

‖u− uδ‖2 6 λ−1
n ‖f − fδ‖2 6 κδ.
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Hence, we observe that in the worst case an error δ in the data y is amplified by the condition
number κ of the matrix A. A matrix with large κ is therefore called ill-conditioned. We
want to demonstrate the effect of this error amplification with a small example.

Example 1.2.1. Let us consider the matrix

A =

(
1 1
1 1001

1000

)
,

which has eigenvalues λj = 1 + 1
2000 ±

√
1 + 1

20002 , condition number κ ≈ 4002 � 1, and

operator norm ‖A‖ ≈ 2. For given data f = (1, 1)> the solution to Au = f is u = (1, 0)>.

Now let us instead consider perturbed data fδ = (99/100, 101/100)>. The solution uδ
to Auδ = fδ is then uδ = (−19.01, 20)>.

Let us reflect on the amplification of the measurement error. By our initial assumption
we find that δ = ‖f − fδ‖/‖A‖ ≈ ‖(0.01,−0.01)>‖/2 =

√
2/200. Moreover, the norm of

the error in the reconstruction is then ‖u− uδ‖ = ‖(20.01, 20)>‖ ≈ 20
√

2. As a result, the
amplification due to the perturbation is ‖u− uδ‖/δ ≈ 4000 ≈ κ.

1.2.5 Tomography

In almost any tomography application the underlying inverse problem is either the inversion
of the Radon transform1 or of the X-ray transform.

For u ∈ C∞0 (Rn), s ∈ R, and θ ∈ Sn−1 the Radon transform R : C∞0 (Rn)→ C∞(Sn−1×
R) can be defined as the integral operator

f(θ, s) = (Ru)(θ, s) =

∫
x·θ=s

u(x) dx (1.7)

=

∫
θ⊥
u(sθ + y) dy,

which, for n = 2, coincides with the X-ray transform,

f(θ, s) = (Pu)(θ, s) =

∫
R
u(sθ + tθ⊥) dt,

for θ ∈ Sn−1 and θ⊥ being the vector orthogonal to θ. Hence, the X-ray transform (and
therefore also the Radon transform in two dimensions) integrates the function u over lines
in Rn, see Fig. 1.12.

Example 1.2.2. Let n = 2. Then Sn−1 is simply the unit sphere S1 = {θ ∈ R2 | ‖θ‖ = 1}.
We can choose for instance θ = (cos(ϕ), sin(ϕ))>, for ϕ ∈ [0, 2π), and parametrise the
Radon transform in terms of ϕ and s, i.e.

f(ϕ, s) = (Ru)(ϕ, s) =

∫
R
u(s cos(ϕ)− t sin(ϕ), s sin(ϕ) + t cos(ϕ)) dt. (1.8)

1Named after the Austrian mathematician Johann Karl August Radon (16 December 1887 – 25 May
1956).

2Figure adapted from Wikipedia https://commons.wikimedia.org/w/index.php?curid=3001440, by
Begemotv2718, CC BY-SA 3.0.

https://commons.wikimedia.org/w/index.php?curid=3001440
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θ

s

u(x)

t

tθ⊥

Figure 1.1: Visualization of the Radon transform in two dimensions (which coincides with
the X-ray transform). The function u is integrated over the ray parametrized by θ and s.3

Note that—with respect to the origin of the reference coordinate system—ϕ determines the
angle of the line along one wants to integrate, while s is the offset from that line from the
centre of the coordinate system.

It can be shown that the Radon transform is linear and continuous, i.e. R ∈ L(L2(B), L2(Z)),
and even compact.

In X-ray Computed Tomography (CT), the unknown quantity u represents a spa-
tially varying density that is exposed to X-radiation from different angles, and that absorbs
the radiation according to its material or biological properties.

The basic modelling assumption for the intensity decay of an X-ray beam is that within
a small distance ∆t it is proportional to the intensity itself, the density, and the distance,
i.e.

I(x+ (t+ ∆t)θ)− I(x+ tθ)

∆t
= −I(x+ tθ)u(x+ tθ),

for x ∈ θ⊥. By taking the limit ∆t→ 0 we end up with the ordinary differential equation

d

dt
I(x+ tθ) = −I(x+ tθ)u(x+ tθ), (1.9)

Let R > 0 be the radius of the domain of interest centred at the origin. Then, we integrate
(1.9) from t = −

√
R2 − ‖x‖22, the position of the emitter, to t =

√
R2 − ‖x‖22, the position

of the detector, and obtain∫ √R2−‖x‖22

−
√
R2−‖x‖22

d
dtI(x+ tθ)

I(x+ tθ)
dt = −

∫ √R2−‖x‖22

−
√
R2−‖x‖22

u(x+ tθ) dt .

Note that, due to d/dx log(f(x)) = f ′(x)/f(x), the left hand side in the above equation
simplifies to∫ √R2−‖x‖22

−
√
R2−‖x‖22

d
dtI(x+ tθ)

I(x+ tθ)
dt = log

(
I

(
x+

√
R2 − ‖x‖22θ

))
− log

(
I

(
x−

√
R2 − ‖x‖22θ

))
.

As we know the radiation intensity at both the emitter and the detector, we therefore
know f(x, θ) = log(I(x− θ

√
R2 − ‖x‖22))− log(I(x+ θ

√
R2 − ‖x‖22)) and we can write the
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estimation of the unknown density u as the inverse problem of the X-ray transform (1.8)
(if we further assume that u can be continuously extended to zero outside of the circle of
radius R).



Chapter 2

Generalised Solutions

Functional analysis is the basis of the theory that we will cover in this course. We cannot
recall all basic concepts of functional analysis and instead refer to popular textbooks that
deal with this subject, e.g., [10, 31, 27]. Nevertheless, we shall recall a few important
definitions that will be used in this lecture.

We will focus on inverse problems with bounded linear operators A, i.e. A ∈ L(X ,Y)
with

‖A‖L(X ,Y) := sup
u∈X\{0}

‖Au‖Y
‖u‖X

= sup
‖u‖X61

‖Au‖Y <∞.

For A : X → Y we further want to denote by

1. D(A) := X the domain,

2. N (A) := {u ∈ X | Au = 0} the kernel,

3. R(A) := {f ∈ Y | f = Au, u ∈ X} the range

of A.

We say that A is continuous at u ∈ X if for all ε > 0 there exists δ > 0 with

‖Au−Av‖Y 6 ε for all v ∈ X with ‖u− v‖X 6 δ.

For linear K it can be shown that continuity is equivalent to boundedness, i.e. the existence
of a constant C > 0 such that

‖Au‖Y 6 C‖u‖X

for all u ∈ X . Note that this constant C actually equals the operator norm ‖A‖L(X ,Y).

In this Chapter we only consider A ∈ L(X ,Y) with X and Y being Hilbert spaces. From
functional calculus we know that every Hilbert space U is equipped with a scalar product,
which we are going to denote by 〈·, ·〉U (or simply 〈·, ·〉, whenever the space is clear from the
context). In analogy to the transpose of a matrix, this scalar product structure together
with the theorem of Fréchet-Riesz [31, Section 2.10, Theorem 2.E] allows us to define the
(unique) adjoint operator of A, denoted with A∗, as follows:

〈Au, v〉Y = 〈u,A∗v〉X , for all u ∈ X , v ∈ Y.

15
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In addition to that, a scalar product can be used to define orthogonality. Two elements
u, v ∈ X are said to be orthogonal if 〈u, v〉 = 0. For a subset X ′ ⊂ X the orthogonal
complement of X ′ in X is defined as

X ′⊥ :=
{
u ∈ X | 〈u, v〉X = 0 for all v ∈ X ′

}
.

One can show that X ′⊥ is a closed subspace and that X⊥ = {0}. Moreover, we have that
X ′ ⊂ (X ′⊥)⊥. If X ′ is a closed subspace then we even have X ′ = (X ′⊥)⊥. In this case there
exists the orthogonal decomposition

X = X ′ ⊕X ′⊥,
which means that every element u ∈ X can uniquely be represented as

u = x+ x⊥ with x ∈ X ′ and x⊥ ∈ X ′⊥,
see for instance [31, Section 2.9, Corollary 1].

The mapping u 7→ x defines a linear operator PX ′ ∈ L(X ,X ) that is called orthogonal
projection on X ′.
Lemma 2.0.1 (cf. [24, Section 5.16]). Let X ′ ⊂ X be a closed subspace. The orthogonal
projection onto X ′ satisfies the following conditions:

1. PX ′ is self-adjoint, i.e. P ∗X ′ = PX ′,

2. ‖PX ′‖L(X ,X ) = 1 (if X ′ 6= {0}),

3. I − PX ′ = PX ′⊥,

4. ‖u− PX ′u‖X 6 ‖u− v‖X for all v ∈ X ′,
5. x = PX ′u if and only if x ∈ X ′ and u− x ∈ X ′⊥.

Remark 2.0.2. Note that for a non-closed subspace X ′ we only have (X ′⊥)⊥ = X ′. For
A ∈ L(X ,Y) we therefore have

• R(A)⊥ = N (A∗) and thus N (A∗)⊥ = R(A),

• R(A∗)⊥ = N (A) and thus N (A)⊥ = R(A∗).

Hence, we can deduce the following orthogonal decompositions

X = N (A)⊕R(A∗) and Y = N (A∗)⊕R(A).

We will also need the follwoing relationship between the ranges of A∗ and A∗A.

Lemma 2.0.3. Let A ∈ L(X ,Y). Then R(A∗A) = R(A∗).

Proof. It is clear that R(A∗A) = R(A∗|R(A)) ⊆ R(A∗), so we are left to prove that R(A∗) ⊆
R(A∗A).

Let u ∈ R(A∗) and let ε > 0. Then, there exists f ∈ N (A∗)⊥ = R(A) with ‖A∗f−u‖X <
ε/2 (recall the orthogonal decomposition in Remark 2.0.2). AsN (A∗)⊥ = R(A), there exists
x ∈ X such that ‖Ax− f‖Y < ε/(2‖A‖L(X ,Y)). Putting these together we have

‖A∗Ax− u‖X 6 ‖A∗Ax−A∗f‖X + ‖A∗f − u‖X
6 ‖A∗‖L(Y,X )‖Ax− f‖Y︸ ︷︷ ︸

<ε/2

+ ‖A∗f − u‖X︸ ︷︷ ︸
<ε/2

< ε

which shows that u ∈ R(A∗A) and thus also R(A∗) ⊆ R(A∗A).
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2.1 Generalised Inverses

Recall the inverse problem
Au = f, (2.1)

where A : X → Y is a linear bounded operator and X and Y are Hilbert spaces.

Definition 2.1.1 (Minimal-norm solutions). An element u ∈ X is called

• a least-squares solution of (2.1) if

‖Au− f‖Y = inf{‖Av − f‖Y , v ∈ X};

• a minimal-norm solution of (2.1) (and is denoted by u†) if

‖u†‖X 6 ‖v‖X for all least squares solutions v.

Remark 2.1.2. Since R(A) is not closed in general (it is never closed for a compact
operator, unless the range is finite-dimensional), a least-squares solution may not exist. If
it exists, then the minimal-norm solution is unique (it is the orthogonal projection of the
zero element onto an affine subspace defined by ‖Au− f‖Y = min{‖Av − f‖Y , v ∈ X}).

In numerical linear algebra it is a well known fact that the normal equations can be used
to compute least-squares solutions. The same holds true in the infinite-dimensional case.

Theorem 2.1.3. Let f ∈ Y and A ∈ L(X ,Y). Then, the following three assertions are
equivalent.

1. u ∈ X satisfies Au = PR(A)
f .

2. u is a least squares solution of the inverse problem (2.1).

3. u solves the normal equation
A∗Au = A∗f. (2.2)

Remark 2.1.4. The name normal equation is derived from the fact that for any solution
u its residual Au− f is orthogonal (normal) to R(A). This can be readily seen, as we have
for any v ∈ X that

0 = 〈v,A∗(Au− f)〉X = 〈Av,Au− f〉Y
which shows Au− f ∈ R(A)⊥.

Proof of Theorem 2.1.3. For 1 ⇒ 2: Let u ∈ X such that Au = PR(A)
f and let v ∈ X be

arbitrary. With the basic properties of the orthogonal projection, Lemma 2.0.1 4, we have

‖Au− f‖2Y = ‖(I − PR(A)
)f‖2Y 6 inf

g∈R(A)
‖g − f‖2Y 6 inf

g∈R(A)
‖g − f‖2Y = inf

v∈X
‖Av − f‖2Y ,

which shows that u is a least squares solution.
For 2 ⇒ 3: Let u ∈ X be a least squares solution and let v ∈ X an arbitrary element.

We define the quadratic polynomial F : R→ R,

F (λ) := ‖A(u+ λv)− f‖2Y = λ2‖Av‖2Y − 2λ 〈Av, f −Au〉Y + ‖f −Au‖2Y .
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A necessary condition for u ∈ X to be a least squares solution is F ′(0) = 0, which leads to
〈v,A∗(f −Au)〉X = 0. As v was arbitrary, it follows that the normal equation (2.2) must
hold.

For 3⇒ 1: From the normal equation it follows that A∗(f−Au) = 0, which is equivalent

to f −Au ∈ R(A)⊥, see Remark 2.1.4. Since R(A)⊥ =
(
R(A)

)⊥
and Au ∈ R(A) ⊂ R(A),

the assertion follows from Lemma 2.0.1 5:

Au = PR(A)
f ⇔ Au ∈ R(A) and f −Au ∈

(
R(A)

)⊥
.

Lemma 2.1.5. Let f ∈ Y and let L be the set of least squares solutions to the inverse
problem (2.1). Then, L is non-empty if and only if f ∈ R(A)⊕R(A)⊥.

Proof. Let u ∈ L. It is easy to see that f = Au+ (f −Au) ∈ R(A)⊕R(A)⊥ as the normal
equations are equivalent to f −Au ∈ R(A)⊥.

Consider now f ∈ R(A)⊕R(A)⊥. Then there exists u ∈ X and g ∈ R(A)⊥ =
(
R(A)

)⊥
such that f = Au+ g and thus PR(A)

f = PR(A)
Au+PR(A)

g = Au and the assertion follows

from Theorem 2.1.3 1.

Remark 2.1.6. If the dimensions of X and R(A) are finite, then R(A) is closed, i.e.
R(A) = R(A). Thus, in a finite dimensional setting, there always exists a least squares
solution.

Theorem 2.1.7. Let f ∈ R(A)⊕R(A)⊥. Then there exists a unique minimal norm solution
u† to the inverse problem (2.1) and all least squares solutions are given by {u†}+N (A).

Proof. From Lemma 2.1.5 we know that there exists a least squares solution. As noted
in Remark 2.1.2, in this case the minimal-norm solution is unique. Let ϕ be an arbitrary
least-squares solution. Using Theorem 2.1.3 we get

A(ϕ− u†) = Aϕ−Au† = PR(A)
f − PR(A)

f = 0, (2.3)

which shows that ϕ− u† ∈ N (A), hence the assertion.

If a least-squares solution exists for a given f ∈ Y then the minimal-norm solution can
be computed (at least in theory) using the Moore-Penrose generalised inverse.

Definition 2.1.8. Let A ∈ L(X ,Y) and let

Ã := A|N (A)⊥ : N (A)⊥ → R(A)

denote the restriction of A to N (A)⊥. The Moore-Penrose inverse A† is defined as the
unique linear extension of Ã−1 to

D(A†) = R(A)⊕R(A)⊥

with

N (A†) = R(A)⊥.
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Remark 2.1.9. Due to the restriction to N (A)⊥ and R(A) we have that Ã is injective and
surjective. Hence, Ã−1 exists and is linear and – as a consequence – A† is well-defined on
R(A).

Moreover, due to the orthogonal decomposition D(A†) = R(A)⊕R(A)⊥, there exist for
arbitrary f ∈ D(A†) elements f1 ∈ R(A) and f2 ∈ R(A)⊥ with f = f1 + f2. Therefore, we
have

A†f = A†f1 +A†f2 = A†f1 = Ã−1f1 = Ã−1PR(A)
f , (2.4)

where we used that f2 ∈ R(A)⊥ = N (A†). Thus, A† is well-defined on the entire domain
D(A†).

Remark 2.1.10. As orthogonal complements are always closed we get that

D(A†) = R(A)⊕R(A)⊥ = Y,

and hence, D(A†) is dense in Y. Thus, if R(A) is closed it follows that D(A†) = Y and on
the other hand, D(A†) = Y implies R(A) is closed. We note that for ill-posed problems
R(A) is usually not closed; for instance, if A is compact then R(A) is closed if and only if
it is finite-dimensional [1, Ex.1 Section 7.1].

If A is bijective we have that A† = A−1. We also highlight that the extension A† is not
necessarily continuous.

Theorem 2.1.11 ([16, Prop. 2.4]). Let A ∈ L(X ,Y). Then A† is continuous, i.e. A† ∈
L(D(A†),X ), if and only if R(A) is closed.

Example 2.1.12. To illustrate the definition of the Moore-Penrose inverse we consider a
simple example in finite dimensions. Let the linear operator A : R3 → R2 be given by

Ax =

(
2 0 0
0 0 0

)x1

x2

x3

 =

(
2x1

0

)
.

It is easy to see that R(A) = {f ∈ R2 | f2 = 0} and N (A) = {x ∈ R3 | x1 = 0}. Thus,
N (A)⊥ = {x ∈ R3 | x2, x3 = 0}. Therefore, Ã : N (A)⊥ → R(A), given by x 7→ (2x1, 0)>, is
bijective and its inverse Ã−1 : R(A)→ N (A)⊥ is given by f 7→ (f1/2, 0, 0)>.

To get the Moore-Penrose inverse A†, we need to extend Ã−1 to R(A)⊕R(A)⊥ in such
a way that A†f = 0 for all f ∈ R(A)⊥ = {f ∈ R2 | f1 = 0}. It is easy to see that the
Moore-Penrose inverse A† : R2 → R3 is given by the following expression

A†f =

1/2 0
0 0
0 0

(f1

f2

)
=

f1/2
0
0

 .

Let us consider data f̃ = (8, 1)> 6∈ R(A). Then, A†f̃ = A†(8, 1)> = (4, 0, 0)>.

It can be shown that A† can be characterised by the Moore-Penrose equations.

Lemma 2.1.13 ([16, Prop. 2.3]). The Moore-Penrose inverse A† satisfies R(A†) = N (A)⊥

and the Moore-Penrose equations
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1. AA†A = A,

2. A†AA† = A†,

3. A†A = I − PN (A),

4. AA† = PR(A)

∣∣∣
D(A†)

,

where PN (A) and PR(A)
denote the orthogonal projections on N (A) and R(A), respectively.

The next theorem shows that minimal-norm solutions can indeed be computed using
the Moore-Penrose generalised inverse.

Theorem 2.1.14. For each f ∈ D(A†), the minimal norm solution u† to the inverse
problem (2.1) is given via

u† = A†f.

Proof. As f ∈ D(A†), we know from Theorem 2.1.7 that the minimal norm solution u†

exists and is unique. With u† ∈ N (A)⊥, Lemma 2.1.13, and Theorem 2.1.3 we conclude
that

u† = (I − PN (A))u
† = A†Au† = A†PR(A)

f = A†AA†f = A†f.

As a consequence of Theorem 2.1.14 and Theorem 2.1.3, we find that the minimum
norm solution u† of Au = f is a minimum norm solution of the normal equation (2.2), i.e.

u† = (A∗A)†A∗f.

Thus, in order to compute u† we can equivalently consider finding the minimum norm
solution of the normal equation.

2.2 Compact Operators

Definition 2.2.1. Let A ∈ L(X ,Y). Then A is said to be compact if for any bounded set
B ⊂ X the closure of its image A(B) is compact in Y. We denote the space of compact
operators by K(X ,Y).

Remark 2.2.2. We can equivalently define an operator A to be compact if the image of a
bounded sequence {uj}j∈N ⊂ X contains a convergent subsequence {Aujk}k∈N ⊂ Y.

Compact operators are very common in inverse problems. In fact, almost all (linear)
inverse problems involve the inversion of a compact operator. As the following result shows,
compactness of the forward operator is a major source if ill-posedness.

Theorem 2.2.3. Let A ∈ K(X ,Y) with an infinite dimensional range. Then, the Moore-
Penrose inverse of A is discontinuous.

Proof. As the range R(A) is of infinite dimension, we can conclude that X and N (A)⊥

are also infinite dimensional. We can therefore find a sequence {uj}j∈N with uj ∈ N (A)⊥,
‖uj‖X = 1 and 〈uj , uk〉X = 0 for j 6= k. Since A is a compact operator the sequence
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fj = Auj has a convergent subsequence, hence, for all δ > 0 we can find j, k such that
‖fj − fk‖Y < δ. However, we also obtain

‖A†fj −A†fk‖2X = ‖A†Auj −A†Auk‖2X
= ‖uj − uk‖2X = ‖uj‖2X − 2 〈uj , uk〉X + ‖uk‖2X = 2,

which shows that A† is discontinuous. Here, the second identity follows from Lemma 2.1.13 3
and the fact that uj , uk ∈ N (A)⊥.

To have a better understanding of when we have f ∈ R(A)\R(A) for compact operators
A, we want to consider the singular value decomposition of compact operators.

Singular value decomposition of compact operators

Theorem 2.2.4 ([20, p. 225, Theorem 9.16]). Let X be a Hilbert space and A ∈ K(X ,X ) be
self-adjoint. Then there exists an orthonormal basis {xj}j∈N ⊂ X of R(A) and a sequence
of eigenvalues {λj}j∈N ⊂ R with |λ1| > |λ2| > . . . > 0 such that for all u ∈ X we have

Au =

∞∑
j=1

λj 〈u, xj〉X xj .

The sequence {λj}j∈N is either finite or we have λj → 0.

Remark 2.2.5. The notation in the theorem above only makes sense if the sequence
{λj}j∈N is infinite. For the case that there are only finitely many λj the sum has to
be interpreted as a finite sum.

Moreover, as the eigenvalues are sorted by absolute value |λj |, we have ‖A‖L(X ,X ) = |λ1|.
If A is not self-adjoint, the decomposition in Theorem 2.2.4 does not hold any more.

Instead, we can consider the so-called singular value decomposition of a compact linear
operator.

Theorem 2.2.6. Let A ∈ K(X ,Y). Then there exists

1. a not-necessarily infinite null sequence {σj}j∈N with σ1 > σ2 > . . . > 0,

2. an orthonormal basis {xj}j∈N ⊂ X of N (A)⊥,

3. an orthonormal basis {yj}j∈N ⊂ Y of R(A) with

Axj = σjyj , A∗yj = σjxj , for all j ∈ N. (2.5)

Moreover, for all u ∈ X we have the representation

Au =

∞∑
j=1

σj 〈u, xj〉 yj . (2.6)

The sequence {(σj , xj , yj)} is called singular system or singular value decomposition
(SVD) of A.

For the adjoint operator A∗ we have the representation

A∗f =

∞∑
j=1

σj 〈f, yj〉 xj ∀f ∈ Y. (2.7)
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Proof. Consider B = A∗A and C = AA∗. Both B and C are compact, self-adjoint and even
positive semidefinite, so that by Theorem 2.2.4 both admit a spectral representation and,
by positive semidefiniteness, their eigenvalues are positive, i.e.

Bu =
∞∑
j=1

σ2
j 〈u, xj〉xj ∀u ∈ X , Cf =

∞∑
j=1

σ̃2
j 〈f, yj〉 yj ∀f ∈ Y,

where {xj} and {yj} are orthonormal bases of R(A∗A) and R(AA∗), respectively, and

σj , σ̃j > 0 for all j. As pointed out in Remark 2.0.2 and Lemma 2.0.3, we have R(A∗A) =

R(A∗) = N (A)⊥ and, therefore, {xj} is also a basis of N (A)⊥. Analogously, {yj} is also a

basis of R(A).
Since σ̃2

j is an eigenvalue of C for the eigenvector yj , we get that

σ̃2
jA
∗yj = A∗(σ̃2

j yj) = A∗Cyj = A∗AA∗yj = BA∗yj

and therefore σ̃2
j is also an eigenvalue of B (for the eigenvector A∗yj). Hence, with no

loss of generality we can assume that σ̃j = σj . We further observe that
{
A∗yj
σj

}
form an

orthonormal basis of R(A∗) = N (A)⊥, since〈
A∗yj
σj

,
A∗yk
σk

〉
=

1

σjσk
〈yj , AA∗yk〉 =

1

σjσk

〈
yj , σ

2
kyk
〉

=

{
1, if j = k,

0, otherwise.

Therefore, we can choose {xj} to be

xj = σ−1
j A∗yj

and we get that
A∗yj = σjxj .

We also observe that
Axj = σ−1

j AA∗yj = σ−1
j σ2

j yj = σjyj ,

which proves (2.5).
Extending the basis {xj} of R(A∗) to a basis of X , we expand an arbitrary u ∈ X as

u =
∑∞

j=1 〈u, xj〉xj and, since X = N (A) ⊕ R(A∗) (Remark 2.0.2), obtain the singular
value decompositions (2.6) – (2.7)

Au =

∞∑
j=1

σj 〈u, xj〉 yj ∀u ∈ X , A∗f =

∞∑
j=1

σj 〈f, yj〉xj ∀f ∈ Y.

We can now derive a representation of the Moore-Penrose inverse in terms of the singular
value decomposition.

Theorem 2.2.7. Let A ∈ K(X ,Y) with singular system {(σj , xj , yj)}j∈N and f ∈ D(A†).
Then the Moore-Penrose inverse of A can be written as

A†f =

∞∑
j=1

σ−1
j 〈f, yj〉xj . (2.8)
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Proof. We know that, since f ∈ D(A†), u† = A†f solves the normal equations

A∗Au† = A∗f.

From Theorem 2.2.6 we know that

A∗Au† =

∞∑
j=1

σ2
j

〈
u†, xj

〉
xj , A∗f =

∞∑
j=1

σj 〈f, yj〉xj , (2.9)

which implies that 〈
u†, xj

〉
= σ−1

j 〈f, yj〉

Expanding u† ∈ N (A)⊥ in the basis {xj}, we get

u† =
∞∑
j=1

〈
u†, xj

〉
xj =

∞∑
j=1

σ−1
j 〈f, yj〉xj = A†f.

The representation (2.8) makes it clear again that the Moore-Penrose inverse is un-
bounded if R(A) is infinite dimensional. Indeed, taking the sequence yj we note that
‖A†yj‖ = σ−1

j →∞, although ‖yj‖ = 1.

The unboundedness of the Moore-Penrose inverse is also reflected in the fact that the
series in (2.8) may not converge for a given f . The convergence criterion for the series is
called the Picard criterion.

Definition 2.2.8. We say that the data f satisfy the Picard criterion, if

‖A†f‖2 =
∞∑
j=1

|〈f, yj〉|2
σ2
j

<∞. (2.10)

Remark 2.2.9. The Picard criterion is a condition on the decay of the coefficients 〈f, yj〉.
As the singular values σj decay to zero as j → ∞, the Picard criterion is only met if the
coefficients 〈f, yj〉 decay sufficiently fast.

In case the singular system is given by the Fourier basis, then the coefficients 〈f, yj〉 are
just the Fourier coefficients of f . Therefore, the Picard criterion is a condition on the decay
of the Fourier coefficients which is equivalent to the smoothness of f .

It turns our that the Picard criterion also can be used to characterise elements in the
range of the forward operator.

Theorem 2.2.10. Let A ∈ K(X ,Y) with singular system {(σj , xj , yj)}j∈N, and f ∈ R(A).
Then f ∈ R(A) if and only if the Picard criterion

∞∑
j=1

∣∣〈f, yj〉Y ∣∣2
σ2
j

<∞ (2.11)

is met.
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Proof. Let f ∈ R(A), thus there is a u ∈ X such that Au = f . It is easy to see that we
have

〈f, yj〉Y = 〈Au, yj〉Y = 〈u,A∗yj〉X = σj 〈u, xj〉X
and therefore

∞∑
j=1

σ−2
j | 〈f, yj〉Y |2 =

∞∑
j=1

| 〈u, xj〉X |2 6 ‖u‖2X <∞ .

Now let the Picard criterion (2.11) hold and define u :=
∑∞

j=1 σ
−1
j 〈f, yj〉Y xj ∈ X . It is

well-defined by the Picard criterion (2.11) and we conclude

Au =
∞∑
j=1

σ−1
j 〈f, yj〉Y Axj =

∞∑
j=1

〈f, yj〉Y yj = PR(A)
f = f ,

which shows f ∈ R(A).

Although all ill-posed problems are not easy to solve, some are worse than others,
depending on how fast the singular values decay to zero.

Definition 2.2.11. We say that an ill-posed inverse problem (2.1) is mildly ill-posed if
the singular values decay at most with polynomial speed, i.e. there exist γ,C > 0 such that
σj > Cj−γ for all j. We call the ill-posed inverse problem severely ill-posed if its singular
values decay faster than with polynomial speed, i.e. for all γ,C > 0 one has that σj 6 Cj−γ

for j sufficiently large.

Example 2.2.12. Let us consider the example of differentiation again, as introduced in
Section 1.2.3. The forward operator A : L2([0, 1])→ L2([0, 1]) in this problem is given by

(Au)(t) =

∫ t

0
u(s) ds =

∫ 1

0
K(s, t)u(s) ds ,

with K : [0, 1]× [0, 1]→ R defined as

K(s, t) :=

{
1 s 6 t

0 else
.

This is a special case of the integral operators as introduced in Section 1.2.1. Since the
kernel K is square integrable, A is compact.

The adjoint operator A∗ is given via

(A∗f)(s) =

∫ 1

0
K(t, s)f(t) dt =

∫ 1

s
v(t) dt . (2.12)

Now we want to compute the eigenvalues and eigenvectors of A∗A, i.e. we look for σ2

and x ∈ L2([0, 1]) with

σ2x(s) = (A∗Ax)(s) =

∫ 1

s

∫ t

0
x(r) dr dt .
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We immediately observe x(1) = 0 and further

σ2x′(s) =
d

ds

∫ 1

s

∫ t

0
x(r) dr dt = −

∫ s

0
x(r) dr ,

from which we conclude x′(0) = 0. Taking the derivative another time thus yields the
ordinary differential equation

σ2x′′(s) + x(s) = 0 ,

for which solutions are of the form

x(s) = c1 sin(σ−1s) + c2 cos(σ−1s) ,

with some constants c1, c2. In order to satisfy the boundary conditions x(1) = c1 sin(σ−1)+
c2 cos(σ−1) = 0 and x′(0) = c1 = 0, we chose c1 = 0 and σ such that cos(σ−1) = 0. Hence,
we have

σj =
2

(2j − 1)π
for j ∈ N ,

and by choosing c2 =
√

2 we obtain the following normalised representation of xj :

xj(s) =
√

2 cos

((
j − 1

2

)
πs

)
.

According to (2.5) we further obtain

yj(s) = σ−1
j (Axj)(s) =

(
j − 1

2

)
π

∫ s

0

√
2 cos

((
j − 1

2

)
πt

)
dt =

√
2 sin

((
j − 1

2

)
πs

)
,

and hence, for f ∈ L2([0, 1]) the Picard criterion becomes

2

∞∑
j=1

σ−2
j

(∫ 1

0
f(s) sin

(
σ−1
j s
)
ds

)2

<∞ .

Expanding f in the basis {yj}

f(t) = 2
∞∑
j=1

(∫ 1

0
f(s) sin

(
σ−1
j s
)
ds

)
sin
(
σ−1
j t
)

and formally differentiating the series, we obtain

f ′(t) = 2
∞∑
j=1

σ−1
j

(∫ 1

0
f(s) sin

(
σ−1
j s
)
ds

)
cos
(
σ−1
j t
)
.

Therefore, the Picard criterion is nothing but the condition for the legitimacy of such differ-
entiation, i.e. for the differentiability of the Fourier series by differentiating its components,
and it holds if f is differentiable and f ′ ∈ L2([0, 1]).

From the decay of the singular values we see that this inverse problem is mildly ill-posed.
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Chapter 3

Classical Regularisation Theory

3.1 What is Regularisation?

We have seen that the Moore-Penrose inverse A† is unbounded if R(A) is not closed. There-
fore, given noisy data fδ such that ‖fδ−f‖ 6 δ, we cannot expect convergence A†fδ → A†f
as δ → 0. To achieve convergence, we replace A† with a family of well-posed (bounded)
operators Rα with α = α(δ, fδ) and require that Rα(δ,fδ)(fδ) → A†f for all f ∈ D(A†) and
all fδ ∈ Y s.t. ‖f − fδ‖Y 6 δ as δ → 0.

Definition 3.1.1. Let A ∈ L(X ,Y) be a bounded operator. A family {Rα}α>0 of continuous
operators is called regularisation (or regularisation operator) of A† if

Rαf → A†f = u†

for all f ∈ D(A†) as α→ 0.

Definition 3.1.2. If the family {Rα}α>0 consists of linear operators, then one speaks of
linear regularisation of A†.

Hence, a regularisation is a pointwise approximation of the Moore–Penrose inverse with
continuous operators. As in the interesting cases the Moore–Penrose inverse may not be
continuous we cannot expect that the norm of Rα stays bounded as α→ 0. This is confirmed
by the following results (in the linear case).

Theorem 3.1.3 (Banach–Steinhaus e.g. [10, p. 78], [32, p. 173]). Let X ,Y be Hilbert
spaces and {Aj}j∈N ⊂ L(X ,Y) a family of point-wise bounded operators, i.e. for all u ∈ X
there exists a constant C(u) > 0 s.t. supj∈N ‖Aju‖Y 6 C(u). Then

sup
j∈N
‖Aj‖L(X ,Y) <∞ .

Corollary 3.1.4 ([32, p. 174]). Let X ,Y be Hilbert spaces and {Aj}j∈N ⊂ L(X ,Y). Then
the following two conditions are equivalent:

1. There exists A ∈ L(X ,Y) such that

Au = lim
j→∞

Aju for all u ∈ X .

27
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2. There is a dense subset X ′ ⊂ X such that limj→∞Aju exists for all u ∈ X ′ and

sup
j∈N
‖Aj‖L(X ,Y) <∞ .

Theorem 3.1.5. Let X , Y be Hilbert spaces, A ∈ L(X ,Y) and {Rα}α>0 a linear regulari-
sation as defined in Definition 3.1.2. If A† is not continuous, {Rα}α>0 cannot be uniformly
bounded. In particular this implies the existence of an element f ∈ Y with ‖Rαf‖ → ∞ for
α→ 0.

Proof. We prove the theorem by contradiction and assume that {Rα}α>0 is uniformly
bounded. Hence, there exists a constant C with ‖Rα‖L(Y,X ) 6 C for all α > 0. Due

to Definition 3.1.1, we have Rα → A† on D(A†). Since D(A†) is dense in Y, by Corollary
3.1.4 we get that A† ∈ L(Y,X ), which is a contradiction to the assumption that A† is not
continuous.

It remains to show the existence of an element f ∈ Y with ‖Rαf‖Y → ∞ for α → 0.
If such an element would not exist, then {Rα}α>0. would be point-wise bounded for all
f ∈ Y. However, Theorem 3.1.3 then implies that {Rα}α>0 has to be uniformly bounded,
which contradicts the first part of the proof.

With the additional assumption that ‖ARα‖L(X ,Y) is bounded, we can even show that

Rαf diverges for all f 6∈ D(A†).

Theorem 3.1.6. Let A ∈ L(X ,Y) and {Rα}α>0 be a linear regularisation of A†. If

sup
α>0
‖ARα‖L(Y,X ) <∞ ,

then ‖Rαf‖X →∞ for f 6∈ D(A†).

Proof. Define uα := Rαf for f 6∈ D(A†). Assume that there exists a sequence αk → 0
such that ‖uαk‖X is uniformly bounded. Since bounded sets in a Hilbert space are weakly
pre-compact, there exists a weakly convergent subsequence uαkl with some limit u ∈ X , cf.
[18, Section 2.2, Theorem 2.1]. As continuous linear operators are also weakly continuous,
we further have Auαkl ⇀ Au. On the other hand, for any f ∈ D(A†) we have that

ARαf → AA†f = PR(A)
f . By Corollary 3.1.4 we then conclude that this also holds

for any f ∈ Y, i.e. also for f 6∈ D(A†). Therefore, we get that Au = PR(A)
f . Since

Y = R(A) ⊕ R(A)⊥, we get that f ∈ R(A) ⊕ R(A)⊥ = D(A†) in contradiction to the
assumption f /∈ D(A†).

3.2 Parameter Choice Rules

We have stated in the beginning of this chapter that we would like to obtain a regularisation
that would guarantee that Rα(fδ)→ A†f for all f ∈ D(A†) and all fδ ∈ Y s.t. ‖f−fδ‖Y 6 δ
as δ → 0. This means that the parameter α, referred to as the regularisation parameter,
needs to be chosen as a function of δ (and perhaps also fδ) so that α→ 0 as δ → 0 (i.e. we
need to regularise less as the data get more precise).
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highlow regularisation
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low

error

data error
approximation error
total error

Figure 3.1: The total error between a regularised solution and the minimal norm solu-
tion decomposes into the data error and the approximation error. These two errors have
opposing trends: For a small regularisation parameter α the error in the data gets ampli-
fied through the ill-posedness of the problem and for large α the operator Rα is a poor
approximation of the Moore–Penrose inverse.

This can be illustrated with the following observation. For linear regularisations we can
split the total error between the regularised solution of the noisy problem Rαfδ and the
minimal norm solution of the noise-free problem u† = A†f as

‖Rαfδ − u†‖X 6 ‖Rαfδ −Rαf‖X + ‖Rαf − u†‖X
6 δ‖Rα‖L(Y,X )︸ ︷︷ ︸

data error

+ ‖Rαf −A†f‖X︸ ︷︷ ︸
approximation error

. (3.1)

The first term of (3.1) is the data error ; this term unfortunately does not stay bounded
for α → 0, which we can conclude from Theorem 3.1.5. The second term, known as the
approximation error, however vanishes for α → 0, due to the pointwise convergence of Rα
to A†. Hence it becomes evident from (3.1) that a good choice of α depends on δ, and needs
to be chosen such that the approximation error becomes as small as possible, whilst the
data error is being kept at bay. See Figure 3.1 for an illustration.

Parameter choice rules are defined as follows.

Definition 3.2.1. A function α : R>0 × Y → R>0, (δ, fδ) 7→ α(δ, fδ) is called a parameter
choice rule. We distinguish between

1. a priori parameter choice rules, which depend on δ only;

2. a posteriori parameter choice rules, which depend on both δ and fδ;

3. heuristic parameter choice rules, which depend on fδ only.

Now we are ready to define a regularisation that ensures the convergence Rα(δ,fδ)(fδ)→
A†f as δ → 0.
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Definition 3.2.2. Let {Rα}α>0 be a regularisation of A†. If for all f ∈ D(A†) there exists
a parameter choice rule α : R>0 × Y → R>0 such that

lim
δ→0

sup
fδ : ‖f−fδ‖Y6δ

‖Rαfδ −A†f‖X = 0 (3.2)

and

lim
δ→0

sup
fδ : ‖f−fδ‖Y6δ

α(δ, fδ) = 0 (3.3)

then the pair (Rα, α) is called a convergent regularisation.

3.2.1 A priori parameter choice rules

First of all we want to discuss a priori parameter choice rules in more detail. Historically,
they were the first to be studied. For every regularisation there exists an a priori parameter
choice rule and thus a convergent regularisation.

Theorem 3.2.3 ([16, Prop 3.4]). Let {Rα}α>0 be a regularisation of A†, for A ∈ L(X ,Y).
Then there exists an a priori parameter choice rule α = α(δ) such that (Rα, α) is a conver-
gent regularisation.

For linear regularisations, an important characterisation of a priori parameter choice
strategies that lead to convergent regularisation methods is as follows.

Theorem 3.2.4. Let {Rα}α>0 be a linear regularisation, and α : R>0 → R>0 an a priori
parameter choice rule. Then (Rα, α) is a convergent regularisation method if and only if

a) limδ→0 α(δ) = 0

b) limδ→0 δ‖Rα(δ)‖L(Y,X ) = 0

Proof. ⇐: Let condition a) and b) be fulfilled. From (3.1) we then observe that for any
f ∈ D(A†) and fδ ∈ Y s.t. ‖f − fδ‖Y 6 δ∥∥∥Rα(δ)fδ −A†f

∥∥∥
X
→ 0 for δ → 0.

Hence, (Rα, α) is a convergent regularisation method.
⇒: Now let (Rα, α) be a convergent regularisation method. We prove that conditions 1
and 2 have to follow from this by showing that violation of either one of them leads to
a contradiction to (Rα, α) being a convergent regularisation method. If condition a) is
violated, (3.3) is violated and hence, (Rα, α) is not a convergent regularisation method. If
condition a) is fulfilled but condition b) is violated, there exists a null sequence {δk}k∈N with
δk‖Rα(δk)‖L(Y,X ) > C > 0, and hence, we can find a sequence {gk}k∈N ⊂ Y with ‖gk‖Y = 1

and δk‖Rα(δk)gk‖X > C̃ for some C̃. Let f ∈ D(A†) be arbitrary and define fk := f + δkgk.
Then we have on the one hand ‖f − fk‖Y 6 δk, but on the other hand the norm of

Rα(δk)fk −A†f = Rα(δk)f −A†f + δkRα(δk)gk

cannot converge to zero, as the second term δkRα(δk)gk is bounded from below by a positive
constant C by construction. Hence, (3.2) is violated for fδ = f + δkgk and thus, (Rα, α) is
not a convergent regularisation method.
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3.2.2 A posteriori parameter choice rules

It is easy to convince oneself that if an a priori parameter choice rule α = α(δ) defines a
convergence regularisation then α̃ = α(Cδ) with any C > 0 also defines a convergent regu-
larisation (for linear regularisations, it is a trivial corollary of Theorem 3.2.4). Therefore,
from the asymptotic point of view, all these regularisations are equivalent. For a fixed error
level δ, however, they can produce very different solutions. Since in practice we have to
deal with a typically small, but fixed δ, we would like to have a parameter choice rule that
is sensitive to this value. To achieve this, we need to use more information than merely
the error level δ to choose the parameter α and we will obtain this information from the
approximate data fδ.

The basic idea is as follows. Let f ∈ D(A†) and fδ ∈ Y such that ‖f − fδ‖ 6 δ and
consider the residual between fδ and uα := Rαfδ, i.e.

‖Auα − fδ‖ .

Let u† be the minimal norm solution and define

µ := inf{‖Au− f‖, u ∈ X} = ‖Au† − f‖.

We observe that u† satisfies the following inequality

‖Au† − fδ‖ 6 ‖Au† − f‖+ ‖fδ − f‖ 6 µ+ δ

and in some cases this estimate may be sharp. Hence, it appears not to be useful to choose
α(δ, fδ) with ‖Auα − fδ‖ < µ + δ. In general, it may be not straightforward to estimate
µ, but if R(A) is dense in Y, we get that R(A)⊥ = {0} due to Remark 2.0.2 and µ = 0.
Therefore, we ideally ensure that R(A) is dense.

These observations motivate the Morozov’s discrepancy principle, which in the case
µ = 0 reads as follows.

Definition 3.2.5 (Morozov’s discrepancy principle). Let uα = Rαfδ with α(δ, fδ) chosen
as follows

α(δ, fδ) = sup{α > 0 | ‖Auα − fδ‖ 6 ηδ} (3.4)

for given δ, fδ and a fixed constant η > 1. Then uα(δ,fδ) = Rα(δ,fδ)fδ is said to satisfy
Morozov’s discrepancy principle.

It can be shown that the a-posteriori parameter choice rule (3.4) indeed yields a con-
vergent regularization method [16, Chapter 4.3].

3.2.3 Heuristic parameter choice rules

As the measurement error δ is not always easy to obtain in practice, it is tempting to
use a parameter choice rule that only depends on the measured data fδ and not on their
error δ, i.e. to use a heuristic parameter choice rule. Unfortunately, heuristic rules yield
convergent regularisations only for well-posed problems, as the following result, known as
the Bakushinskii veto [6], demonstrates.

Theorem 3.2.6 ([16, Thm 3.3]). Let A ∈ L(X ,Y) and {Rα} be a regularization for A†.
Let α = α(fδ) be a parameter choice rule such that (Rα, α) is a convergent regularization.
Then A† is continuous from Y to X .
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3.3 Spectral Regularisation

Recall the spectral representation (2.8) of the Moore-Penrose inverse A†

A†f =

∞∑
j=1

1

σj
〈f, yj〉xj ,

where {(σj , xj , yj)} is the singular system of A.
The source of ill-posedness of A† are the eigenvalues 1/σj , which explode as j → ∞,

since σj → 0 as j → ∞. Let us construct a regularisation by modifying these eigenvalues
as follows

Rαf :=
∞∑
j=1

gα(σj) 〈f, yj〉xj , f ∈ Y, (3.5)

with an appropriate function gα : R+ → R+ such that gα(σ) → 1
σ as α → 0 for all σ > 0

and

gα(σ) 6 Cα for all σ ∈ R+. (3.6)

Theorem 3.3.1. Let gα : R+ → R+ be a piecewise continuous function satisfying (3.6),
limα→0 gα(σ) = 1

σ and

sup
α,σ

σgα(σ) 6 γ (3.7)

for some constant γ > 0. If Rα is defined as in (3.5), we have

Rαf → A†f as α→ 0

for all f ∈ D(A†).

Proof. From the singular value decomposition of A† and the definition of Rα we obtain

Rαf −A†f =

∞∑
j=1

(
gα(σj)−

1

σj

)
〈f, yj〉Y xj =

∞∑
j=1

(σjgα(σj)− 1) 〈u†, xj〉X xj .

Consider

‖Rαf −A†f‖2X =
∞∑
j=1

(σjgα(σj)− 1)2
∣∣∣〈u†, xj〉X ∣∣∣2 .

From (3.7) we can conclude

(σjgα(σj)− 1)2 6 (1 + γ2) ,

whilst

∞∑
j=1

(1 + γ2)
∣∣∣〈u†, xj〉X ∣∣∣2 = (1 + γ2)‖u†‖2 < +∞.
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Therefore, by the reverse Fatou lemma we get the following estimate

lim sup
α→0

∥∥∥Rαf −A†f∥∥∥2

X
= lim sup

α→0

∞∑
j=1

(σjgα(σj)− 1)2
(
〈u†, xj〉X

)2

6
∞∑
j=1

(
lim sup
α→0

σjgα(σj)− 1

)2 ∣∣∣〈u†, xj〉X ∣∣∣2 = 0 ,

where the last equality is due to the pointwise convergence of gα(σj) to 1/σj . Hence, we
have

∥∥Rαf −A†f∥∥X → 0 for α→ 0 for all f ∈ D(A†).

Theorem 3.3.2. Let the assumptions of Theorem 3.3.1 hold and let α = α(δ) be an a-
priori parameter choice rule. Then (Rα(δ), α(δ)) with Rα as defined in (3.5) is a convergent
regularisation method if

lim
δ→0

δCα(δ) = 0.

Proof. The result follows immediately from ‖Rα(δ)‖L(X ,Y) 6 Cα(δ) and Theorem 3.2.4.

3.3.1 Truncated singular value decomposition

As a first example for a spectral regularisation of the form (3.5) we want to consider the
so-called truncated singular value decomposition. The idea is to discard all singular values
below a certain threshold α, which is achieved using the following function gα

gα(σ) =

{
1
σ σ > α

0 σ < α
. (3.8)

Note that for all σ > 0 we naturally obtain limα→0 gα(σ) = 1/σ. Condition (3.7) is obviously
satisfied with γ = 1 and condition (3.6) with Cα = 1

α . Therefore, truncated SVD is a
convergent regularisation if

lim
δ→0

δ

α
= 0. (3.9)

Equation (3.5) then reads as follows

Rαf =
∑
σj>α

1

σj
〈f, yj〉Y xj , (3.10)

for all f ∈ Y. Note that the sum in (3.10) is always well-defined (i.e. finite) for any α > 0
as zero is the only accumulation point of singular vectors of compact operators.

Let A ∈ K(X ,Y) with singular system {(σj , xj , yj)}j∈N, and choose for δ > 0 an index
function j∗ : R+ → N with j∗(δ) → ∞ for δ → 0 and limδ→0 δ/σj∗(δ) = 0. We can
then choose α(δ) = σj∗(δ) as an a-priori parameter choice rule to obtain a convergent
regularisation.

Note that in practice a larger δ implies that more and more singular values have to be
cut off in order to guarantee a stable recovery that successfully suppresses the data error.

A disadvantage of this approach is that it requires the knowledge of the singular vectors
of A (only finitely many, but the number can still be large).



34 CHAPTER 3. CLASSICAL REGULARISATION THEORY

3.3.2 Tikhonov regularisation

The main idea behind Tikhonov regularisation1 is to consider the normal equations and shift
the eigenvalues of A∗A by a constant factor, which will be associated with the regularisation
parameter α. This shift can be realised via the function

gα(σ) =
σ

σ2 + α
(3.11)

and the corresponding Tikhonov regularisation (3.5) reads as follows

Rαf =

∞∑
j=1

σj
σ2
j + α

〈f, yj〉Y xj . (3.12)

Again, we immediately observe that for all σ > 0 we have limα→0 gα(σ) = 1/σ. Condi-
tion (3.7) is satisfied with γ = 1. Since 0 6 (σ − √α)2 = σ2 − 2σ

√
α + α, we get that

σ2 + α > 2σ
√
α and

σ

σ2 + α
6

1

2
√
α
.

This estimate implies that (3.6) holds with Cα = 1
2
√
α

. Therefore, Tikhonov regularisation

is a convergent regularisation if

lim
δ→0

δ√
α

= 0. (3.13)

The formula (3.12) suggests that we need all singular vectors of A in order to compute
the regularisation. However, we note that σ2

j are the eigenvalues of A∗A and, hence, σ2
j +α

are the eigenvectors of A∗A+αI (where I is the identity operator). Applying this operator
to the regularised solution uα = Rαf , we get

(A∗A+ αI)uα =
∞∑
j=1

(σ2
j + α)〈uα, xj〉X xj =

∞∑
j=1

(σ2
j + α)

σj
σ2
j + α

〈f, yj〉Y xj = A∗f.

Therefore, the regularised solution uα can be computed without knowing the singular system
of A by solving the following well-posed linear equation

(A∗A+ αI)uα = A∗f. (3.14)

Remark 3.3.3. Rewriting equation (3.14) as

A∗(Auα − f) + αuα = 0,

we note that it looks like a condition for the minimum of some quadratic form. Indeed,
it can be easily checked that (3.14) is the first order optimality condition for the following
optimisation problem

min
u∈X

1

2
‖Au− f‖2 + α‖u‖2. (3.15)

The condition (3.14) is necessary (and, by convexity, sufficient) for the minimum of the
functional in (3.15). Therefore, the regularised solution uα can also be computed by solv-
ing (numerically) the variational problem (3.15). This is the starting point for modern
variational regularisation methods, which we will consider in the next chapter.

1Named after the Russian mathematician Andrey Nikolayevich Tikhonov (30 October 1906 - 7 October
1993)



Chapter 4

Variational Regularisation

Recall the variation formulation of Tikhonov regularisation for some data fδ ∈ Y

min
u∈X
‖Au− fδ‖2 + α‖u‖2.

The first term in this expression, ‖Au − fδ‖2, penalises the misfit between the predictions
of the operator A and the measured data fδ and is called the fidelity function or fidelity
term. The second term, ‖u‖2 penalises some unwanted features of the solution (in this case,
a large norm) and is called the regularistaion term. The regularisation parameter α in this
context balances the influence of these two terms on the functional to be minimised.

More generally, using the notation J (u) for the regulariser, we can formally write down
the variational regularisation problem as follows

min
u∈X

1

2
‖Au− fδ‖2 + αJ (u), (4.1)

(the 1
2 in front of the fidelity term is there to simplify notation later). The regularisation

operator Rα is defined as follows

Rαfδ ∈ arg min
u∈X

1

2
‖Au− fδ‖2 + αJ (u).

In general, the minimiser doesn’t have to unique, hence the inclusion and not equality.
Other fidelity terms (not just ‖Au − fδ‖2) are possible and useful in many situations. In
this course, however, we will use the squared norm for the sake of simplicity.

In this chapter, we will study the properties of (4.1) for different choices of J , but before
that we will recall some necessary theoretical concepts.

4.1 Background

4.1.1 Banach spaces and weak convergence

Banach spaces are complete, normed vector spaces (as Hilbert spaces) but they may not
have an inner product. For every Banach space X , we can define the space of linear and
continuous functionals which is called the dual space X ∗ of X , i.e. X ∗ := L(X ,R). Let
u ∈ X and p ∈ X ∗, then we usually write the dual product 〈p, u〉 instead of p(u). Moreover,

35
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for any A ∈ L(X ,Y) there exists a unique operator A∗ : Y∗ → X ∗, called the adjoint of A
such that for all u ∈ X and p ∈ Y∗ we have

〈A∗p, u〉 = 〈p,Au〉 .

It is easy to see that either side of the equation are well-defined, e.g. A∗p ∈ X ∗ and u ∈ X .
The dual space of a Banach space X can be equipped with the following norm

‖p‖X ∗ = sup
u∈X ,‖u‖X61

〈p, u〉 .

With this norm the dual space is itself a Banach space. Therefore, it has a dual space as
well which we will call the bi-dual space of X and denote it with X ∗∗ := (X ∗)∗. As every
u ∈ X defines a continuous and linear mapping on the dual space X ∗ by

〈E(u), p〉 := 〈p, u〉 ,

the mapping E : X → X ∗∗ is well-defined. It can be shown that E is a linear and continuous
isometry (and thus injective). In the special case when E is surjective, we call X reflexive.
Examples of reflexive Banach spaces include Hilbert spaces and Lq, `q spaces with 1 <
q < ∞. We call the space X separable if there exists a set X ′ ⊂ X of at most countable
cardinality such that X ′ = X .

A problem in infinite dimensional spaces is that bounded sequences may fail to have
convergent subsequences. An example is for instance in `2 the sequence {uk}k∈N ⊂ `2, ukj = 1

if k = j and 0 otherwise. It is easy to see that ‖uk‖`2 = 1 and that there is no u ∈ `2 such
that uk → u. To circumvent this problem, we define a weaker topology on X . We say that
{uk}k∈N ⊂ X converges weakly to u ∈ X if and only if for all p ∈ X ∗ the sequence of real
numbers {

〈
p, uk

〉
}k∈N converges and

〈p, uj〉 → 〈p, u〉 .

We will denote weak convergence by uk ⇀ u. On a dual space X ∗ we could define another
topology (in addition to the strong topology induced by the norm and the weak topology
as the dual space is a Banach space as well). We say a sequence {pk}k∈N ⊂ X ∗ converges
in weak-∗ to p ∈ X ∗ if and only if〈

pk, u
〉
→ 〈p, u〉 for all u ∈ X

and we denote weak-∗ convergence by pk
∗→ p. Similarly, for any topology τ on X we denote

the convergence in that topology by uk
τ→ u.

With these two new notions of convergence, we can solve the problem of bounded se-
quences:

Theorem 4.1.1 (Sequential Banach-Alaoglu Theorem, e.g. [26, p. 70] or [30, p. 141]). Let
X be a separable normed vector space. Then every bounded sequence {uk}k∈N ⊂ X ∗ has a
weak-∗ convergent subsequence.

Theorem 4.1.2 ([32, p. 64]). Each bounded sequence {uk}k∈N in a reflexive Banach space
X has a weakly convergent subsequence.

An important property of functionals, which we will need later, is sequential lower
semicontinuity. Roughly speaking this means that the functional values for arguments near
an argument u are either close to E(u) or greater than E(u).
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Figure 4.1: Visualisation of lower semi-continuity. The solid dot at a jump indicates the
value that the function takes. The function on the left is continuous and thus lower semi-
continuous. The functions in the middle and on the right are discontinuous. While the
function in the middle is lower semi-continuous, the function on the right is not (due to the
limit from the left at the discontinuity).

Definition 4.1.3. Let X be a Banach space with topology τX . The functional E : X → R̄
is said to be sequentially lower semi-continuous with respect to τX (τX -l.s.c.) at u ∈ X if

E(u) 6 lim inf
j→∞

E(uj)

for all sequences {uj}j∈N ⊂ X with uj → u in the topology τX of X .

Remark 4.1.4. For topologies that are not induced by a metric we have to differ between a
topological property and its sequential version, e.g. continuous and sequentially continuous.
If the topology is induced by a metric, then these two are the same. However, for instance
the weak and weak-∗ topology are generally not induced by a metric.

Example 4.1.5. The functional ‖ · ‖1 : `2 → R̄ with

‖u‖1 =

{∑∞
j=1 |uj | if u ∈ `1

∞ else

is weakly (and, hence, strongly) lower semi-continuous in `2.

Proof. Let {uj}j∈N ⊂ `2 be a weakly convergent sequence with uj ⇀ u ∈ `2. We have with
δk : `2 → R, 〈δk, v〉 = vk that for all k ∈ N

ujk = 〈δk, uj〉 → 〈δk, u〉 = uk .

The assertion follows then with Fatou’s lemma

‖u‖1 =

∞∑
k=1

|uk| =
∞∑
k=1

lim
j→∞

|ujk| 6 lim inf
j→∞

∞∑
k=1

|ujk| = lim inf
j→∞

‖uj‖1 .

Note that it is not clear whether both the left and the right hand side are finite.

4.1.2 Convex analysis

Infinity calculus

We will look at functionals E : X → R̄ whose range is modelled to be the extended real line
R̄ := R∪ {−∞,+∞} where the symbol +∞ denotes an element that is not part of the real
line that is by definition larger than any other element of the reals, i.e.

x < +∞
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for all x ∈ R (similarly, x > −∞ for all x ∈ R). This is useful to model constraints: for
instance, if we were trying to minimise E : [−1,∞) → R, x 7→ x2 we could remodel this
minimisation problem by Ẽ : R→ R̄

Ẽ(x) =

{
x2 if x > −1

∞ else
.

Obviously both functionals have the same minimiser but Ẽ is defined on a vector space
and not only on a subset. This has two important consequences: on the on hand, it makes
many theoretical arguments easier as we do not need to worry whether E(x+ y) is defined
or not. On the other hand, it makes practical implementations easier as we are dealing
with unconstrained optimisation instead of constrained optimisation. This comes at a cost
that some algorithms are not applicable any more, e.g. the function Ẽ is not differentiable
everywhere whereas E is (in the interior of its domain).

It is useful to note that one can calculate on the extended real line R̄ as we are used to
on the real line R but the operations with ±∞ need yet to be defined.

Definition 4.1.6. The extended real line is defined as R̄ := R ∪ {−∞,+∞} with the
following rules that hold for any x ∈ R and λ > 0:

x+∞ :=∞+ x :=∞ λ · ∞ :=∞ · λ :=∞
x/∞ := 0 ∞+∞ :=∞ .

Some calculations are not defined, e.g.,

∞−∞ and ∞ ·∞ .

Using functions with values on the extended real line, one can easily describe sets C ⊂ X .

Definition 4.1.7 (Characteristic function). Let C ⊂ X be a set. The function χC : X → R̄,

χC(u) =

{
0 u ∈ C
∞ u ∈ X \ C

is called the characteristic function of the set C.

Using characteristic functions, one can easily write constrained optimisation problems
as unconstrained ones:

min
u∈C

E(u) ⇔ min
u∈X

E(u) + χC(u).

Definition 4.1.8. Let X be a vector space and E : X → R̄ a functional. Then the effective
domain of E is

dom(E) := {u ∈ X | E(u) <∞} .

Definition 4.1.9. A functional E is called proper if the effective domain dom(E) is not
empty.
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Figure 4.2: Example of a convex set (left) and non-convex set (right).

∞
∅

Figure 4.3: Example of a convex function (left), a strictly convex function (middle) and a
non-convex function (right).

Convexity

A property of fundamental importance of sets and functions is convexity.

Definition 4.1.10. Let X be a vector space. A subset C ⊂ X is called convex, if λu+ (1−
λ)v ∈ C for all λ ∈ (0, 1) and all u, v ∈ C.

Definition 4.1.11. A functional E : X → R̄ is called convex, if

E(λu+ (1− λ)v) 6 λE(u) + (1− λ)E(v)

for all λ ∈ (0, 1) and all u, v ∈ dom(E) with u 6= v. It is called strictly convex if the
inequality is strict. It is called strongly convex with constant θ if E(u)− θ‖u‖2 is convex.

Obviously, strong convexity implies strict convexity and strict convexity implies convex-
ity.

Example 4.1.12. The absolute value function R → R, x 7→ |x| is convex but not strictly
convex. The quadratic function x 7→ x2 is strongly (and hence strictly) convex. The function
x 7→ x4 is strictly convex, but not strongly convex. For other examples, see Figure 4.3.

Example 4.1.13. The characteristic function χC(u) is convex if and only if C is a convex
set. To see the convexity, let u, v ∈ dom(χC) = C. Then by the convexity of C the convex
combination λu + (1 − λ)v is as well in C and both the left and the right hand side of the
desired inequality are zero.

Lemma 4.1.14. Let α > 0 and E,F : X → R̄ be two convex functionals. Then E +
αF : X → R̄ is convex. Furthermore, if α > 0 and F strictly convex, then E+αF is strictly
convex.
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Fenchel conjugate

In convex optimisation problems (i.e. those involving convex functions) the concept of
Fenchel conjugates plays a very important role.

Definition 4.1.15. Let E : X → R̄ be a functional. The functional E∗ : X ∗ → R̄,

E∗(p) = sup
u∈X

[〈u, p〉 − E(u)],

is called the Fenchel conjugate of E.

Theorem 4.1.16 ([15, Prop. 4.1]). For any functional E : X → R̄ the following inequality
holds:

E∗∗ := (E∗)∗ 6 E.

If E is proper, lower-semicontinuous (see Def. 4.1.3) and convex, then

E∗∗ = E.

Subgradients

For convex functions one can generalise the concept of a derivative so that it would also
make sense for non-differentiable functions.

Definition 4.1.17. A functional E : X → R̄ is called subdifferentiable at u ∈ X , if there
exists an element p ∈ X ∗ such that

E(v) > E(u) + 〈p, v − u〉

holds, for all v ∈ X . Furthermore, we call p a subgradient at position u. The collection of
all subgradients at position u, i.e.

∂E(u) := {p ∈ X ∗ | E(v) > E(u) + 〈p, v − u〉 ,∀v ∈ X} ,

is called subdifferential of E at u.

Remark 4.1.18. Let E : X → R̄ be a convex functional. Then the subdifferential is non-
empty at all u ∈ dom(E). If dom(E) 6= ∅, then for all u 6∈ dom(E) the subdifferential is
empty, i.e. ∂E(u) = ∅.
Theorem 4.1.19 ([4, Thm. 7.13]). Let E : X → R̄ be a proper convex function and u ∈
dom(E). Then ∂E(u) is a weak-∗ compact convex subset of X ∗.

For differentiable functions the subdifferential consists of just one element – the deriva-
tive. For non-differentiable functionals the subdifferential is multivalued; we want to con-
sider the subdifferential of the absolute value function as an illustrative example.

Example 4.1.20. Let E : R → R be the absolute value function E(u) = |u|. Then, the
subdifferential of E at u is given by

∂E(u) =


{1} for u > 0

[−1, 1] for u = 0

{−1} for u < 0

,

which you will prove as an exercise. A visual explanation is given in Figure 4.4.
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Figure 4.4: Visualisation of the subdifferential. Linear approximations of the functional have
to lie completely underneath the function. For points where the function is not differentiable
there may be more than one such approximation.

The subdifferential of a sum of two functions can be characterised as follows.

Theorem 4.1.21 ([15, Prop. 5.6]). Let E : X → R̄ and F : X → R̄ be proper l.s.c. convex
functions and suppose ∃u ∈ dom(E) ∪ dom(F ) such that E is continuous at u. Then

∂(E + F ) = ∂E + ∂F.

Using the subdifferential, one can characterise minimisers of convex functionals.

Theorem 4.1.22. An element u ∈ X is a minimiser of the functional E : X → R̄ if and
only if 0 ∈ ∂E(u).

Proof. By definition, 0 ∈ ∂E(u) if and only if for all v ∈ X it holds

E(v) > E(u) + 〈0, v − u〉 = E(u) ,

which is by definition the case if and only if u is a minimiser of E.

Bregman distances

Convex functions naturally define some distance measure that became known as the Breg-
man distance.

Definition 4.1.23. Let E : X → R̄ be a convex functional. Moreover, let u, v ∈ X , E(v) <
∞ and q ∈ ∂E(v). Then the (generalised) Bregman distance of E between u and v is defined
as

Dq
E(u, v) := E(u)− E(v)− 〈q, u− v〉 . (4.2)

Remark 4.1.24. It is easy to check that a Bregman distance somewhat resembles a metric
as for all u, v ∈ X , q ∈ ∂E(v) we have that Dq

E(u, v) > 0 and Dq
E(v, v) = 0. There are

functionals where the Bregman distance (up to a square root) is actually a metric; e.g.
E(u) := 1

2‖u‖2X for Hilbert space X , then Dq
E(u, v) = 1

2‖u − v‖2X . However, in general,
Bregman distances are not symmetric and Dq

E(u, v) = 0 does not imply u = v, as you will
see on the example sheets.

To overcome the issue of non-symmetry, one can introduce the so-called symmetric
Bregman distance.

Definition 4.1.25. Let E : X → R̄ be a convex functional. Moreover, let u, v ∈ X , E(u) <
∞, E(v) < ∞, q ∈ ∂E(v) and p ∈ ∂E(u). Then the symmetric Bregman distance of E
between u and v is defined as

Dsymm
E (u, v) := Dq

E(u, v) +Dp
E(v, u) = 〈p− q, u− v〉 . (4.3)
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v u

Dp
E(u, v)E(u)

E
E(v) + 〈p, u− v〉

Figure 4.5: Visualization of the Bregman distance.

Absolutely one-homogeneous functionals

Definition 4.1.26. A functional E : X → R̄ is called absolutely one-homogeneous if

E(λu) = |λ|E(u) ∀λ ∈ R, ∀u ∈ X .
Absolutely one-homogeneous convex functionals have some useful properties, for exam-

ple, it is obvious that E(0) = 0. Some further properties are listed below.

Proposition 4.1.27. Let E(·) be a convex absolutely one-homogeneous functional and let
p ∈ ∂E(u). Then the following equality holds:

E(u) = 〈p, u〉.
Proof. Left as exercise.

Remark 4.1.28. The Bregman distance Dp
E(v, u) in this case can be written as follows:

Dp
E(v, u) = E(v)− 〈p, v〉.

Proposition 4.1.29. Let E(·) be a proper, convex, l.s.c. and absolutely one-homogeneous
functional. Then the Fenchel conjugate E∗(·) is the characteristic function of the convex
set ∂E(0).

Proof. Left as exercise.

An obvious consequence of the above results is the following

Proposition 4.1.30. For any u ∈ X , p ∈ ∂E(u) if and only if p ∈ ∂E(0) and E(u) = (p, u).

4.1.3 Minimisers

Definition 4.1.31. Let E : X → R̄ be a functional. We say that u∗ ∈ X solves the min-
imisation problem

min
u∈X

E(u)

if and only if E(u∗) <∞ and E(u∗) 6 E(u), for all u ∈ X . We call u∗ a minimiser of E.

Definition 4.1.32. A functional E : X → R̄ is called bounded from below if there exists a
constant C > −∞ such that for all u ∈ X we have E(u) > C.

This condition is obviously necessary for the finiteness of the infimum infu∈X E(u).
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Existence

If all minimising sequences (that converge to the infimum assuming it exists) are unbounded,
then there cannot exist a minimiser. A sufficient condition to avoid such a scenario is
coercivity.

Definition 4.1.33. A functional E : X → R̄ is called coercive, if for all {uj}j∈N with
‖uj‖X →∞ we have E(uj)→∞.

x2

x

exp(x)

x

Figure 4.6: While the coercive function on the left has a minimiser, it is easy to see that
the non-coercive function on the right does not have a minimiser.

Remark 4.1.34. Coercivity is equivalent to its negated statement which is “if the function
values {E(uj)}j∈N ⊂ R are bounded, so is the sequence {uj}j∈N ⊂ X”.

Although coercivity is not strictly speaking necessary, it is sufficient that all minimising
sequences are bounded.

Lemma 4.1.35. Let E : X → R̄ be a proper, coercive functional and bounded from below.
Then the infimum infu∈X E(u) exists in R, there are minimising sequences, i.e. {uj}j∈N ⊂
X with E(uj)→ infu∈X E(u), and all minimising sequences are bounded.

Proof. As E is proper and bounded from below, there exists a C1 > 0 such that we have
−∞ < −C1 < infuE(u) <∞ which also guarantees the existence of a minimising sequence.
Let {uj}j∈N be any minimising sequence, i.e. E(uj) → infuE(u). Then there exists a
j0 ∈ N such that for all j > j0 we have

E(uj) 6 inf
u
E(u) + 1︸ ︷︷ ︸
=:C2

<∞ .

With C := max{C1, C2} we have that |E(uj)| < C for all j > j0 and thus from the
coercivity it follows that {uj}j>j0 is bounded, see Remark 4.1.34. Including a finite number
of elements does not change its boundedness which proves the assertion.

A positive answer about the existence of minimisers is given by the following Theorem
known as the “direct method” or “fundamental theorem of optimisation”.

Theorem 4.1.36 (“Direct method”, David Hilbert, around 1900). Let X be a Banach space
and τX a topology (not necessarily the one induced by the norm) on X such that bounded
sequences have τX -convergent subsequences. Let E : X → R̄ be proper, bounded from below,
coercive and τX -l.s.c. Then E has a minimiser.
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Proof. From Lemma 4.1.35 we know that infu∈X E(u) is finite, minimising sequences exist
and that they are bounded. Let {uj}j∈N ∈ X be a minimising sequence. Thus, from
the assumption on the topology τX there exists a subsequence {ujk}k∈N and u∗ ∈ X with

ujk
τX→ u∗ for k →∞. From the sequential lower semi-continuity of E we obtain

E(u∗) 6 lim inf
k→∞

E(ujk) = lim
j→∞

E(uj) = inf
u∈X

E(u) <∞ ,

which shows that E(u∗) <∞ and E(u∗) 6 E(u) for all u ∈ X ; thus u∗ minimises E.

The above theorem is very general but its conditions are hard to verify but the situation
is a easier in reflexive Banach spaces (thus also in Hilbert spaces).

Corollary 4.1.37. Let X be a reflexive Banach space and E : X → R̄ be a functional which
is proper, bounded from below, coercive and l.s.c. with respect to the weak topology. Then
there exists a minimiser of E.

Proof. The statement follows from the direct method, Theorem 4.1.36, as in reflexive
Banach spaces bounded sequences have weakly convergent subsequences, see Theorem
4.1.2.

Remark 4.1.38. For convex functionals on reflexive Banach spaces, the situation is even
easier. It can be shown that a convex function is l.s.c. with respect to the weak topology
if and only if it is l.s.c. with respect to the strong topology (see e.g. [15, Corollary 2.2., p.
11] or [7, p. 149] for Hilbert spaces).

Remark 4.1.39. It is easy to see that the key ingredient for the existence of minimisers is
that bounded sequences have a convergent subsequence. In variational regularisation this
is usually ensured by an appropriate choice of the regularisation functional.

Uniqueness

Theorem 4.1.40. Assume that the functional E : X → R̄ has at least one minimiser and
is strictly convex. Then the minimiser is unique.

Proof. Let u, v be two minimisers of E and assume that they are different, i.e. u 6= v. Then
it follows from the minimising properties of u and v as well as the strict convexity of E that

E(u) 6 E(1
2u+ 1

2v) <
1

2
E(u) +

1

2
E(v)︸ ︷︷ ︸
6E(u)

6 E(u)

which is a contradiction. Thus, u = v and the assertion is proven.

Example 4.1.41. Convex (but not strictly convex) functions may have have more than
one minimiser, examples include constant and trapezoidal functions, see Figure 4.7. On
the other hand, convex (and even non-convex) functions may have a unique minimiser, see
Figure 4.7.
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a) b)

Figure 4.7: a) Convex functions may not have a unique minimiser. b) Neither strict con-
vexity nor convexity is necessary for the uniqueness of a minimiser.

4.2 Well-posedness and Regularisation Properties

Our goal is to study the properties of optimisation problem (4.1) as a convergent regulari-
sation for the ill-posed problem

Au = f, (4.4)

where A : X → Y is a linear bounded operator and X and Y are Banach spaces (and
not Hilbert spaces as in Chapter 3). In particular, we will ask questions of existence of
minimisers (well-posedness of the regularised problem) and parameter choice rules that
guarantee the convergence of the minimisers to an appropriate generalised solution of (4.4)
for different choices of the regularisation functional. To this end, we need to extend the
definition of a minimal-norm solution (Def. 2.1.1) to an arbitrary regularisation term.

Definition 4.2.1 (J -minimising solutions). Let u†J be a least squares solution, i.e.

‖Au†J − f‖Y = inf{‖Av − f‖Y , v ∈ X}

and

J (u†J ) 6 J (ũ) for all least squares solutions ũ.

Then u†J is called a J -minimising solution of (4.4).

We will assume that equation (4.4) has a solution with a finite value of J , i.e. there
exists at least one element u such that Au = f and J (u) < +∞. Under this assumption,
least squares solutions are actually solutions of (4.4).

Remark 4.2.2. A J -minimising solution may not exist and if it does, it may be non-unique.
We will later see conditions, under which a J -minimising solution exists. Non-uniqueness,
however, is common with popular choices of J . In this case we need to define a selection
operator that will select a single element from all the J -minimising solutions (see [8]). We
will not explicitly mention this, stating all results for just a J -minimising solution.

First of all we will establish the existence of a J -minimising solution and a regularised
solution for a finite α.

Theorem 4.2.3. Let X and Y be Banach spaces and τX and τY some topologies (not
necessarily induced by the norm) in X and Y, respectively, such that ‖ · ‖Y is τY-lower
semicontinuous. Suppose that problem (4.4) has a solution with a finite value of J . Assume
also that
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(i) A : X → Y is τX → τY continuous;

(ii) J : X → R̄+ is proper, τX -l.s.c. and its non-empty sublevel-sets {u ∈ X : J (u) 6 C}
are τX -sequentially compact;

Then

(i’) there exists a J -minimising solution u†J of (4.4);

(ii’) for any fixed α > 0 and fδ ∈ Y there exists a minimiser

uαδ ∈ arg min
u∈X

1

2
‖Au− fδ‖2Y + αJ (u).

Proof. (i) Let f ∈ R(A) be the exact data. Let us denote the set of all solutions of (4.4)
by L. It is non-empty (since we assumed the existence of at least one solution) and τX -

closed. To see this, consider a sequence {un} ⊂ L such that un
τX→ ū. Since A is τX → τY

continuous, Aun
τY→ Aū. On the other hand, since {un} ⊂ L, Aun = f for any n, hence

Aū = f and ū ∈ L.
A J -minimsing solution solves the following problem

min
u∈L
J (u).

Since J is bounded from below (by zero) and proper on L by assumption, the infimum in
this problem is finite and we denote it by Jmin. Consider any minimising sequence {uk}.
By Assumption (ii), the sublevel-sets of J are τX -sequentially compact and uk contains a

τX -converging subsequence ukj
τX→ ũ as j → ∞. Since L is τX -closed, ũ ∈ L. Since J is

τX -l.s.c., we get that
J (ũ) 6 lim inf

j→∞
J (ukj ) = Jmin.

Therefore, J (ũ) = Jmin and ũ is a J -minimising solution, which we from now on denote

by u†J .
(ii) Let fδ ∈ Y be noisy data s.t. ‖f − fδ‖Y 6 δ. For fixed α > 0 and δ > 0 consider the

following optimisation problem

min
u∈X

1

2
‖Au− fδ‖2Y + αJ (u). (4.5)

Comparing the value of the objective function at minimising sequence {un} and the J -

minimising solution u†J , we get that

1

2
‖Aun − fδ‖2Y + αJ (un) 6

1

2
‖Au†J − fδ‖2Y + αJ (u†J )

and

J (un) 6
1

2α
‖Au†J − fδ‖2Y + J (u†J ) 6

δ2

2α
+ J (u†J ) = const.

By the sequential τX -compactness of the sublevel sets of J we get that {un} contains a τX -

converging subsequence unj
τX→ û. Since A is τX → τY continuous, we get that Aunj

τY→ Aû.
Since ‖ · ‖Y is τY -l.s.c and J (·) is τX -l.s.c., we get that

1

2
‖Aû− fδ‖2Y + αJ (û) 6 lim inf

j→∞

1

2
‖Aunj − fδ‖2Y + αJ (unj ) = inf

u∈X

1

2
‖Au− fδ‖2Y + αJ (u).

Therefore, û is a minimiser in (4.5), which we will denote by uαδ .
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Let us study the behaviour of uαδ when δ → 0 and α is chosen according to an appropriate
a priori parameter choice rule.

Theorem 4.2.4. Let the assumptions of Theorem 4.2.3 hold. If α = α(δ) is chosen s.t.
δ2

α(δ) → 0 and α(δ) → 0 as δ → 0 then uδ := u
α(δ)
δ

τX→ u†J as δ → 0 (possibly, along a

subsequence) and J (uδ)→ J (u†J ), where u†J is a J -minimising solution.

Proof. Since uδ solves (4.5) with α = α(δ), we get that

1

2
‖Auδ − fδ‖2Y + α(δ)J (uδ) 6

1

2
‖Au†J − fδ‖2Y + α(δ)J (u†J ) (4.6)

and

J (uδ) 6
1

2α(δ)
‖Au†J − fδ‖2Y + J (u†J ) 6

δ2

2α(δ)
+ J (u†J ) (4.7)

The right-hand side is bounded uniformly in δ since limδ→0 δ
2/α(δ) = 0 by assumption and

J (u†J ) is a constant independent of δ.

Choosing an arbitrary null sequence δn ↓ 0 and again using the τX -compactness of the
sublevel sets of J , we conclude that the sequence uδn contains a τX -convergent subsequence

(that we do not relabel to avoid triple subscripts) uδn
τX→ u0 and Auδn

τY→ Au0 due to the
τX → τY continuity of A.

Due to the τY -lower semicontinuity of the norm in Y we further obtain the following
estimate

1

2
‖Au0 − f‖2Y 6 lim inf

n→∞

1

2
‖Auδn − fδn‖2Y

6 lim inf
n→∞

1

2
‖Auδn − fδn‖2Y + α(δn)J (uδn).

Since uδn is a minimiser in (4.5) with α = α(δ), we obtain

1

2
‖Au0 − f‖2Y 6 lim inf

n→∞

1

2
‖Au†J − fδn‖2Y + α(δn)J (u†J )

6 lim inf
n→∞

δ2
n

2
+ α(δn)J (u†J ) = 0.

Hence, u0 is a solution (4.4).

Now it is left to show that u0 has minimal value of J among all solutions (4.4). Using
the estimate (4.7) and τX -lower semicontinuity of J , we obtain

J (u0) 6 lim inf
n→∞

J (uδn) 6 lim sup
n→∞

J (uδn) 6 lim sup
n→∞

δ2

2α(δ)
+ J (u†J ) = J (u†J ).

Since u†J has by definition the smallest value of J among all solutions of (4.4), we also get

that J (u†J ) 6 J (u0). Therefore, there exists limn→∞ J (uδn) = J (u0) = J (u†J ) and u0 is

a J -minimising solution of (4.4) (which is possibly different from u†J ).

Remark 4.2.5. The compactness of the level sets of J (u) in Assumption (ii) can be
replaced by compactness of the level sets of Φα

f (u) := 1
2‖Au− f‖2Y + αJ (u).
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Remark 4.2.6. The theorem proves convergence of the regularised solutions in τX , which
may differ from the strong topology. However, if J satisfies the Radon-Riesz property with
respect to the topology τX , i.e. uj

τX→ u and J (uj) → J (u) imply ‖uj − u‖ → 0, then we
get convergence in the norm topology. An example of a functional satisfying the Radon-
Riesz property is the norm in a Hilbert (or reflexive Banach) space with τX being the weak
topology.

Examples of regularisers

Example 4.2.7. Let X be a Hilbert space and J (u) = ‖u‖2. The norm in a Hilbert space
is weakly l.s.c. By Theorem 4.1.2 we know that (norm) bounded sequences have weakly
convergent subsequences. Therefore, Assumption (ii) of Theorem 4.2.3 is satisfied with
τX being the weak topology and we obtain weak convergence of the regularised solutions.
However, since the norm in a Hilbert space has the Radon-Riesz property, we also get strong
convergence. The same approach works in reflexive Banach spaces.

A classical example is regularisation in Sobolev spaces such as the space H1 of L2

functions whose weak derivatives are also in L2. In the one-dimensional case, the space H1

consists only of continuous functions (in higher dimensions it is true for Sobolev spaces with
some other exponents), therefore, the regularised solutions will also be continuous. For this
reason, the regulariser J (u) = ‖u‖H1 is sometimes referred to as the smoothing functional.
Whilst desirable in some applications, in imaging smooth reconstructions are usually not
favourable, since images naturally contain edges and therefore are not continuous functions.
To overcome this issue, other regularisers have been introduced that we will discuss later.

Example 4.2.8 (`1-regularisation). Let X = `2 be space of all square summable sequences
(i.e. such that ‖u‖2`2 =

∑∞
i=1 u

2
i < +∞). For example, u can represent the coefficients of a

function in a basis (e.g., a Fourier basis or a wavelet basis). As a regularisation functional,
let us use not the `2-norm, but the `1-norm:

J (u) = ‖u‖`1 =
∞∑
i=1

|ui|.

By Example 4.1.5 J (·) is weakly l.s.c. in `2. It is evident that `q ⊂ `p and ‖ · ‖`p 6 ‖ · ‖`q
for q 6 p. Therefore, J (u) 6 C implies that ‖ · ‖`2 6 C and, since `2 is a Hilbert space and
bounded sequences have weakly convergent subsequences, we conclude that the sublevel sets
of J (·) are weakly sequentially compact in `2. Therefore, Assumption (ii) of Theorem 4.2.3
is satisfied with τX being the weak topology in `2. Hence, we get weak convergence of
regularised solutions in `2.

The motivation for using the `1-norm as the regulariser instead of the `2-norm is as
follows. If the forward operator is non-injective, the inverse problem has more than one
solution and the solutions form an affine subspace. In the context of sequence spaces
representing coefficients of the solution in a basis, it is sometimes beneficial to look for
solutions that are sparse in the sense that they have finite support, i.e. | supp(u)| < ∞
with supp(u) = {i ∈ N |ui 6= 0}. This allows explaining the signal with a finite (and
often relatively small) number of basis functions and has widely ranging applications in,
for instance, compressed sensing. A finite dimensional illustration of the sparsity of `1-
regularised solutions is given in Figure 4.8. The corresponding minimisation problem

min
u∈`2

{
1

2
‖Au− f‖2`2 + α‖u‖1

}
. (4.8)
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is also called lasso in the statistical literature.

minimal `2-norm minimal `1-norm

Figure 4.8: Non-injective operators have a non-trivial kernel such that the inverse problem
has more than one solution and the solutions form an affine subspace visualised by the
solid line. Different regularisation functionals favour different solutions. The circle and the
diamond indicate all points with constant `2-norm, respectively `1-norm, and the minimal
`2-norm and `1-norm solutions are the intersections of the line with the circle, respectively
the diamond. As it can be seen, the minimal `2-norm solution has two non-zero components
while the minimal `1-norm solution has only one non-zero component and thus is sparser.

4.3 Total Variation Regularisation

As pointed out in Example 4.2.7, in imaging we are interested in regularisers that allow for
discontinuities while maintaining sufficient regularity of the reconstructions. One popular
choice is the so-called total variation regulariser.

Definition 4.3.1. Let Ω ⊂ Rn be a bounded domain and u ∈ L1(Ω). Let D(Ω,Rn) be the
following set of vector-valued test functions (i.e. functions that map from Ω to Rn)

D(Ω,Rn) :=
{
ϕ ∈ C∞0 (Ω;Rn)

∣∣∣ ess supx∈Ω ‖ϕ(x)‖2 6 1
}
.

Total variation of u ∈ L1(Ω) is defined as follows

TV(u) = sup
ϕ∈D(Ω,Rn)

∫
Ω
u(x) divϕ(x) dx .

Remark 4.3.2. Definition 4.3.1 may seem a bit strange at the first glance, but we note
that for a function u ∈ L1(Ω) whose weak derivative ∇u exists and is also in L1(Ω,Rn) (i.e.
u belongs to the Sobolev space W 1,1(Ω)) we obtain, integrating by parts, that

TV(u) = sup
ϕ∈D(Ω,Rn)

∫
Ω
−〈∇u(x), ϕ(x)〉 dx.

By the Cauchy-Schwartz inequality we get that | 〈∇u(x), ϕ(x)〉 | 6 ‖∇u(x)‖2‖ϕ(x)‖2 6

‖∇u(x)‖2 for a.e. x ∈ Ω. On the other hand, choosing ϕ such that ϕ(x) = − ∇u(x)
‖∇u(x)‖2 (tech-

nically, such ϕ is not necessarily in D(Ω,Rn), but we can approximate it with functions from
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D(Ω,Rn), since any function in W 1,1(Ω) can be approximated with smooth functions [3,
Thm. 3.17]; we omit the technicalities here), we get that −〈∇u(x), ϕ(x)〉 = ‖∇u(x)‖2.
Therefore, the supremum over ϕ ∈ D(Ω,Rn) is equal to

TV(u) =

∫
Ω
‖∇u(x)‖2 dx.

This shows that TV just penalises the the L1 norm (of the pointwise 2-norm) of the gradient
for any u ∈W 1,1(Ω). However, we will see that the space of functions that have finite value
of TV is larger than W 1,1(Ω) and contains, for instance, discontinuous functions.

Proposition 4.3.3. TV is a proper and convex functional L1(Ω) → R̄. For any constant
function c : c(x) ≡ c ∈ R for all x and any u ∈ L1(Ω)

TV(c) = 0 and TV(u+ c) = TV(u).

Proof. Left as exercise.

Definition 4.3.4. The functions u ∈ L1(Ω) with a finite value of TV form a normed space
called the space of functions of bounded variation (the BV-space) defined as follows

BV(Ω) :=
{
u ∈ L1(Ω)

∣∣∣ ‖u‖BV := ‖u‖L1 + TV(u) <∞
}
.

It can be shown that BV is a Banach space [5].

Example 4.3.5 (TV of an indicator function). Suppose C ⊂ Ω ⊂ R2 is a bounded domain
with smooth boundary and u(·) = 1C(·) is its indicator function, i.e.

1C(u) =

{
1 u ∈ C
0 u ∈ X \ C

.

Then, using the divergence theorem, we get that for any test function ϕ ∈ D(Ω,Rn)∫
Ω
u(x) divϕ(x) dx =

∫
C

divϕ(x) dx =

∫
∂C
〈ϕ(x),n∂C(x)〉 dl,

where ∂C is the boundary of C and n∂C(x) is the unit normal at x. We, obviously, have
that for every x

〈ϕ(x),n(x)〉 =
1

2
(‖ϕ(x)‖2 + ‖n∂C(x)‖2 − ‖ϕ(x)− n∂C(x)‖2),

so we get that

TV(u) = sup
ϕ∈D(Ω,Rn)

∫
∂C

1

2
(‖ϕ(x)‖2 + ‖n∂C(x)‖2 − ‖ϕ(x)− n∂C(x)‖2) dl.

Since ∂C is smooth and ‖n∂C(x)‖ = 1 for every x, n∂C can be extended to feasible vector field
on Ω (i.e. one that is in D(Ω,Rn)) and the supremum is attained at ϕ = n∂C . Therefore,
we get that

TV(u) =

∫
∂C
‖n∂C(x)‖2 dl =

∫
∂C

1 · dl = Per(C),

where Per(C) is the perimeter of C.
Therefore, total variation of the characteristic function of a domain with smooth bound-

ary is equal to its perimeter. This can be extended to domains with Lipschitz boundary by
constructing a sequence of functions in D(Ω,Rn) that converge pointwise to n∂C .
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To apply Theorem 4.2.3, we need to study the properties of TV as a functional L1(Ω)→
R̄. First of all, we note that BV(Ω) is compactly embedded in L1(Ω). We start with the
following classical result.

Theorem 4.3.6 (Rellich-Kondrachov, [3, Thm. 6.3]). Let Ω ⊂ Rn be a Lipschitz domain
(i.e. non-empty, open, connected and bounded with Lipschitz boundary) and either

n > mp and p∗ := np/(n−mp)
or n 6 mp and p∗ :=∞ .

Then the embedding Wm,p(Ω) → Lq(Ω) is continuous if 1 6 q 6 p∗ and compact if in
addition q < p∗.

Since functions from BV(Ω) can be approximated by smooth functions [5, Thm. 3.9],
the Rellich-Kandrachov Theorem (for m = 1, p = 1) gives us compactness for BV(Ω).

Corollary 4.3.7 ([5, Corrollary 3.49]). For any bounded Lipschitz domain Ω ⊂ Rn the
embedding

BV(Ω)→ L1(Ω)

is compact.

Therefore, the level sets of J (u) = ‖u‖BV are strongly sequentially compact in L1(Ω).
This is one of the ingredients we need to apply Theorem 4.2.3. The other one is lower-
semicontinuity, which is guaranteed by the following theorem.

Theorem 4.3.8. Let Ω ⊂ Rn be open and bounded. Then the total variation is strongly
l.s.c. in L1(Ω).

Proof. Let {uj}j∈N ⊂ BV(Ω) be a sequence converging in L1(Ω) with uj → u in L1(Ω).
Then for any test function ϕ ∈ D(Ω,Rn) we have that∫

Ω
[u(x)− uj(x)] divϕ(x)dx 6

∫
Ω
|u(x)− uj(x)|dx︸ ︷︷ ︸
=‖u−uj‖L1→0

ess supx∈Ω |divϕ(x)|︸ ︷︷ ︸
<∞

→ 0

and therefore∫
Ω
u(x) divϕ(x)dx = lim

j→∞

∫
Ω
uj(x) divϕ(x)dx = lim inf

j→∞

∫
Ω
uj(x) divϕ(x)dx

6 lim inf
j→∞

sup
ϕ∈D(Ω,Rn)

∫
Ω
uj(x) divϕ(x)dx = lim inf

j→∞
TV(uj).

Taking the supremum over all test functions on the left-hand side (and noting that the
right-hand side already does not depend on ϕ), we get the assertion:

TV(u) = sup
ϕ∈D(Ω,Rn)

∫
Ω
u(x) divϕ(x)dx 6 lim inf

j→∞
TV(uj).

Note that the left and right hand sides may not be finite.
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Remark 4.3.9. Combining these results, we conclude that with a suitable parameter choice
rule the regulariser J (u) = TV(u) + ‖u‖1 ensures strong L1-convergence of the regularised
solutions. If the forward operator is such that boundedness of the fidelity term implies
boundedness of ‖u‖1, then the term ‖u‖1 can be dropped and J (u) = TV(u) can be used
instead, ensuring the same convergence properties. See Remark 4.3.13 for an example of a
situation when this is the case.

Proposition 4.3.10 ([5, Remark 3.50]). Let Ω ⊂ R2 be a bounded Lipschitz domain. Then
there exists a constant C > 0 such that for all u ∈ BV(Ω) the Poincaré–Wirtinger type
inequality is satisfied

‖u− uΩ‖L1 6 C TV(u),

where uΩ := 1
|Ω|
∫

Ω u(x)dx is the mean-value of u over Ω.

Corollary 4.3.11. It is often useful to consider a subspace BV0(Ω) ⊂ BV(Ω) of functions
with zero mean, i.e.

BV0(Ω) := {u ∈ BV(Ω):

∫
Ω
u(x)dx = 0}. (4.9)

Then for every function u ∈ BV0(Ω) we have that

‖u‖L1 6 C TV(u).

Remark 4.3.12. On two-dimensional domains Ω ⊂ R2 one can show similar inequalities
for the L2 norm.

Remark 4.3.13. Many realistic forward operators satisfy the condition A1 6= 0, where
1(x) ≡ 1 for all x. In this case, the boundedness of TV(u) together with the boundedness
of the fidelity term ‖Au− fδ‖2 imply the boundedness of the mean value uΩ ∈ R.

Indeed, suppose that there exists a sequence un is such that unΩ is unbounded. Then,
since A1 6= 0, the sequence AunΩ is also unbounded. Consider un0 := un− unΩ ∈ BV0(Ω). By
Proposition 4.3.3 we have that

TV(un0 ) = TV(un − unΩ) = TV(un)

and therefore bounded. We also have that

‖AunΩ‖ = ‖AunΩ +Aun0 − fδ − (Aun0 − fδ)‖ 6 ‖Aun − fδ‖+ ‖Aun0 − fδ‖
6 ‖Aun − fδ‖+ ‖A‖‖un0‖+ ‖fδ‖.

The first term on the right-hand side is bounded by assumption; the second one is bounded
due to Corollary 4.3.11; the third one is also obviously bounded. Therefore, ‖AunΩ‖ is
bounded, which is a contradiction.

Total Variation is widely used in imaging applications [28]. For instance, the so-called
Rudin–Osher–Fatemi (ROF) model for image denoising [25] consists in minimising the fol-
lowing functional

min
u∈L2(Ω)

‖u− fδ‖22 + αTV(u). (4.10)

In this case, the forward operator is the identity operator (and A1 6= 0 is satisfied trivially).
More generally, one considers the following optimisation problem

min
u∈L2(Ω)

‖Au− fδ‖22 + αTV(u), (4.11)

where A : L2(Ω) → L2(Ω) is injective. Injectiveness is equivalent to the condition that
kerA = {0} and guarantees that A1 6= 0.



Chapter 5

Convex Duality

In Chapter 4 we have established convergence of a regularised solution uδ to a J -minimising
solution u†J as δ → 0. However, we didn’t get any results on the speed of this convergence,
which is referred to as the convergence rate.

In modern regularisation methods, convergence rates are usually studied using Bregman
distances associated with the (convex) regularisation functional J . Recall that for a convex
functional J , u, v ∈ X such that J (v) < ∞ and q ∈ ∂J (v), the (generalised) Bregman
distance is given by the following expression (cf. Def. 4.1.23)

Dq
J (u, v) = J (u)− J (v)− 〈q, u− v〉 .

Also widely used is the symmetric Bregman distance (cf. Def. 4.1.25) given by the following
expression (here p ∈ ∂J (u))

Dsymm
J (u, v) = Dq

J (u, v) +Dp
J (v, u) = 〈p− q, u− v〉 .

Bregman distances appear to be a natural distance measure between a regularised solu-
tion uδ and a J -minimising solution u†J . For instance, for classical L2- regularisation with

J (u) = 1
2‖u‖2X , the subgradient at u†J is p

u†J
= u†J (since J is differentiable) and we get

the following expression

D
u†J
J (uδ, u

†
J ) =

1

2
‖uδ‖2X −

1

2
‖u†J ‖2X −

〈
u†J , uδ − u

†
J

〉
=

1

2
(‖uδ‖2X − 2

〈
u†J , uδ

〉
+ ‖u†J ‖2X ) =

1

2
‖uδ − u†J ‖2X ,

which happens to coincide with the symmetric Bregman distance. Therefore, in the classical
L2-case, the Bregman distance just measures the L2-distance between a regularised solution
and a J -minimising solution.

We are looking for a convergence rate of the following form

Dsymm
J (uδ, u

†
J ) 6 ψ(δ),

where ψ : R+ → R+ is a known function of δ such that ψ(δ)→ 0 as δ → 0. To obtain such

an estimate, we need to not only understand the convergence of uδ (to u†J ), but also that

of the subgradient pδ ∈ ∂J (uδ), which should ideally converge to some pJ ∈ ∂J (u†J ).

53
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5.1 Dual Problem

Recall that uδ solves the following problem

min
u∈X

1

2
‖Au− fδ‖2Y + αJ (u). (5.1)

with an appropriately chosen α = α(δ). In this chapter we will assume that X and Y are
Hilbert spaces and that the regulariser is proper, convex, l.s.c., absolute one-homogeneous
and satisfies conditions of Theorem 4.2.3.

We will see that all subgradients pδ ∈ ∂J (uδ) are closely related to solutions of the dual
problem of (5.1) in the sense of duality in convex optimisation [15].

The saddle point problem. Let us consider the function ϕ : Y → R, ϕ(x) := 1
2‖x−f‖2Y ,

where f ∈ Y is a parameter. The Fenchel conjugate of ϕ is given by

ϕ∗(ν) = sup
x∈Y
〈ν, x〉 − ϕ(x) = sup

x∈Y
〈ν, x〉 − 1

2
‖x− f‖2Y , ν ∈ Y.

The supremum is attained at x = ν + f and therefore

ϕ∗(ν) = 〈ν, ν + f〉 − 1

2
‖ν‖2Y = 〈ν, f〉+

1

2
‖ν‖2Y .

By Theorem 4.1.16 we have that ϕ is equal to its biconjugate, i.e.

ϕ(x) = sup
ν∈Y
〈ν, x〉 − ϕ∗(ν) = sup

ν∈Y
〈ν, x〉 − 〈ν, f〉 − 1

2
‖ν‖2Y = sup

ν∈Y
〈ν, x− f〉 − 1

2
‖ν‖2Y .

For x = Au, therefore, we get that

ϕ(Au) =
1

2
‖Au− f‖2Y = sup

ν∈Y
〈ν,Au− f〉 − 1

2
‖ν‖2Y .

The objective function attains its maximum at ν = Au−f , so we can replace the supremum
with a maximum. Now we can rewrite (5.1) as follows

min
u∈X

max
ν∈Y
〈ν,Au− f〉 − 1

2
‖ν‖2Y + αJ (u). (5.2)

Problem (5.2) is called the saddle-point problem. If it has a solution then we can easily
derive optimality conditions by differentiating the objective function in u and ν:

ν = Au− f, A∗
(−ν
α

)
∈ ∂J (u). (5.3)

The dual problem. If there exists a point x ∈ X s.t. ϕ(x) < +∞, J (x) < +∞ and
ϕ(x) is continuous at x, we can swap the minimum and the maximum in (5.2) [15, Ch.III
Thm 4.1 and Rem. 4.2]. These conditions are satisfied, e.g., at x = 0. Hence we get

min
u∈X

max
ν∈Y
〈ν,Au− f〉 − 1

2
‖ν‖2Y + αJ (u) = max

ν∈Y
min
u∈X
〈ν,Au− f〉 − 1

2
‖ν‖2Y + αJ (u)

= max
ν∈Y

{[
min
u∈X
〈ν,Au〉+ αJ (u)

]
− 〈ν, f〉 − 1

2
‖ν‖2Y

}
. (5.4)
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The minimum of the expression in the square brackets is given by

min
u∈X
〈ν,Au〉+ αJ (u) = min

u∈X
〈A∗ν, u〉+ αJ (u)

= −αmax
u∈X

〈
A∗
(−ν
α

)
, u

〉
− J (u) = −αJ ∗

(
A∗
(−ν
α

))
.

Since J is absolute one-homogeneous, its Fenchel conjugate is the characteristic function
of ∂J (0) (Prop. 4.1.29) and we get

min
u∈X
〈ν,Au〉+ αJ (u) = −αχ∂J (0)

(
A∗
(−ν
α

))
.

Substituting this into (5.4), we get

max
ν∈Y

{[
min
u∈X
〈ν,Au〉+ αJ (u)

]
− 〈ν, f〉 − 1

2
‖ν‖2Y

}
= max

ν∈Y : A∗(−να )∈∂J (0)
−〈ν, f〉 − 1

2
‖ν‖2Y .

Denoting µ := − ν
α ∈ Y, we rewrite this problem as follows

max
µ∈Y : A∗µ∈∂J (0)

α
(
〈µ, f〉 − α

2
‖µ‖2Y

)
. (5.5)

Problem (5.5) is called the dual problem. With this notation, optimality conditions (5.3)
take the following form

A∗µ ∈ ∂J (u), µ =
f −Au
α

. (5.6)

Weak and strong duality. It can be shown [15] that for any feasible solution u0 of the
primal problem (5.1) and for any feasible solution µ0 of the dual problem (5.5), the objective
value of the dual problem does not exceed that of the primal problem, i.e.

1

2
‖Au0 − f‖2Y + αJ (u0) > α 〈µ0, f〉 −

α2

2
‖µ0‖2Y . (5.7)

This also holds for the optimal solutions uδ and µδ in the case f = fδ. The difference

1

2
‖Auδ − fδ‖2Y + αJ (uδ)−

(
α 〈µδ, fδ〉 −

α2

2
‖µδ‖2Y

)
> 0 (5.8)

is referred to as the duality gap. The fact that it is always non-negative is referred to as
weak duality. If the duality gap is zero, it is said that strong duality holds.

Existence. While a solution of the primal problem (5.1) exists by Theorem 4.2.3, exis-
tence of a dual solution of (5.5) is not always guaranteed. Sufficient conditions are given
by

Theorem 5.1.1 ([15, Ch.III Thm 4.1 and Rem. 4.2]). Consider the following optimisation
problem

inf
u∈X

E(Au) + F (u), (P)

where E : Y → R̄ and F : X → R̄. Suppose that
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(i) the function E(Au) + F (u) : X → R̄ is proper, convex, l.s.c. and coercive;

(ii) ∃u0 ∈ X s.t. F (u0) < +∞, E(Au0) < +∞ and E(x) is continuous at x = Au0.

Then

(i) The dual problem of (P) has at least one solution η̂;

(ii) There is no duality gap between (P) and its dual, i.e. strong duality holds;

(iii) If (P) has an optimal solution û, then the following optimality conditions hold

A∗η̂ ∈ ∂F (û), −η̂ ∈ ∂E(Aû).

In our case, E(Au) = 1
2‖Au − f‖2Y and F (u) = αJ (u). Condition (i) is satisfied by

the assumptions of Theorem 4.2.3 (in particular, coercivity is implied by the compactness
of the sub-level sets). Condition (ii) is satisfied at u0 = 0. Therefore, for any δ > 0 there
exists a solution µδ of the dual problem (5.5) and by strong duality we have that

1

2
‖Auδ − fδ‖2Y + αJ (uδ) = α 〈µδ, fδ〉 −

α2

2
‖µδ‖2Y .

Optimality conditions (iii) in this case take the following form (cf. (5.6))

A∗µδ ∈ ∂J (uδ), µδ =
fδ −Auδ
α(δ)

. (5.9)

5.2 Source Condition

Formal limits of problems (5.1) and (5.5) at δ = 0 are

inf
u : Au=f

J (u) = inf
u∈X

χ{f}(Au) + J (u) (5.10)

and

sup
µ : A∗µ∈∂J (0)

〈µ, f〉 = sup
µ : A∗µ∈∂J (0)

〈
µ,Au†J

〉
= sup

µ : A∗µ∈∂J (0)

〈
A∗µ, u†J

〉
= sup

v∈R(A∗)∩∂J (0)

〈
v, u†J

〉
. (5.11)

Since the characteristic function χ{f}(·) is not continuous anywhere in its domain, The-
orem 5.1.1 does not apply and we cannot guarantee that a solution of the dual limit prob-
lem (5.11) exists. Indeed, since R(A∗) is not closed (strongly and hence weakly, since it is
convex [14, Thm. V.3.13]), a solution may not exist.

Therefore, the behaviour of µδ as δ → 0 is unclear. A natural question to ask is whether
µδ remains bounded as δ → 0. The following condition will play an important role in this.

Definition 5.2.1 (Source condition [11]). We say that a J -minimising solution u†J satisfies
the source condition if

∃µ† ∈ Y such that A∗µ† ∈ ∂J (u†J ), (5.12)

i.e. if R(A∗) ∩ ∂J (u†J ) 6= ∅.
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Theorem 5.2.2 (Necessary conditions, [21]). Suppose that conditions of Theorem 4.2.3 are
satisfied with τX and τY being weak topologies in X and Y, respectively. Suppose that µδ is
bounded uniformly in δ. Then there exists µ† ∈ Y such that A∗µ† ∈ ∂J (u†J ).

Proof. Consider an arbitrary sequence δn ↓ 0. Since ‖µδ‖Y 6 C for all δ, by weak compact-
ness of a ball in a Hilbert space we get that there exists a weakly convergent subsequence
(that we do not relabel), i.e.

µδn ⇀ µ0 ∈ Y.
By the weak-weak continuity of A∗ we get that

A∗µδn ⇀ A∗µ0.

Since ∂J (0) is weakly closed (Theorem 4.1.19) and A∗µδn ∈ ∂J (0) (see optimality condi-
tions (5.9), we get that

A∗µ0 ∈ ∂J (0).

Since J is absolute one-homogeneous, we get by Proposition 4.1.27 that

〈A∗µδn , uδn〉 = J (uδn).

We also note that

〈A∗µδn , uδn〉 =
〈
A∗µδn , u

†
J

〉
+
〈
A∗µδn , uδn − u†J

〉
=
〈
A∗µδn , u

†
J

〉
+ 〈µδn , Auδn − f〉 6

〈
A∗µδn , u

†
J

〉
+ ‖µδn‖Y‖Auδn − f‖Y .

Since ‖µδn‖Y is bounded and ‖Auδn − f‖Y → 0, we get that

〈A∗µδn , uδn〉 →
〈
A∗µ0, u

†
J

〉
.

On the other hand, we know that J (uδn)→ J (u†J ). Therefore, we get that

J (u†J ) =
〈
A∗µ0, u

†
J

〉
.

Since A∗µ0 ∈ ∂J (0) and J (u†J ) =
〈
A∗µ0, u

†
J

〉
, we conclude, using Proposition 4.1.30, that

A∗µ0 ∈ ∂J (u†J ) and the assertion of the Theorem holds with µ† = µ0.

So, the source condition is necessary for the boundedness of µδ. It turns out to be also
sufficient.

Theorem 5.2.3 (Sufficient conditions, [21]). Suppose that the source condition (5.12) is

satisfied at a J -minimising solution u†J and suppose that α(δ) is chosen such that δ
α(δ) → 0

as δ → 0. Then µδ is bounded uniformly in δ. Moreover, µδ → µ† strongly in Y as δ → 0,
where µ† is the solution of the dual limit problem (5.11) with minimal norm.

Proof. The source condition (5.12) guarantees that ∃µ0 ∈ Y s.t. A∗µ0 ∈ ∂J (u†J ), i.e. thatA
∗µ0 ∈ ∂J (0),

J (u†J ) =
〈
A∗µ0, u

†
J

〉
=
〈
µ0, Au

†
J

〉
= 〈µ0, f〉 .



58 CHAPTER 5. CONVEX DUALITY

From weak duality between the limit primal (5.10) and dual (5.11) problems we conclude
that for any feasible solution µ of the dual limit problem (5.11)

〈µ, f〉 6 J (u†J ),

Therefore, µ0 solves the dual limit problem (5.11) and

〈µ0, f〉 > 〈µδ, f〉 ∀δ, (5.13)

since µδ is feasible in (5.11).

Analogously, since µδ solves the dual problem (5.5) and µ0 is feasible in (5.5), we get
that for all δ

〈µδ, fδ〉 −
α

2
‖µδ‖2Y > 〈µ0, fδ〉 −

α

2
‖µ0‖2Y . (5.14)

Summing up these two estimates and rearranging terms, we get that

α

2
‖µδ‖2Y −

α

2
‖µ0‖2Y 6 〈µ0 − µδ, f − fδ〉 6 δ‖µ0 − µδ‖.

Noting that
α

2
‖µδ‖2Y −

α

2
‖µ0‖2Y =

α

2
(‖µδ‖Y − ‖µ0‖Y)(‖µδ‖Y + ‖µ0‖Y),

we get that

α

2
(‖µδ‖Y − ‖µ0‖Y)(‖µ0‖Y + ‖µδ‖Y) 6 δ‖µ0 − µδ‖Y 6 δ(‖µ0‖Y + ‖µδ‖Y)

and

‖µδ‖Y 6 ‖µ0‖Y +
2δ

α
6 C, (5.15)

since δ
α is bounded.

By weak compactness of a ball in a Hilbert space, we conclude that for any sequence
δn ↓ 0 there exists a subsequence (which we do not relabel) such that

µδn ⇀ µ∗.

By weak-weak continuity of A∗ and weak closedness of ∂J (0) (Theorem 4.1.19) we get that

A∗µ∗ ∈ ∂J (0)

and µ∗ is feasible in (5.11).

From (5.14) we obtain that

〈µ0, fδ〉 6 〈µδ, fδ〉+
α

2
(‖µ0‖2Y − ‖µδn‖2Y)

6 〈µδ, f〉+ 〈µδ, fδ − f〉+
α

2
(‖µ0‖2Y − ‖µδn‖2Y)

6 〈µ0, f〉+ δ‖µδ‖+
α

2
(‖µ0‖2Y − ‖µδn‖2Y).

Taking the limit δ → 0, we get that

〈µ0, f〉 6 〈µ∗, f〉
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Taking the limit in (5.13) also yields

〈µ0, f〉 > 〈µ∗, f〉 ,

hence 〈µ0, f〉 = 〈µ∗, f〉 and µ∗ solves the dual limit problem (5.11).
Using weak lower semicontinuity of the norm in a Hilbert space, from (5.15) we get that

‖µ∗‖Y 6 lim inf
n→∞

‖µδn‖Y 6 lim sup
n→∞

‖µδn‖Y 6 ‖µ0‖Y + lim sup
n→∞

δn
α(δn)

= ‖µ0‖Y (5.16)

for any µ0 solving (5.11). Therefore, µ∗ is the minimum norm solution of (5.11). Since (5.16)
holds for any solution µ0 of the dual limit problem (5.15), including µ0 = µ∗, we than also
get that

∃ lim
n→∞

‖µδn‖Y = ‖µ∗‖Y
and the convergence µδn → µ∗ is actually strong by the Radon-Riesz property of the norm
in a Hilbert space (see Remark 4.2.6). Hence, we get the assertion of the Theorem with
µ† = µ∗.

Example 5.2.4 (Total Variation). Let X = Y = L2(Ω) with Ω ⊂ R2 bounded and C ⊂ Ω
a domain with a C∞ boundary. Let J (·) = TV(·) and A : L2(Ω) → L2(Ω) be the identity
operator (i.e., we consider the problem of denoising). From Example 4.3.5 we know that

TV(1C) = Per(C),

where 1C is the indicator function of the set C. Denoting by n∂C the unit normal, we obtain

Per(C) =

∫
∂C

1 =

∫
∂C
〈n∂C ,n∂C〉 .

Since n∂C ∈ C∞(∂C,R2) and ‖n∂C(x)‖2 = 1 for any x, we can extend n∂C to a C∞0 (Ω,R2)
vector field ψ with supx∈Ω ‖ψ(x)‖2 6 1. Therefore, using the divergence theorem, we obtain
that ∫

∂C
〈n∂C ,n∂C〉 =

∫
∂C
〈ψ,n∂C〉 =

∫
C

divψ = 〈divψ,1C〉 .

Combining all these equalities, we get that

TV(1C) = 〈divψ,1C〉 .

Note that, since ψ ∈ C∞0 (Ω,R2), divψ ∈ C∞0 (Ω) ⊂ L2(Ω).
Taking an arbitrary u ∈ X , we note that

TV(u)− 〈divψ, u〉 = sup
ϕ ∈ C∞0 (Ω,R2)

supx∈Ω ‖ϕ(x)‖2 6 1

〈u,divϕ〉 − 〈u,divψ〉 > 0,

since ϕ = ψ is feasible. Therefore, divψ ∈ ∂ TV(0) and, since TV(1C) = 〈divψ,1C〉, we
also get that

divψ ∈ ∂ TV(1C).

Since A is the identity operator, R(A∗) = X and the source condition is satisfied at u = 1C
with µ = divψ.
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1

1

ε

ε0

C

Cε

Figure 5.1: Example of a set whose indicator function does not satisfy the source condition.

Example 5.2.5 (Total Variation). Let X = Y = L2(Ω) with Ω ⊂ R2 bounded and C ⊂ Ω
be a domain with a nonsmooth boundary, e.g., a square C = [0, 1]2. Let J (·) = TV(·). We
will show in this example that in this case ∂ TV(1C) = ∅.

Assume that there exists p0 ∈ ∂ TV(1C) ⊂ L2(Ω). Then by the results of Example 4.3.5
we have that

〈p0,1C〉 = TV(1C) = Per(C) = 4.

Since p0 is a subgradient, we get that for any u ∈ L2(Ω)

TV(u)− 〈p0, u〉 > 0.

Let us cut a triangle Cε of size ε from a corner of C as shown in Figure 5.1. Then for
u = 1C\Cε we get

TV(1C\Cε) >
〈
p0,1C\Cε

〉
= 〈p0,1C〉 − 〈p0,1Cε〉

and therefore

〈p0,1Cε〉 > TV(1C)−TV(1C\Cε) = Per(C)−Per(C \Cε) = 4−(4−2ε+
√

2ε) = (2−
√

2)ε > 0.

By Hölder’s inequality we get that

〈p0,1Cε〉 =

∫
Cε
p0 · 1 6

(∫
Cε
|p0|2

)1/2(∫
Cε

1

)1/2

=
1√
2
ε

(∫
Cε
|p0|2

)1/2

.

Combining the last two inequalities, we get

(2−
√

2)ε 6 〈p0,1Cε〉 6
1√
2
ε

(∫
Cε
|p0|2

)1/2

and therefore ∫
Cε
|p0|2 > 2(2−

√
2)2 > 0

for all ε > 0. However, since p0 ∈ L2(Ω) by assumption, we must have∫
Cε
|p0|2 → 0 as ε→ 0.

This contradiction proves that such p0 does not exist and ∂ TV(1C) = ∅.
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5.3 Convergence Rates

Now we are ready to answer the question that we asked in the beginning of this Chapter -
how fast do the regularised solutions converge to a J -minimising solution? The answer is
given by the following Theorem.

Theorem 5.3.1. Let the source condition (5.12) be satisfied at a J -minimising solution

u†J and let uδ be a regularised solution solving (5.1). Then the following estimate holds

Dsymm
J (uδ, u

†
J ) 6

1

2α

(
δ + α‖µ†‖Y

)2
.

Proof. Consider the function

ϕ(g) =
1

2
‖g − fδ‖2Y .

It is convex and differentiable and its subdifferential is given by

∂ϕ(g) = {g − fδ}.
Hence the Bregman distance w.r.t. ϕ between g and f corresponding to the subgradient
g − fδ ∈ ∂ϕ(g) is given by

Dg−fδ
ϕ (f, g) =

1

2
‖f − fδ‖2Y −

1

2
‖g − fδ‖2Y − 〈g − fδ, f − g〉 > 0.

Hence, taking g = Auδ, we get that

〈Auδ − fδ, f −Auδ〉 6
1

2
‖f − fδ‖2Y −

1

2
‖Auδ − fδ‖2Y 6

δ2

2
− 1

2
‖Auδ − fδ‖2Y .

Consider the symmetric Bregman distance Dsymm
J (uδ, u

†
J )

Dsymm
J (uδ, u

†
J ) =

〈
A∗µ† −A∗µδ, u†J − uδ

〉
=
〈
µ† − µδ, f −Auδ

〉
=
〈
µ†, f −Auδ

〉
+ 〈−µδ, f −Auδ〉 .

Multiplying this by α and noting that αµδ = fδ−Auδ from the optimality conditions (5.9),
we get

αDsymm
J (uδ, u

†
J ) = α

〈
µ†, f −Auδ

〉
+ 〈Auδ − fδ, f −Auδ〉

6 α
〈
µ†, fδ −Auδ

〉
+ α

〈
µ†, f − fδ

〉
+

1

2
δ2 − 1

2
‖Auδ − fδ‖2Y

6 α‖µ†‖Y (‖fδ −Auδ‖Y + ‖f − fδ‖Y) +
1

2
δ2 − 1

2
‖Auδ − fδ‖2Y .

Noting that(
1

2
‖Auδ − fδ‖2Y − α‖µ†‖Y‖Auδ − fδ‖Y +

1

2
α2‖µ†‖Y

)2

=
1

2

(
‖Auδ − fδ‖Y − α‖µ†‖Y

)2
,

we get that

αDsymm
J (uδ, u

†
J ) 6 αδ‖µ†‖Y −

1

2

(
‖Auδ − fδ‖Y − α‖µ†‖Y

)2
+

1

2
α2‖µ†‖Y +

1

2
δ2

6
1

2
δ2 + αδ‖µ†‖Y +

1

2
α2‖µ†‖Y =

1

2

(
δ + α‖µ†‖Y

)2
,

which yields the desired estimate upon dividing by α.
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Chapter 6

Bayesian approach to discrete
inverse problems

The idea of Bayesian inversion is to rephrase the deterministic inverse problem studied
above as a question of statistical inference. We consider model

F = AU +N, (6.1)

where the measurement, unknown and noise are now modelled as random variables. Let
Ω = Ω1 × Ω2 be our probability space. Then U : Ω1 → Rd, N : Ω2 → Rk and F : Ω→ Rk.
We denote the realisations of the random variables by lower case letter, e.g. for a fixed ω
we write U(ω) = u.

This approach allows us to model the noise through its statistical properties. We can
also encode our a priori knowledge of the unknown in form of a probability distribution that
assigns higher probability to those values of U we expect to see. Note that the above dis-
cussed regularisation methods produce a single estimate of the unknown while the solution
to (6.1) is so-called posterior distribution, which is the conditional probability distribution
of U given a measurement f . This distribution can then be used to obtain estimates that
are most likely in some sense. The great advance of the method is, however, that it auto-
matically delivers a quantification of uncertainty, obtained by assessing the spread of the
posterior distribution.

We recall the Bayes’ formula that states

P(u ∈ A | f ∈ B) =
P(f ∈ B |u ∈ A)P(u ∈ A)

P(f ∈ B)
,

where A and B are some measurable sets. We would like to solve an inverse problem
”approximate U when a measurement f is given”, that is, we would like to condition u ∈ A
with a single realisation of F . To do this we need to we start with some modern probability
theory.

6.1 A brief introduction to probability theory

A probability space is a triplet (Ω,F ,P), where Ω is the sample space, F the σ-algebra
of events and P the probability measure. A measure is called σ-finite if Ω is a countable
union of measurable sets with finite measure. Lebesgue measure on Rd is an example of a

63
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σ-finite measure. One intuitive way of thinking σ-algebras in probability theory is that they
describe information. The σ-algebra contains the subsets representing the events for which
we can decide, after the observation, whether they happened or not. Hence F represents all
the information we can get from an experiment in (Ω,F ,P) while a sub-σ-algebra G ⊂ F
represents partial information.

Let (X,B(X)) be a measurable space, with B(X) denoting the Borel σ-algebra generated
by the open sets. We call a measurable mapping U : Ω→ X a random variable. The random
variable U induces the following probability measure on X

µ(A) = P(U−1(A)) = P(ω ∈ Ω : U(ω) ∈ A), A ∈ B(X).

The measure µ is called the probability distribution of U and we will denote U ∼ µ.

Let µ and ν be two measures on the same measure space. Then µ is absolutely continuous
with respect to (dominated by) ν if ν(A) = 0 implies that µ(A) = 0. We denote this by
µ � ν. Measures µ and ν are said to be equivalent if µ � ν and ν � µ. If µ and ν are
supported on disjoint sets they are called mutually singular.

Theorem 6.1.1 (Radon-Nikodym Theorem). Let µ and ν be two measures on the same
measure space (Ω,F). If µ� ν and ν is σ-finite then there exists a unique function g ∈ L1

ν

such that for any measurable set A ∈ F ,

µ(A) =

∫
A
g dν.

The unique g ∈ L1
ν in the above theorem is called the Radon-Nikodym derivative of

µ with respect to ν and is denoted by dµ
dν . The following example shows how Radon-

Nikodym Theorem can be used to define probability density for a measure on a finite space
(Rd,B(Rd)).

Example 6.1.2. Let µ be a probability measure on (Rd,B(Rd)) and µ � νL, where νL is
the standard Lebesgue measure on Rd. Since νL is σ-finite we can use Theorem 6.1.1 and
conclude that there exists such g ∈ L1(Rd) that, for any A ∈ B(Rd),

µ(A) =

∫
A
g(t)dt.

The function g is called the probability density of U ∼ µ.

The σ-algebras we use are often generated by random variables. If U : Ω → X then
σ(U) denotes the smallest σ-algebra containing preimages U−1(A) of measurable sets A ∈
B(X). Observing the value of U corresponds of knowing, with every A ∈ B(X), whether
U(ω) = u ∈ A. Note that σ(U) ⊂ F where, according to the information interpretation, F
represents ”full information” (all events on our probability space).

Definition 6.1.3. Let G ⊂ F be a sub-σ-algebra. We call a G-measurable function V : Ω→
X a conditional expectation of U : Ω→ X with respect to G if∫

G
UdP =

∫
G
V dP

for all G ∈ G and write E(U | G) = V .
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Note that the measurability with respect to G is a stronger assumption than measura-
bility with respect to F since there are fewer choices for the preimages of V . Even though
the definition of E(U | G) resembles that of E(U |G) for an event G these are very different
objects. The first is a G-measurable function Ω→ X while the second is an element in X.

We can also consider conditional expectation of the form E(g(U) | G) which leads us to
conditional probability.

Definition 6.1.4. Let G be a sub-σ-algebra of F . The conditional probability for A ∈ B(X),
given G is defined by

P(A | G) = E(1A | G).

It is tempting to try to interpret the map A→ P(A | G)(ω) as a probability measure for
a fixed ω ∈ Ω. However P(A | G) is defined only up to P almost everywhere.

Definition 6.1.5. A family of probability distributions (µ(·, ω))ω∈Ω on (X,B(X)) is called
a regular conditional distribution of U , given G ⊂ F , if

µ(A, ·) = E(1A(U) | G) a.s

for every A ∈ B(X).

Theorem 6.1.6. Let U : Ω → X be a random variable and G ∈ F a sub-σ-algebra. Then
there exists a regular conditional distribution (µ(·, ω))ω∈Ω of U given G.

Let σ(F ) ⊂ F be the σ-algebra generated by a random measurement F . We can then
use the regular conditional probability measure

πpost(A,F (ω)) = E(1A(U) |σ(F ))(ω)

as a posterior measure and identify this with πpost(A, f) = πprior(A | f).

For further information see e.g. [23].

6.2 Bayes’ formula

We can now return to the problem of ”approximate U given a measurement f” using a
posterior distribution that is a regular conditional distribution. We assume that U follows
a prior Π with Lebesgue density π(u). The noise N is assumed to be independent of U and
distributed according to P0 with Lebesgue density ρ(n). Then F |u can be found by simply
shifting P0 by Au to measure Pu, which has Lebesgue density ρu(f) = ρ(f −Au). It follows
that (U,F ) ∈ Rd×Rk is a random variable with Lebesgue density ν(u, f) = ρ(f −Au)π(u).

Theorem 6.2.1 (Bayes’ Theorem). Assume that

Z(f) =

∫
Rd
ρ(f −Au)π(u)du > 0.

Then U | f is a random variable with Lebesgue density πf (u) given by

πf (u) = π(u | f) =
1

Z(f)
ρ(f −Au)π(u).
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Let us take a closer look to what the above theorem means in our inverse problems
settings.

i) π(u) is called prior density. The prior should be independent of the measurement and
assign higher probability to those values of u we expect to see.

ii) ρ(f −Au) is the likelihood which measures the data misfit.

iii) πf (u) is called posterior density and it gives a solution to the inverse problem (6.1)
by updating the prior with a given measurement.

iv) Z(f) is the probability of the measurement and plays the role of a normalising con-
stant.

v) We define

Φ(u; f) = − log ρ(f −Au)

and call Φ potential.

vi) Let Πf and Π be measures on Rd with densities πf and π respectively. Then Theorem
6.2.1 can be rewritten as

dΠf

dΠ
(u) =

1

Z(f)
exp(−Φ(u; f)),

Z(f) =

∫
Rd

exp(−Φ(u; f))dΠ(u).

Note that this means the posterior is absolutely continuous with respect to the prior
and the Radon-Nikodym derivative is proportional to the likelihood.

When stated as in vi) the formula has a natural generalisation to infinite dimensions
where there are no densities ρ and π with respect to Lebesgue measure (since there is no
analogue of Lebesgue measure on infinite dimensional spaces) but where Πf has a Radon-
Nikodym derivative with respect to Π.

Remark 6.2.2. In Example 6.1.2 we defined density g of a measure µ in Rd, which is
absolutely continuous with respect to Lebesgue measure νL. Strictly speaking g(x) =
gL(x) = dµ

dνL
(x) is a probability density function with respect to Lebesgue measure.

It is also possible to find the density of µ with respect to a Gaussian measure. Let
µ0 ∼ N (0, I) denote the standard Gaussian measure in Rd. Then

µ0(dx) =
1

(2π)d/2
exp

(
− 1

2
|x|2
)
dx.

Thus the density of µ with respect to µ0 is

gG(x) = (2π)d/2 exp

(
1

2
|x|2
)
gL(x).

We then have identities

µ(A) =

∫
A
gG(x)µ0(dx) and

dµ

dµ0
(x) = gG(x). (6.2)
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Note that unlike Lebesgue measure infinite-dimensional Gaussian measure is well-defined
(we return to this later). Many measures have a Radon–Nikodym derivative with respect
to an infinite-dimensional Gaussian measure and hence formulation (6.2) can be generalised
to infinite-dimensional settings while the Lebesgue density can not.

Example 6.2.3. We start by studying the case U ∈ R and F ∈ Rk, k > 1. The measure-
ment is defined by

F = AU +N,

where A ∈ Rk \ {0} and N ∼ N (0, δ2I). We model the unknown U by a Gaussian measure
N (0, 1). Then

πf (u) ∝ exp

(
− 1

2δ2
‖f −Au‖2 − 1

2
|u|2
)
.

The notation h ∝ g means that functions h and g coincide up to a constant, i.e., there is
some c > 0 such that h = cg. The posterior is Gaussian and its mean and covariance, which
can be found by completing the square, are given by

θδ =
〈A, f〉

δ2 + ‖A‖2 and σ2
δ =

δ2

δ2 + ‖A‖2 .

When the noise tends to zero we see that

θ = lim
δ→0

θδ =
〈A, f0〉
‖A‖2 and σ2 = lim

δ2→0
σ2
δ = 0.

The point θ is the least-square solution for the linear equation f0 = Au. We see that the
prior plays no role on the limit of zero observational noise.

Next we study the case U ∈ Rd, d > 2, and F ∈ R. The measurement is given by

F = 〈A,U〉+N,

with some A ∈ Rd \ {0}. We assume that N ∼ N (0, δ2) and U ∼ N (0,Σ0). Then

πf (u) ∝ exp

(
− 1

2δ2
|f − 〈A, u〉|2 − 1

2
〈u,Σ−1

0 u〉
)
.

We known that, as an exponential of a quadratic form, the posterior is a Gaussian measure
with mean and covariance

θδ =
fΣ0A

δ2 + 〈A,Σ0A〉
and Σδ = Σ0 −

(Σ0A)(Σ0A)∗

δ2 + 〈A,Σ0A〉
.

When the noise tends to zero we get

θ = lim
δ→0

θδ =
f0Σ0A

〈A,Σ0A〉
and Σ = lim

δ→0
Σδ = Σ0 −

(Σ0A)(Σ0A)∗

〈A,Σ0A〉
.

We note that 〈θ,A〉 = f0 and ΣA = 0. That is, when the observational noise decreases
knowledge of u in the direction of A becomes certain. However, the uncertainty remains
in directions not aligned with A. The magnitude of this uncertainty is determined by
interaction between the properties of the prior and forward operator A. We see that in the
underdetermined case the prior plays an important role even when the observational noise
disappears.
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Definition 6.2.4. Let µn, n ∈ N, and µ be two probability measures on (X,B(X)). We say
that µn converges weakly to µ if, for all bounded and continuous functions g, it holds that

lim
n→∞

∫
X
g(x)dµn(x) =

∫
X
g(x)dµ(x).

If this is the case, we write µn ⇀ µ.

Lemma 6.2.5. Let µn = N (θn,Σn) and µ = N (θ,Σ) on Rd. If θn → θ and Σn → Σ, as
n→∞, then µn ⇀ µ.

Example 6.2.6. Let us return to the deblurring Example 1.2.1. In real life we only observe
the signal f at finite number of observation points on a finite interval

fi = f(ti) =

∫ 1

0
a(ti − s)u(s)ds+ n(ti), 1 6 i 6 k,

where we assume a to be of the form

a(t− s) =
1√

2πσ2
exp

(
− 1

2σ2
(t− s)2

)
.

We will also discretise the unknown u on the same mesh and approximate the integral as

∫ 1

0
a(ti − s)u(s)ds ≈

k∑
j=1

1

k
a(ti − sj)u(sj) =

k∑
j=1

aijuj ,

where we have denoted sj = j−1
k−1 , uj = u(sj) and aij = 1

ka(ti − sj).
We have now discrete model f = Au + n, where f, u, n ∈ Rk. To employ the Bayesian

approach we will consider the stochastic model

F = AU +N,

where F,U and N are treated as random variables. We assume that N is Gaussian noise
with variance δ2I,

N ∼ N (0, δ2I), ρ(n) ∝ exp
(
− 1

2δ2
‖n‖2

)
.

Then the likelihood density is given as

ρu(f) = ρ(f −Au) ∝ exp
(
− 1

2δ2
‖f −Au‖2

)
.

Next we have to choose a prior for the unknown. Assume that we know that u(0) =
u(1) = 0 and u is quite smooth, that is, the value of u(t) in a point is more or less the same
as its neighbour. We will then model the unknown as

uj =
1

2
(uj−1 + uj+1) +Wj
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where the innovation term Wj follows Gaussian distribution N (0, γ2). The variance γ2

determines how much the reconstructed function u departs from the smoothness model
uj = 1

2(uj−1 + uj+1). We can then write in matrix form

Lu = W, where L =
1

2



2 −1
−1 2 −1

−1 2 −1
. . .

. . .
. . .

−1 2 −1
−1 2


.

Therefore the prior can be written as

π(u) ∝ exp
(
− 1

2γ2
‖Lu‖2

)
.

Using the Bayes’ formula we get the posterior distribution

πf (u) ∝ exp
(
− 1

2δ2
‖f −Au‖2 − 1

2γ2
‖Lu‖2

)
.

In the next Section we will see how to extract useful information from the posterior distri-
bution.

6.3 Estimators

The dimension of the inverse problem can be large and consequently the posterior distri-
bution lives in a high dimensional space which makes its visualisation difficult. However,
we can calculate different point estimators and spread or region estimators. The point esti-
mators approximate the most probable value of the unknown given the data and the prior.
The spread estimators give a region that contain the unknown with some high probability.

One of the most used statistical estimators is the maximum a posterior estimate (MAP),
which is the mode of the posterior distribution. That is, given the posterior density πf (u)
the MAP estimate uMAP satisfies

uMAP = arg max
u∈Rd

πf (u),

if such maximiser exists. Note that MAP estimator may not be unique.
Another widely used point estimate is the conditional mean (CM) of the unknown U

given the data f , which is defined by

uCM = E(U | f) =

∫
Rd
uπ(u | f)du,

provided that the integral converges. The main problem with CM estimation is that solving
the integral in high-dimensional space is often very difficult.

As an example of spread estimate we can consider Bayesian credible sets. A level 1− α
credible set Cα, with some small α ∈ (0, 1), is defined as

Π(Cα | f) =

∫
Cα
π(u | f)du = 1− α.
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Hence a credible set Cα is a region that contains a large fraction of the posterior mass.

Another way of quantifying uncertainty is to consider problem F † = Au†+N , where u†

is though to be a deterministic ’true’ unknown. We would then like to find random sets Cα
that frequently contain the ’true’ unknown u†, that is, P(u† ∈ Cα) = 1 − α. The set Cα is
called a frequentist confidence region of level 1− α.

Figure 6.1: We can not say that one point estimator is better than the other in all applica-
tions.

Example 6.3.1. Let us return to Example 6.2.6 where we got the posterior distribution

πf (u) ∝ exp
(
− 1

2δ2
‖f −Au‖2 − 1

2γ2
‖Lu‖2

)
.

Since the posterior distribution is also Gaussian we know that the MAP and CM estimators
coincides and we have an estimator

uδMAP = arg max
u∈Rk

π(u | f) = arg min
u∈Rk

{ 1

2δ2
‖f −Au‖2 +

1

2γ2
‖Lu‖2

}
.

Notice that uMAP is of the same form as a Tikhonov estimator.

Completing the square we can write the posterior in form

πf (u) ∝ exp
(
− 1

2

∥∥u− 1

δ2
Γ−1A>f

∥∥2

Γ

)
,

where we have used the weighted norm ‖ · ‖Γ = ‖Γ 1
2 · ‖ with Γ = 1

δ2A
>A+ 1

γ2L
>L. Hence

we see that the MAP estimator is given by

uMAP =
1

δ2
Γ−1A>f =

(
A>A+

δ2

γ2
L>L

)−1
A>f

and the posterior covariance is Σ = Γ−1.
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6.4 Prior models

Constructing a good prior density is one of the most challenging parts of solving a Bayesian
inverse problem. The main problem is transforming our qualitative information into a
quantitative form that can be coded as a prior density. The prior probability distribution
should be concentrated on those values of U we expect to see and assigns a clearly higher
probability to them than to the unexpected ones.

6.4.1 Gaussian prior

Gaussian probability densities are the most used priors in statistical inverse problems. They
are easy to construct and form a versatile class of densities. They also often lead to explicit
estimators. Due to the central limit theorem the Gaussian densities are often good approx-
imation to inherently non-Gaussian distributions when the observation is based on a large
number of mutually independent random events. This is also the reason why the noise is
often assumed to be Gaussian.

Definition 6.4.1. Let θ ∈ Rd and Σ ∈ Rd×d be a symmetric positive definite matrix. A
Gaussian d-variate random variable U with mean θ and covariance Σ is a random variable
with the probability density

π(u) =
1

(2π|Σ|)d/2 exp
(
− 1

2
(u− θ)>Σ−1(u− θ)

)
,

where |Σ| = det(Σ). We then denote U ∼ N (θ,Σ).

The Gaussian distribution is completely characterised by its mean and covariance. No-
tice that the expression (u − θ)>Σ−1(u − θ) can also be written in form ‖Σ−1/2(u − θ)‖22,
since due to our assumptions on Σ the inverse square root Σ−1/2 is well-defined.

If we consider linear inverse problems and assume Gaussian prior and Gaussian noise
model the posteriori distribution is of the form c · exp(−G(u)), where G can be rewritten
as a sum of a quadratic form and constant term in order to show that the posterior is
Gaussian. This method is called completing the square. In order to analyse the Gaussian
posterior, we need some machinery from linear algebra.

Definition 6.4.2. Let

Σ =

[
Σ11 Σ12

Σ21 Σ22

]
∈ Rd×d

be a positive definite symmetric matrix, where Σ11 ∈ Rn×n, Σ22 ∈ R(d−n)×(d−n), n < d and
Σ21 = Σ>12. We define the Schur complements Σ̃jj of Σjj, j = 1, 2, as

Σ̃11 = Σ22 − Σ21Σ−1
11 Σ12 and Σ̃22 = Σ11 − Σ12Σ−1

22 Σ21.

The positive definiteness of Σ implies that Σjj , j = 1, 2, are also positive definite and
hence the Schur complements are well defined. The following matrix inversion lemma is
useful when calculating the conditional covariance.

Lemma 6.4.3. Let Σ be a matrix satisfying the assumptions of Definition 6.4.2. Then the
Schur complements Σ̃jj are invertible matrices and

Σ−1 =

[
Σ̃−1

22 −Σ̃−1
22 Σ12Σ−1

22

−Σ̃−1
11 Σ21Σ−1

11 Σ̃−1
11

]
.
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Let U ∼ N (θu,Σu) and N ∼ N (0,Σn) with U and N independent. The distribution of
F = AU +N is Gaussian with θf = E(f) = Aθu and

Σf = E
(
(F − θf )(F − θf )>

)
= AΣuA

> + Σn.

We can also calculate

E
(
(U − θu)(F − θf )>

)
= ΣuA

>

The joint distribution of U and F then has a covariance

Cov

[
U
F

]
=

[
Σu ΣuA

>

AΣu AΣuA
> + Σn

]
Hence the joint probability density of U and F is given by

ν(u, f) ∝ exp

(
− 1

2

[
u− θu
f − θf

]> [
Σu ΣuA

>

AΣu AΣuA
> + Σn

]−1 [
u− θu
f − θf

])
.

Theorem 6.4.4. Assume that U : Ω → Rd and N : Ω → Rk are mutually independent
Gaussian random variables

U ∼ N (θu,Σu), N ∼ N (0,Σn),

where Σu ∈ Rd×d and Σn ∈ Rk×k are positive definite. The noisy measurement is given by
F = AU + N , where A ∈ Rk×d is a known matrix. Then the posterior probability density
of U given the measurement f is

π(u | f) ∝ exp
(
− 1

2
(u− u)>Σ−1(u− u)

)
,

where

u = θu + ΣuA
>(AΣuA

> + Σn)−1(f −Aθu)

and

Σ = Σu − ΣuA
>(AΣuA

> + Σn)−1AΣu.

Proof. By shifting the coordinate origin to [θu, θf ] we may assume that θu = θf = 0. By
Bayes’ formula we have π(u | f) ∝ ν(u, f) and hence we will consider the joint density as
a function of U . We denote the components of Cov([U F ]>) by Σij , i, j = 1, 2. Then, by

Lemma 6.4.3 and the fact that Σ−1
22 Σ21Σ̃−1

22 = Σ̃−1
11 Σ21Σ−1

11 (the covariance is symmetric),
we have

ν(u, f) ∝ exp
(
− 1

2
(u>Σ̃−1

22 u− 2u>Σ̃−1
22 Σ12Σ−1

22 f + f>Σ̃−1
11 f)

)
= exp

(
− 1

2
(u− Σ12Σ−1

22 f)>Σ̃−1
22 (u− Σ12Σ−1

22 f) + c
)
,

where

c = f>(Σ̃−1
11 − Σ−1

22 Σ21Σ̃−1
22 Σ12Σ−1

22 )f

is a constant independent of u and can hence be factored out of the density.



6.4. PRIOR MODELS 73

Note that the posterior covariance is independent of the prior mean θ (and mean of the
noise even if that would be non-zero). We have a more compact expression for the posterior
mean and variance

Lemma 6.4.5. Assume that F,U,N are as in Theorem 6.4.4. We then have

πf (u) ∝ exp
(
− 1

2
(u− u)>Σ−1(u− u)

)
,

where

Σ = (A>Σ−1
n A+ Σ−1

u )−1

and

u = Σ(A>Σ−1
n f + Σ−1

u θu).

Proof left as an exercise.
Consider next a problem where the unknown is a two-dimensional pixel image. Let

u ∈ Rd be the pixel image (which we have arranged as a vector), where a component uj
represents the intensity of the jth pixel. Since we consider images it is natural to add a
positivity constraint to our prior. Gaussian white noise density with positivity constraint
is

π(u) ∝ µ+(u) exp

(
− 1

2α2
‖u‖22

)
where µ+(u) = 1 if uj > 0 for all j, and µ+(u) = 0 otherwise. We assume that each
component is independent of the others and hence the random draws can be performed
componentwise. The one-dimensional cumulative distribution function can be defined as

Φ(t) =
1

α

√
2

π

∫ t

0
exp

(
− 1

2α2
s2

)
ds = erf

(
t

α
√

2

)
,

where erf stands for the error function

erf(t) =
2√
π

∫ t

0
exp(−s2)ds.

The mutually independent components uj are then drawn by

uj = Φ−1(tj) = erf−1

(
tj

α
√

2

)
,

where tjs are drawn randomly from the uniform distribution U([0, 1]). The proof that this
really produces draws from the prior is left as an exercise.

6.4.2 Impulse Prior

We assume again that the unknown is a two-dimensional pixel image. We have prior infor-
mation is that the image contains small and well localised objects (for example a tumour in
X-ray image). We can then use impulse prior model. These priors favour images with low
average amplitude with few outliers. One example of such a prior is `1 prior. Let u ∈ Rd
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represent the pixel image, where a component uj represents the intensity of the jth pixel.
The `1 prior is defined as

π(u) =
(α

2

)d
exp(−α‖u‖1),

where α > 0 and ‖ · ‖1 is the `1-norm. We can enhance the impulse noise effect by taking
a smaller power of the components of u, that is, using

∑ |uj |p, p ∈ (0, 1) instead of the
`1-norm.

Another density that produces few distinctly different pixels with a low-amplitude back-
ground is the Cauchy density, which is defined as

π(u) =
(α
π

)d d∏
j=1

1

1 + α2u2
j

.

Let us take a closer look at the `1 prior and to what kind of draws it produces. Since
we consider images we add a positivity constraint to our prior and write

π(u) = αdµ+(u) exp(−α‖u‖1),

where µ+(u) = 1 if uj > 0 for all j, and µ+(u) = 0 otherwise. The one-dimensional
distribution function can be defined as

Φ(t) = α

∫ t

0
e−αsds = 1− e−αt.

The mutually independent components uj are then drawn by

uj = Φ−1(tj) = − 1

α
log(1− tj),

where tjs are drawn randomly from the uniform distribution U([0, 1]). As mentioned before
the proof that this really produces draws from the prior is left as an exercise.

Similarly when we draw independent components from the Cauchy distribution with
positivity constraint we use the distribution function

Φ(t) =
2α

π

∫ t

0

1

1 + α2s2
ds =

2

π
arctan(αt)

meaning that the inverse cumulative distribution is

Φ−1(t) =
1

α
tan

(πt
2

)
.

6.4.3 Discontinuities

Assume next that we want to estimate one-dimensional signal u : [0, 1]→ R, u(0) = 0, from
indirect observations. Our prior knowledge is that the signal is usually relatively stable but
can have large jumps every now and then. We may also have information on the size of
the jumps or the rate of occurrence of the discontinuities. One possible prior is the finite
difference approximation of the derivative of u with assumption that the derivative follows
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an impulse noise probability distribution. Let us discretise the interval [0, 1] by points
tj = j/N and write uj = u(tj). Consider the density

π(u) =
(α
π

)N N∏
j=1

1

1 + α2(uj − uj−1)2
.

To draw from the above distribution let us define new random variables

xj = uj − uj−1, 1 6 j 6 N.

The probability distribution of these variables is

π(x) =
(α
π

)N N∏
j=1

1

1 + α2x2
j

,

that is, they are independent of each other and can hence be drawn from the one-dimensional
Cauchy density. Note that u = [u1, · · · , uN ]> ∈ RN satisfies u = Bx, where B ∈ RN×N is
a lower triangular matrix such that Bij = 1 for i > j. The idea of the above prior can be
generalised to higher dimensions which brings us to total variation prior.

We start by defining the concept of total variation for functions. Let u : D → R be a
function in L1(D), D ⊂ Rd. We define the total variation of u, denoted by TV(u), as

TV(u) = sup
g

{∫
D
u∇ · g dx | g = (g1, · · · , gd) ∈ C1

0 (D,Rd), ‖g‖L∞ 6 1
}
.

The test function space C1
0 (D,Rd) consist of continuously differentiable vector-valued func-

tions on D that vanish at the boundary. A function is said to have bounded variation if
TV(u) <∞. To understand the definition let us consider the following simple example

Example 6.4.6. Let D ⊂ R2 be an open set and B ⊂ D be a set bounded by a smooth
curve ∂B = S, which does not intersect with the boundary of D. Let u : D → R be 1
when x ∈ B and zero otherwise. Let g ∈ C1

0 (D,R2) be an arbitrary test function. By the
divergence theorem we obtain∫

D
u∇ · g dx =

∫
B
∇ · g dx =

∫
∂B
ñ · g dS,

where ñ is the exterior unit normal vector of ∂B. This integral attains its maximum, under
the constraint ‖g‖L∞ 6 1, if we set ñ · g = 1 identically. Hence

TV(u) = length(∂B).

Notice that the weak derivative of u is the Dirac delta of the boundary curve, which
cannot be be presented by an integrable function. Therefore, the space of functions with
bounded variation differs from the corresponding Sobolev space.

We will next consider two dimensional problem and define a discrete analogue for TV.
Let D ∈ R2 be bounded and divided in d pixels. We define two pixels as neighbours if they
share a common edge. The total variation of the discrete image u = [u1, · · · , ud]> is then
defined

TV(u) =

d∑
j=1

Vj(u), Vj(u) =
1

2

∑
i∈Nj

|ui − uj |,
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where Nj is the neighbourhood of pixel uj (j 6∈ Nj). The discrete total variation density is
then given by

π(u) ∝ exp(−αTV(u)).

The total variation density is concentrated on images that are ’blocky’ consisting of blocks
with short boundaries and small variation within each block.

The total variation prior is an example of a structural prior. Different structural priors,
depending on different neighbourhood systems, can be derived from the theory of Markov
random fields. For more prior choices and examples see e.g. [22, Section 3.3]

6.5 Sampling methods

An important part of Bayesian inversion techniques is to develop methods for exploring the
posterior probability densities. We will next discus a random sampling methods known as
the Markov chain Monte Carlo (MCMC) techniques. We saw previously in Section 6.3 that
finding a MAP estimate leads to an optimisation problem, whereas the conditional mean
requires integration over the space Rd where the posterior density is defined. Since the
dimension of the problem can be large instead of calculating the full integral we want to
sample from the posterior and then use these sample points to approximate the integral.

Let µ denote a probability measure on Rd and let g be a measurable function integrable
over Rd with respect to µ, that is, g ∈ L1

µ. We want to estimate the integral of g with
respect to the measure µ. In numerical quadrature methods one defines a set of support
points xj ∈ Rd, 1 6 j 6 N and the corresponding weights wj to get an approximation∫

Rd
g(x)dµ(x) ≈

N∑
j=1

wjg(xj).

The above method is designed for computing one-dimensional integrals. To compute in-
tegrals in multiple dimensions, we could phrase the integral as repeated one-dimensional
integrals by applying Fubini’s theorem. However, this approach requires the function evalu-
ations to grow exponentially as the number of dimensions increases which makes it infeasible
in high dimensions.

In Monte Carlo integration the support points xj are generated randomly by drawing
from some probability density (ideally determined by µ) and the weights are then determined
from the distribution µ. Assume that x ∼ µ. If we had a random generator such that
repeated realisations of x could be produced we could generate a set of points distributed
according to µ. We could then approximate the integral of g by the so called ergodic average,∫

Rd
g(x)dµ(x) = E

(
g(x)

)
≈ 1

N

N∑
j=1

g(xj),

where {x1, · · · , xN} ⊂ Rd is a representative collection of samples distributed according to
µ.

The MCMC methods are systematic way of generating sample collection so that the
above approximation holds. We start with some basic tools from probability theory

Definition 6.5.1. A mapping P : Rd × B(Rd) → [0, 1] is called a probability transition
kernel if
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1. for each B ∈ B(Rd) the mapping Rd → [0, 1], x 7→ P (x,B) is a measurable function;

2. for each x ∈ Rd the mapping B(Rd)→ [0, 1], B 7→ P (x,B) is a probability distribution.

A discrete time stochastic process is an ordered set {xj}∞j=1 of random variables xj ∈ Rd.
A time homogeneous Markov chain with the transition kernel P is a stochastic process
{xj}∞j=1 with the properties

µxj+1(Bj+1 |x1, · · · , xj) = µxj+1(Bj+1 |xj) = P (xj , Bj+1).

The first equality means that the probability xj+1 ∈ Bj+1 depends on the past only through
the previous state xj . The second equality states that time is homogeneous in the sense
that the dependence of consecutive moments does not vary in time since the kernel P does
not depend on time j.

We define the transition kernel that propagates k steps forward as

P k(xj , Bj+k) = µxj+k(Bj+k |xj) =

∫
Rd
P (xj+k−1, Bj+k)P

k−1(xj , dxj+k−1), k > 2,

where P 1(xj , Bj+1) = P (xj , Bj+1). if µxj denotes the probability distribution of xj the
distribution of xj+1 is given by

µxj+1(Bj+1) = µxjP (Bj+1) =

∫
Rd
P (xj , Bj+1)dµxj (xj).

We will next introduce few concepts concerning the transition kernels

1. The measure µ is an invariant measure of P (xj , Bj+1) if

µP = µ.

This means that the distribution of the random variable xj before the time step
j → j + 1 is the same as the variable xj+1 after the step.

2. The transition kernel P is irreducible (with respect to a given measure µ) if for each
x ∈ Rd and B ∈ B(Rd), with µ(B) > 0, there exists an integer k such that P k(x,B) >
0. This means that regardless of the starting point the Markov chain generated by P
visits any set of positive measure with positive probability.

3. Let P be irreducible kernel. We say that P is periodic if, for some integer m > 2, there
is a set of disjoint non-empty sets {E1, · · · , Em} ⊂ Rd such that P (x,Ej+1( mod m)) = 1
for all j = 1, · · · ,m and all x ∈ Ej . This means that a periodic P generates a Markov
chain that remains in a periodic loop for ever. We say that P is an aperiodic kernel
if it is not periodic.

The following theorem is of crucial importance for MCMC methods.

Theorem 6.5.2. Let µ be a probability measure on Rd and {xj} a time homogeneous
Markov chain with transition kernel P . Assume further that µ is an invariant measure of
the transition kernel, and that P is irreducible and aperiodic. Then for all x ∈ Rd,

lim
N→∞

PN (x,B) = µ(B), for all B ∈ B(Rd),

and for g ∈ L1
µ(Rd)

lim
N→∞

1

N

N∑
j=1

g(xj) =

∫
Rd
g(x)dµ(x)

almost certainly.
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6.5.1 Metropolis-Hastings

Let Π denote the target probability measure in Rd. We assume that Π is absolutely con-
tinuous with respect to Lebesgue measure and has density π(x). We want to determine a
transition kernel P (x,B) so that Π is its invariant measure.

Let P denote any transition kernel. If we start from a point x ∈ Rd the kernel either
proposes to move to another point y ∈ Rd or to stay in x. Hence we can split the kernel in
two parts,

P (x,B) =

∫
B
K(x, y)dy + r(x)1B(x),

where 1B(x) is 1 when x ∈ B ∈ B(Rd) and zero otherwise. Loosely speaking K(x, y) > 0
describes the probability for moving and r(x) > 0 the probability for staying put.

The condition P (x,Rd) = 1 implies that

r(x) = 1−
∫
Rd
K(x, y)dy. (6.3)

We assume that the K satisfies the detailed balance condition

π(y)K(y, x) = π(x)K(x, y), (6.4)

for all x, y ∈ Rd. This guarantees that Π is an invariant measure of P since using (6.3) we
can then write

ΠP (B) =

∫
Rd

(∫
B
K(x, y)dy + r(x)1B(x)

)
π(x)dx

=

∫
B

(∫
Rd
π(x)K(x, y)dx+ r(y)π(y)

)
dy

=

∫
B
π(y)dy

Our goal now is to construct a transition kernel that K that satisfies the detailed balance
equation 6.4. Let q : Rd × Rd → R+ be a given functional with property

∫
q(x, y)dy = 1.

The function q is called the proposal distribution and it defines a transition kernel

Q(x,A) =

∫
A
q(x, y)dy.

If q satisfies the detailed balance condition we can simply choose K(x, y) = q(x, y) and
r(x) = 0. Otherwise we have to correct the kernel and define

K(x, y) = α(x, y)q(x, y), (6.5)

where α is a correction term.
Assume that instead of the detailed balance condition we have

π(y)q(y, x) < π(x)q(x, y),

for some x, y ∈ Rd. Our aim is to choose α so that

π(y)α(y, x)q(y, x) = π(x)α(x, y)q(x, y).
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We can achieve this by setting

α(y, x) = 1 and α(x, y) =
π(y)q(y, x)

π(x)q(x, y)
< 1.

We then see that the kernel K defined in (6.5) satisfies the detailed balance condition (6.4)
if we define

α(x, y) = min

(
1,
π(y)q(y, x)

π(x)q(x, y)

)
.

This transition kernel is called the Metropolis-Hastings kernel.

We can implement the method derived above using an algorithm that is carried out
through the following steps;

1. Pick initial value x1 ∈ Rd and set j = 1.

2. Draw y ∈ Rd from the proposal kernel q(xj , y) and calculate the acceptance ratio

α(xj , y) = min

(
1,
π(y)q(y, xj)

π(xj)q(xj , y)

)
.

3. Draw t ∈ [0, 1] from uniform probability density.

4. If t 6 α(xj , y), set xj+1 = y, otherwise xj+1 = xj . Increase j → j + 1 and go to step
2. until j = J , the desired sample size.

Note that if the candidate generating the kernel is symmetric q(x, y) = q(y, x) for all
x, y ∈ Rd then the acceptance ration simplifies to

α(x, y) = min

(
1,
π(y)

π(x)

)
.

This means that we accept immediately moves towards higher probability and sometimes
also moves that take us to lower probability.

Example 6.5.3. Consider a two-dimensional density

π(x) ∝ exp

(
− 10(x2

1 − x2)2 −
(
x2 −

1

4

)4
)
.

In what follows, we assume to have random number generators for W ∼ N (0, 1) and
T ∼ U([0, 1]) at our disposal (in Matlab the command randn and rand respectively).

We construct Metropolis–Hastings sequence using the random walk proposal distribu-
tion. We define

q(x, y) = exp
(
− 1

2γ2
‖x− y‖2

)
.

This means that we assume that the scaled random step from x to y is distributed as white
noise W = (y−x)/γ ∼ N (0, I). Using the above proposal distribution we get the following
updating algorithm;
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Algorithm 1: Simple Metropolis–Hastings update scheme

Pick initial value x1. Set x = x1;
for j = 2 : J do

Calculate π(x);
Draw W ∼ N (0, I), set y = x+ γW ;
Calculate π(y);
Calculate α(x, y) = min(1, π(y)/π(x));
Draw T ∼ U([0, 1]);
if t < α(x, y) then

Accept: Set x = y, xj = x;
else

Reject: Set xj = x
end if

end if

end for

6.5.2 Single component Gibbs sampler

Gibbs sampling is used to sample multivariate distributions. The proposal kernel is defined
using the density π to sample each component xi of the vector x = (x1, · · · , xd) from the
distribution of that component conditioned on all other components sampled so far.

If x is a d-variate random variable with the probability density π the probability density
of the ith component xi conditioned on all xj , for which i 6= j, is given by

π(xi |x−i) = Ciπ(x)

where x−i = (x1, · · · , xi−1, xi+1, · · · , xd) and Ci is a normalisation constant. We can then
define a transition kernel K as

K(x, y) =
d∏
i=1

π(yi | y1, · · · , yi−1, xi+1, · · · , xd)

and set r(x) = 0. This kernel does not usually satisfy the detailed balance condition but it
satisfies a weaker but sufficient balance condition

∫
Rd π(y)K(y, x)dx =

∫
Rd π(x)K(x, y)dx.

The steps needed for implementing the algorithm can be summarised as follows;

1. Pick an initial value x1 ∈ Rd and set j = 1.

2. Set x = xj . For 1 6 i 6 d, draw yi ∈ R from the one-dimensional distribution
π(yi | y1, · · · , yi−1, xi+1, · · · , xd).

3. Set xj+1 = y. Increase j → j + 1 and repeat from step 2. until j reaches the desired
sample size J .

Example 6.5.4. We want to sample from the two-dimensional distribution

π(x) = N (0,Σ), Σ =

[
1 ρ
ρ 1

]
, ρ > 0.
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In order to sample from this distribution using Gibbs sampler, we need to calculate the
conditional distributions for directions x1, x2. We see that

π(xj1 |x
(j−1)
2 ) = N (ρx

(j−1)
2 ,

√
1− ρ2) and π(xj2 |xj1) = N (ρxj1,

√
1− ρ2).

We can write the algorithm as follows;

Algorithm 2: Simple Gibbs sampler update scheme

Pick initial value x1. Set x = x1;
for j = 2 : J do

Draw X1 ∼ N (ρx2

√
1− ρ2);

Draw X2 ∼ N (ρx1,
√

1− ρ2);
Set xj = x

end for

6.6 Hierarchical models

The prior densities we use depend on some parameters, such as variance or mean. So
far we have assumed that these parameters are known. However, we often do not know
how to choose them. If a parameter is not know, it can be estimated as a part of the
statistical inference problem based on the data. This leads to hierarchical models that
include hypermodels for the parameters defining the prior density.

Assume that the prior distribution depends on a parameter θ, which is assumed to be
unknown. We then write the prior as a conditional density

π(u | θ).

We model the unknown θ with a hyperprior πh(θ) and write the joint distribution of U and
Θ as

π(u, θ) = π(u | θ)πh(θ).

Assuming we have a likelihood model ρ(f |u, θ) for the measurement F , we get the posterior
density for U and Θ given f using the Bayes’ formula

π(u, θ | f) ∝ ρ(f |u, θ)π(u, θ) = ρ(f |u, θ)π(u | θ)πh(θ).

The hyperprior density πh may depend on some hyperparameter θ0. The main reason
for the use of a hyperprior model is that the construction of the posterior is assumed to be
more robust with respect to fixing a value for the hyperparameter θ0 than fixing a value
for θ. Sometimes we might want to treat also θ0 as a random variable with a respective
probability density. We can then write π(θ | θ0) which leads to nested hypermodels.

Example 6.6.1. We return to the deblurring example 6.2.6, where we assumed prior π(u) ∝
exp

(
− ‖Lu‖2/2θ), with L being the second order finite difference matrix and θ = γ2 was

assumed to be known.
We will next assume that we do not know the value of θ. The prior for U given θ is

π(u | θ) = Cθ exp
(
− 1

2θ
‖Lu‖2

)
.
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The integral of a density is 1 and hence, with the change of variables u =
√
θz, du = θd/2dz,

we see that

1 = Cθ

∫
Rd

exp
(
− 1

2θ
‖Lu‖2

)
du = θd/2Cθ

∫
Rd

exp
(
− 1

2
‖Lz‖2

)
dz.

The last integral does not depend on θ so we deduce that Cθ ∝ θ−d/2 and write

π(u | θ) ∝ exp
(
− 1

2θ
‖Lu‖2 − d

2
log(θ)

)
.

Since θ is not known we will treat it as a random variable. Any information concerning
Θ is then coded in the prior probability density πh. The inverse problem is to approximate
pair of unknowns (U,Θ). If we only know that θ > 0 we can use the improper prior density

πh(θ) = π+(θ) =

{
0 if θ < 0,
1 if θ > 0.

Note that π+ is an improper density, since it is not integrable. In practice, we can assume
an upper bound that we hope will never play a role. The posterior density is then given as

πf (u, θ) = π+(θ) exp

(
− 1

2δ2
‖f −Au‖2 − 1

2θ
‖Lu‖2 − d

2
log(θ)

)
.

To find the MAP estimator we can use sequential optimisation, where we update the
value for u using the value for θ from previous step and then use this value of u to update
θ;

1. Initialise θ = θ0, set k = 1.

2. Update u,

uk = arg max
u∈Rd
{πf (u | θk−1)} = arg min

u∈Rd

{
1

2δ2
‖f −Au‖2 +

1

2θ
‖Lu‖2

}
.

3. Update θ,

θk = arg max
θ>0
{πf (θ |uk)} = arg min

θ>0

{
1

2θ
‖Lu‖2 +

d

2
log(θ)

}
.

4. Increase k by one and repeat from 2. until convergence.

We calculated the update for u in Example 6.3.1. For θ we notice that the derivative is
zero in the minimum of the function, that is,

− 1

θ2
‖Lu‖2 +

d

θ
= 0 ⇒ θ =

‖Lu‖2
d

.

Assume next that we know that the signal varies slowly except for unknown number
of jumps of unknown size and location. The jumps should be sudden, suggesting that the
variances should be mutually independent. This means that instead of assuming Wj ∼
N (0, θ) we should assume Wj ∼ N (0, θj). Then

π(u | θ) ∝ exp

(
− 1

2
‖D−1/2

θ Lu‖2 − 1

2

d∑
j=1

log(θj)

)
,



6.6. HIERARCHICAL MODELS 83

where Dθ = diag(θ). Only a few variances can be significantly large, while most of them
should be small, suggesting a hyperprior that allows rare outliers.

One option is to use Gamma distribution as a prior for θj

θj ∼ Gamma(α, θ0), πh(θ) ∝
d∏
j=1

θα−1
j exp

(
− θj
θ0

)
.

Then, if L(u, θ | f) = − log(π(u, θ | f)), we see that

L(u, θ | f) ∝ 1

2δ2
‖Au− f‖2 +

1

2
‖D−1/2

θ Lu‖2 +
1

θ0

d∑
j=1

θj −
(
α− 3

2

) d∑
j=1

log(θj).

We then get the following update step for u

uk = arg min
u∈Rd

(
1

2δ2
‖Au− f‖2 +

1

2
‖D−1/2

θk−1 Lu‖2
)
.

To update θ we notice that θkj satisfies

∂

∂θj
L(uk, θ) = −1

2

(
(Luk)j
θj

)2

+
1

θ0
−
(
α− 3

2

) 1

θj
= 0,

which has explicit solution

θkj = θ0

(
a+

√
(Luk)2

j

2θ0
+ a2

)
, a =

1

2

(
α− 3

2

)
.
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Chapter 7

Infinite dimensional Bayesian
inverse problems

In this section we prove a version of Bayes’ theorem that can be used when the likelihood and
prior are measures on separable Banach spaces. Note that there is no equivalent to Lebesgue
measure in infinite dimensions (as it could not be σ-additive), and so we cannot define a
measure by prescribing the form of its density. In our setting the posterior will always be
absolutely continuous with respect to the prior. It is possible to construct examples even
in purely Gaussian setting where this is not true. Hence working under this assumption is
not strictly necessary but it is quite natural. Absolute continuity ensures that almost sure
properties of the prior will be inherited by the posterior. To change such properties by data
the data would have to contain infinite amount of information, which is unnatural in most
applications. We follow the program laid out in [13] and [29].

Let X and Y denote measurable spaces and let ν and µ be probability measures on
X × Y . We assume that ν � µ. Using Theorem 6.1.1 we know that there exist a µ-
measurable function ϕ : X × Y → R with ϕ ∈ L1

µ such that

dν

dµ
(x, y) = ϕ(x, y).

Theorem 7.0.1. Assume that the conditional random variable x | y exists under µ with
probability distribution denoted by µy(dx). Then the conditional random variable x | y under
ν exists with probability distribution denoted by νy(dx). Furthermore νy � µy and if z(y) =∫
X ϕ(x, y)dµy(x) > 0 we can write

dνy

dµy
(x) =

1

z(y)
ϕ(x, y).

We will proceed to use the above theorem to construct the conditional distribution of
the unknown U given data f from their joint probability distribution. We will need the
following lemma to establish the measurability of the likelihood.

Lemma 7.0.2. Let X be a Borel measurable topological space and assume that g ∈ C(X;R),
and that µ(X) = 1 for some probability measure µ on X. Then g is a µ measurable function.

85
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7.1 Bayes’ theorem for inverse problems

Let X, Ỹ and Y be separable Banach spaces, equipped with the Borel σ-algebra, and let
A : X → Ỹ ⊂ Y be a measurable linear mapping. We are interested in approximating U
from a measurement

F = AU +N,

where N ∈ Y denotes noise. We assume (U,F ) ∈ X × Y to be a random variable and want
to compute U | f . The random variable (U,F ) is specified as follows:

• Prior: U ∼ Π measure on X.

• Noise: N ∼ P0 measure on Y and N⊥U .

The random variable F |u is then distributed according to measure Pu, the translation
of P0 by Au. In the following we assume that Pu � P0 for Π-a.s. Thus there exists a
potential Φ : X × Y → R

dPu
dP0

(f) = exp(−Φ(u; f)).

The mapping Φ(u; ·) : Y → R is measurable for a fixed u and EP0 exp(−Φ(u; f)) = 1. For
a given realisation f of the data the function −Φ(·; f) is called the log likelihood.

We define Q0 to be the product measure

Q0(du, df) = Π(du)P0(df).

We assume that Φ(·, ·) is Q0 measurable. Then the random variable (U,F ) ∈ X × Y is
distributed according to measure Q(du, df) = Π(du)Pu(df) and Q� Q0 with

dQ

dQ0
(u, f) = exp(−Φ(u; f)).

We have the following infinite dimensional version of Theorem 6.2.1.

Theorem 7.1.1 (Bayes’ Theorem). Assume that Φ : X × Y → R is Q0 measurable and
that

Z(f) =

∫
X

exp(−Φ(u; f))dΠ(u) > 0

for P0-a.s. Then the conditional distribution of U | f exists under Q and is denoted by Πf .
Furthermore Πf � Π and

dΠf

dΠ
(u) =

1

Z(f)
exp(−Φ(u; f)),

for f Q-a.s.

Proof. The positivity of Z(f) holds Q0 almost surely, and hence by the absolutely continuity
of Q with respect to Q0, it also holds Q almost surely. We can then use Theorem 7.0.1.
Note that since µ = Q0(du, df) has a product form the conditional distribution of U | f
under Q0 is simply Π.
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7.2 Well-posedness

In inverse problems small changes in data can cause large changes in the solution and hence
some form of regularisation is needed to stabilise the problems. We will next show that
Bayesian approach can be used to combat the ill-posedness of inverse problems so that small
changes in the data will lead to small changes in the posterior measure.

In order to measure the changes in the posterior measure Πf caused by the changes in
the data we need a metric in measures. Let µ and µ′ be probability measures on separable
Banach space X and assume that they are both absolutely continuous with respect some
reference measure ν defined in the same measure space (we can take for example ν =
1/2(µ+ µ′)).

Definition 7.2.1. We define the total variation distance between µ and µ′ as

dTV (µ, µ′) =
1

2

∫ ∣∣∣∣dµdν − dµ′

dν

∣∣∣∣ dν.
If µ′ � µ we can simplify the above and write

dTV (µ, µ′) =
1

2

∫ ∣∣∣∣1− dµ′

dµ

∣∣∣∣ dµ.
Definition 7.2.2. We define the Hellinger distance between µ and µ′ as

dHell(µ, µ
′) =

√
1

2

∫ (√
dµ

dν
−
√
dµ′

dν

)2

dν.

If µ′ � µ we can simplify the above and write

dHell(µ, µ
′) =

√√√√1

2

(
1−

√
dµ′

dµ

)2

dµ.

Note that we have

0 6 dTV (µ, µ′) 6 1 and 0 6 dHell(µ, µ
′) 6 1

Hellinger and total variation distances generate the same topology and we have the
following inequalities.

Lemma 7.2.3. The total variation and Hellinger metrics are related by the inequalities

1√
2
dTV (µ, µ′) 6 dHell(µ, µ

′) 6
√
dTV (µ, µ′).

Let X and Y be separable Banach spaces, equipped with the Borel σ-algebra, and let
Π be a measure on X. We want to study the posterior distribution defined in the previous
section. To make sense of it we need the following assumption.

Assumption 7.2.4. Let X ′ ⊂ X and assume that Φ ∈ C(X ′ × Y ;R). Assume further
that there are functions Mi : R+×R+ → R+, i = 1, 2, which are monotonic non-decreasing
separately in each argument, and with M2 strictly positive, such that for all u ∈ X ′ and
f, f ′ ∈ BY (0, r),

−Φ(u; f) 6M1(r, ‖u‖X),

|Φ(u; f)− Φ(u; f ′)| 6M2(r, ‖u‖X)‖f − f ′‖.
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Theorem 7.2.5. Let Assumption 7.2.4 hold. Assume that Π(X ′) = 1 and that Π(X ′∩B) >
0 for some bounded set B ⊂ X. We also assume that

exp(M1(r, ‖u‖X)) ∈ L1
Π(X;R), (7.1)

for every fixed r > 0. Then Z(f) =
∫
X exp(−Φ(u; f))dΠ(u) is positive and finite for every

f ∈ Y and the posterior probability measure Πf given by Theorem 7.1.1 is well defined.

Proof. The boundedness of Z(f) follows directly from the lower bound on Φ in Assumption
7.2.4 together with the integrability condition assumed in the theorem.

If U ∼ Π then u ∈ X ′ a.s. and we can write

Z(f) =

∫
X′

exp(−Φ(u; f))dΠ(u).

We also note that, since B′ = B ∩X ′ is bounded by assumption, supu∈B′ ‖u‖X = R1 <∞.
Since Φ : X ′×Y → R is continuous it is finite at every point in B′×{f}. Thus we see that

sup
(u,f)∈B′×BY (0,r)

Φ(u; f) = R2 <∞.

Hence

Z(f) >
∫
B′

exp(−R2)dΠ(u) = exp(−R2)Π(B′) > 0.

The above theorem shows that the measure Πf is well-defined and normalisable. We
did not need to check normalisability in Theorem 7.1.1 because Πf was defined as a regular
conditional probability via Theorem 7.0.1 which makes it automatically normalisable.

Theorem 7.2.6. Let Assumption 7.2.4 hold. Assume that Π(X ′) = 1 and that Π(B∩X ′) >
0 for some bounded set B in X. We assume also that

exp(M1(r, ‖u‖X))
(

1 +M2(r, ‖u‖X)2
)
∈ L1

Π(X;R),

for every fixed r > 0. Then there exists c = c(r) > 0 such that

dHell(Π
f ,Πf ′) 6 c‖f − f ′‖Y ,

for all f, f ′ ∈ BY (0, r).

Proof. Let Z(f) and Z(f ′) denote the normalisation constants for Πf and Πf ′ so that

Z(f) =

∫
X′

exp(−Φ(u; f))dΠ(u) > 0 and

Z(f ′) =

∫
X′

exp(−Φ(u; f ′))dΠ(u) > 0

by Theorem 7.2.5. Using the local Lipschitz property of the exponential and the assumed
Lipschitz continuity of Φ(u; ·) together with fact that M2(r, ‖u‖X) 6 1 + M2(r, ‖u‖X)2 we
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get

|Z(f)− Z(f ′)| 6
∫
X′
| exp(−Φ(u; f))− exp(−Φ(u; f ′))|dΠ(u)

6
∫
X′

exp(M1(r, ‖u‖X))|Φ(u; f)− Φ(u; f ′)|dΠ(u)

6

(∫
X′

exp(M1(r, ‖u‖X))M2(r, ‖u‖X)dΠ(u)

)
‖f − f ′‖Y

6

(∫
X′

exp(M1(r, ‖u‖X))
(

1 +M2(r, ‖u‖X)
)
dΠ(u)

)
‖f − f ′‖Y

6 c‖f − f ′‖Y .

We use c = c(r) to denote a constant independent of u and the value may change from
occurrence to occurrence.

Using the definition of Hellinger distance and the fact that (ab − cd)2 6 2a2(b − d)2 +
2(a− c)2d2 we get(
dHell(Π

f ,Πf ′)
)2

=

∫
X

(
Z(f)−

1
2 exp

(
− 1

2
Φ(u; f)

)
− Z(f ′)−

1
2 exp

(
− 1

2
Φ(u; f ′)

))2

dΠ(u)

6 I1 + I2,

where

I1 =
1

Z(f)

∫
X′

(
exp

(
− 1

2
Φ(u; f)

)
− exp

(
− 1

2
Φ(u; f ′)

))2

dΠ(u) and

I2 = (Z(f)−
1
2 − Z(f ′)−

1
2 )2

∫
X′

exp
(
− Φ(u; f ′)

)
dΠ(u).

Using the Assumption 7.2.4 and the fact that Z(f) > 0 we can use similar Lipschitz
calculation as before and write

I1 6
1

4Z(f)

∫
X′

exp
(
M1(r, ‖u‖X)

)
|Φ(u; f)− Φ(u; f ′)|2dΠ(u)

6
‖f − f ′‖2Y

4Z(f)

∫
X′

exp
(
M1(r, ‖u‖X)

)
M2(r, ‖u‖X)2dΠ(u)

6 c‖f − f ′‖2Y .

We note that Assumption 7.2.4 with (7.1) implies∫
X′

exp
(
− Φ(u; f ′)

)
dΠ(u) 6

∫
X′

exp
(
M1(r, ‖u‖X)

)
dΠ(u) <∞.

Hence

I2 6
c
(
Z(f)− Z(f ′)

)2
min

(
Z(f)3, Z(f ′)3

) 6 c‖f − f ′‖2Y ,

which completes the proof.

Hellinger distance has the desirable property of giving bounds for expectations.
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Lemma 7.2.7. Let µ and µ′ be two probability measures on a separable Banach space X.
Assume that g : X → E, where (E, ‖ · ‖) is a separable Banach space, is measurable and
has second moments with respect to both µ and µ′. Then

‖Eµg − Eµ
′
g‖ 6 2

√
Eµ‖g‖2 + Eµ′‖g‖2 dHell(µ, µ′)

The proof of the above lemma is left as an exercise.

Using Lemma 7.2.7 we see that, for f, f ′ ∈ BY (0, r),

|EΠf g(u)− EΠf
′
g(u)| 6 cg,r‖f − f ′‖Y

If Π is Gaussian we can use the following Fernique theorem to establish the integrability
conditions in the above theorems.

Theorem 7.2.8 (Fernique). Let Π be a Gaussian probability measure on a separable Banach
space X. Then there exists α > 0 such that∫

X
exp(α‖u‖2X)dΠ(u) <∞.

7.3 Approximation of the potential

In this section we will examine the continuity properties of the posterior measure with
respect to approximation of the potential Φ. The data f is assumed to be fixed in this
section so we will write Z(f) = Z and Φ(u; f) = Φ(u). Let X be a separable Banach space

and Π a measure on X. Assume that Πf and Πf
N are both absolutely continuous with

respect to Π and given by

dΠf

dΠ
(u) =

1

Z
exp(−Φ(u)), Z =

∫
X

exp(−Φ(u))dΠ(u) and

dΠf
N

dΠ
(u) =

1

ZN
exp(−ΦN (u)), ZN =

∫
X

exp(−ΦN (u))dΠ(u).

(7.2)

The measure ΠN can arise e.g. when approximating the forward map A in (6.1). It is
important to know whether closeness of the forward map and its approximation imply
closeness of the posterior measure.

Assumption 7.3.1. Let X ′ ⊂ X and assume that Φ ∈ C(X ′;R). Assume further that
there exists functions Mi : R+ → R+, i = 1, 2 that are independent of N , non-decreasing
and M2 being strictly positive, such that for all u ∈ X ′,

Φ(u) > −M1(‖u‖X), ΦN (u) > −M1(‖u‖X) and

|Φ(u)− ΦN (u)| 6M2(‖u‖X)ψ(N)

where ψ(N)→ 0 as N →∞.

The following theorems are similar to the ones in the previous section but they estimate
changes in the posterior caused by changes in the potential Φ rather than data f .
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Theorem 7.3.2. Let Assumption 7.3.1 hold. Assume that Π(X ′) = 1 and that Π(B∩X ′) >
0 for some bounded set B in X. We also assume that

exp(M1(‖u‖X)) ∈ L1
Π(X;R).

Then Z and ZN defined in 7.2 are positive and finite, and the probability measures Πf

and Πf
N are well defined. Furthermore, for sufficiently large N , ZN is bounded below by a

positive constant independent of N .

Proof. The finiteness of Z and ZN follows from the lower bounds on Φ and ΦN given in
Assumption 7.3.1 combined with the integrability condition assumed in the theorem. Since
U ∼ Π satisfies U ∈ X ′ a.s. we have

Z =

∫
X′

exp(−Φ(u))dΠ(u)

Note that B′ = B ∩ X ′ is bounded in X and hence supu∈B′ ‖u‖X = R1 < ∞. Since
Φ : X ′ → R is continuous it is finite in every point of B′. Using the Assumption 7.3.1 for
large enough N we can write

sup
u∈B′

|Φ(u)− ΦN (u)| 6 R2 <∞.

This implies

sup
u∈B′

Φ(u) = 2R2 <∞ and sup
u∈B′

ΦN (u) = 2R2 <∞.

Hence

Z >
∫
B′

exp(−2R2)dΠ(u) = exp(−2R2)Π(B′) > 0.

We get the same lower bound for ZN and note that it is independent of N as required.

Theorem 7.3.3. Let Assumption 7.3.1 hold. Assume that Π(X ′) = 1 and that Π(B∩X ′) >
0 for some bounded set B in X. We assume furthermore that

exp(M1(‖u‖X))
(

1 +M2(‖u‖X)2
)
∈ L1

Π(X;R).

Then there exists c > 0 such that

dHell(Π
f ,Πf

N ) 6 cψ(N)

for all sufficiently large N .

Proof. Let N be sufficiently large so that by Theorem 7.3.3 Z > 0 and ZN > 0 with
positive lower bounds independent of N . Using the local Lipschitz property of exponential,
Assumption 7.3.1 and the fact that M2(‖u‖X) 6 1 +M2(‖u‖X)2 we can write

|Z − ZN | 6
∫
X′
| exp(−Φ(u))− exp(−ΦN (u))|dΠ(u)

6
∫
X′

exp(M1(‖u‖X))|Φ(u)− ΦN (u)|dΠ(u)

6 ψ(N)

∫
X′

exp(M1(‖u‖X))M2(‖u‖X)dΠ(u)

6 ψ(N)

∫
X′

exp(M1(‖u‖X))(1 +M2(‖u‖X)2)dΠ(u)

6 Cψ(N),
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where C is a constant that does not depend on u or N . As in the proof of Theorem 7.2.6
we can write (

dHell(Π
f ,Πf

N )
)2

= I1 + I2,

where

I1 =
1

Z

∫
X′

(
exp

(
− 1

2
Φ(u)

)
− exp

(
− 1

2
ΦN (u)

))2
dΠ(u) and

I2 =
(
Z−

1
2 − Z−

1
2

N

)2 ∫
X′

exp
(
ΦN (u)

)
dΠ(u).

Using similar arguments as above we see that

I1 6
1

4Z

∫
exp(M1(‖u‖X))|Φ(u)− ΦN (u)|2dΠ(u)

6
ψ(N)2

Z

∫
exp(M1(‖u‖X))M2(‖u‖X)2dΠ(u)

6 Cψ(N)2.

We also notice that∫
X′

exp
(
ΦN (u)

)
dΠ(u) 6

∫
X′

exp
(
M1(‖u‖X)

)
dΠ(u) <∞

and the upper bound is independent of N . Hence

I2 6
c
(
Z − ZN

)2
min

(
Z3, Z3

N

) 6 Cψ(N)2,

which concludes the proof.

7.4 Infinite dimensional Gaussian measure (non examinable)

We start by introducing infinite dimensional Gaussian random variables and some of their
key properties. For more details see e.g. [19, Section 3] or [12, Section 2], and if you feel
brave [9].

Let X be a separable Banach space and denote by X∗ its dual space of linear functionals
on X. We define the characteristic function of a probability distribution µ on a separable
Banach Space X as

ϕµ(ψ) = E exp(iψ(x)),

for ψ ∈ X∗.
Theorem 7.4.1. If µ and ν are two probability measures on a separable Banach space X
and if ϕµ(ψ) = ϕν(ψ), for all ψ ∈ X∗, then µ = ν.

A function θ ∈ X is called the mean of µ if ψ(θ) =
∫
X ψ(v)dµ(v) for all ψ ∈ X∗. A linear

operator Σ : X∗ → X is called the covariance operator if ψ(Σϕ) =
∫
X ψ(v−θ)ϕ(v−θ)dµ(v)

for all ψ,ϕ ∈ X∗. If we assume that X = H is a Hilbert space then θ = E(V ) and the
covariance operator is characterised by identity E

(
〈ϕ, (V − θ)〉〈ψ, (V − θ)〉

)
= 〈Σϕ,ψ〉.

A measure µ on (X,B(X)) is Gaussian if, for any ψ ∈ X∗, ψ(V ) ∼ N (θψ, σ
2
ψ) for some

θψ ∈ R and σψ ∈ R. We allow σψ = 0, so that the measure may be a Dirac mass at θψ.
Note that it is expected that θψ = ψ(θ) and σ2

ψ = ψ(Σψ) for all ψ ∈ X∗.
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Theorem 7.4.2. A Gaussian measure µ on (X,B(X)) has a mean θ and covariance oper-
ator Σ. The characteristic function of the measure is

ϕµ(ψ) = exp

(
iψ(θ)− 1

2
ψ(Σψ)

)
.

Using the above Theorem and Theorem 7.4.1 we see that the mean and covariance
completely characterise the Gaussian measure and hence we can simply write N (θ,Σ).

Definition 7.4.3. Let {ϕi}∞i=1 denote an orthonormal basis for a separable Hilbert space
H. A linear operator A : H → H is trace-class if

Tr(A) =
∞∑
i=1

〈Aϕi, ϕi〉 <∞.

The sum is independent of the choice of basis. The operator A is Hilbert–Schmidt if

Tr(A∗A) =
∞∑
i=1

‖Aϕi‖2H <∞.

We can construct random draws from a Gaussian measure on a Hilbert space H using
Karhunen–Loève expansion.

Theorem 7.4.4. Let Σ be a self-adjoint, positive semi-definite, trace class operator in a
Hilbert space H, and let θ ∈ H. Let {ϕk, γk} be an orthonormal set of eigenvectors and
eigenvalues for Σ ordered so that γ1 > γ2 > · · · . Take {ξk}∞k=1 to be an i.i.d. sequence with
ξ1 ∼ N (0, 1). Then the random variable V ∈ H given by the Karhunen–Loève expansion

V = θ +
∞∑
k=1

√
γkξkϕk (7.3)

is distributed according to µ = N (θ,Σ).

The proof is left as an exercise.

Example 7.4.5. A random variable N is said to be white Gaussian noise on L2(Td) if
E(N) = 0 and E

(
〈N,ϕ〉〈N,ψ〉

)
= 〈ϕ,ψ〉, in which case we denote N ∼ N (0, I). Note that

I : L2(Td) → L2(Td) is not a trace class operator in L2(Td), and hence white noise does
not take values in L2(Td). Let e~̀ ∈ L2(Td), ~̀ = (`1, `2, . . . , `d) ∈ Zd be an orthonormal

basis of L2(Td) consisting of eigenfunctions of Laplacian, numbered so that −∆e~̀ = |~̀|2e~̀.
Such functions e~̀(x) can be chosen to be normalised products of the sine and cosine func-

tions sin(`jxj) and cos(`jxj) that form the standard Fourier basis of L2(Td). The Fourier
coefficients of N with respect to this basis are independent, normally distributed R-valued
random variables with variance one, that is, 〈N, e~̀〉 ∼ N(0, 1). Then

E‖N‖2L2(Td) =
∑
~̀∈Zd

E|〈N, e~̀〉|2 =
∑
~̀∈Zd

1 =∞.

This implies that realisations of N are in L2(Td) with probability zero. However, when
s > d/2

E‖N‖2H−s(Td) =
∑
~̀∈Zd

(1 + |~̀|2)−sE|〈N, e~̀〉|2 <∞ (7.4)

and hence N takes values in H−s(Td) a.s. For more details about Sobolev spaces see
Appendix 8.
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The above result can be generalised to show that if V ∼ N (0,Σ) and the eigenvalues of

Σ satisfy γj � j−
2s
d (e.g. Σ = (I − ∆)−s) then, for t < s − d/2, we have v ∈ Ht a.s. We

can also generalise the results for more general domains than the torus or Rd using Hilbert
scales. These spaces do not, in general, coincide with Sobolev spaces, because of the effect
of the boundary conditions.

The covariance operator Σ : H → H of a Gaussian on H is a compact operator and its
inverse is densely defined unbounded operator on H. We call this inverse precision operator.
Bot the covariance and the precision operator are self-adjoint on appropriate domains and
the fractional powers of them can be defined via spectral theorem.

Given a Gaussian measure µ on a separable Banach space X, we define the Cameron–
Martin space Hµ ⊂ X of µ to be the intersection of all linear spaces of full measure. The
main importance of the Cameron-Martin space is that it characterises exactly the directions
in X in which a centred Gaussian measure can be shifted to obtain an equivalent Gaussian
measure. When dim(X) = ∞ the measure of the Cameron–Martin space is zero, that is,
µ(Hµ) = 0. Compare this to the case of finite dimensional Lebesgue measure which is
invariant under translations in any direction. This is a striking illustration of the fact that
measures in infinite-dimensional spaces have a strong tendency of being mutually singular.

Lemma 7.4.6. For a Gaussian measure on Hilbert space (H, 〈·, ·〉) the Cameron–Martin

space Hµ consists of the image of H under Σ
1
2 and the Cameron–Martin norm is given by

‖h‖2µ = ‖Σ− 1
2h‖2H.

Theorem 7.4.7. Let µ = N (0,Σ) be a Gaussian measure on a separable Banach space X.
The Cameron–Martin space Hµ of µ can be endowed with Hilbert space structure and Hµ is
compactly embedded in all separable spaces X ′ such that µ(X ′) = 1.

Theorem 7.4.8 (Special case of the Cameron-Martin theorem). Let µ = N (0,Σ) be a
Gaussian measure on a separable Banach space X. Denote by µh the translation of µ by h,
µh = µ(· − h). If h ∈ Hµ then µh is absolutely continuous with respect to µ and

dµh
dµ

(v) = exp

(
− 1

2
‖h‖2Hµ + 〈h, v〉Hµ

)
v ∈ X, µ-a.s. If h 6∈ Hµ, then µ and µh are mutually singular.

Example 7.4.9. Consider two Gaussian measures µi, i = 1, 2, on H = L2((0, 1)) both with
precision operator (the densely defined inverse covariance operator Σ−1 = L) L = −d2/dx2,
the domain of L being H1

0 ((0, 1)) ∩ H2((0, 1)). We assume that µ1 ∼ N (θ,Σ) and µ2 ∼
N (0,Σ). Then Hµ = Im(Σ1/2) = H1

0 ((0, 1)). Hence the measures are equivalent if and only
if θ ∈ Hµ. If this is satisfied then the Radon–Nikodym derivative between the two measures
is given by

dµ1

dµ2
(v) = exp

(
〈θ, v〉H1

0
− 1

2
‖θ‖2H1

0

)
.

7.5 MAP estimators and Tikhonov regularisation

In this section we assume that the prior Π is Gaussian. We show that MAP estimators
(point of maximal probability) coincide with the minimisers of Tikhonov regularised least
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squares functions with regularisation term being given by the Cameron-Martin norm of the
Gaussian prior.

The classical deterministic way for solving inverse problem is to try and minimise the
potential Φ with some regularisation. If we have finite data and Gaussian observational
noise N ∼ N(0,Γ) we can write

Φ(u; f) =
1

2

∥∥Γ−1/2(f −Au)
∥∥2
.

Thus Φ is covariance weighted data misfit least square function.
We assume that Π is a Gaussian probability measure on a separable Banach space

(X, ‖ · ‖X) and Π(X) = 1. We denote the Cameron-Martin space of Π by (HΠ, ‖ · ‖HΠ
). In

this section we want to show that maximising Πf is equivalent to minimising

I(u) =

{
Φ(u; f) + 1

2‖u‖2HΠ
if u ∈ HΠ, and

∞ else.
(7.5)

The realisation f of the data does not play role in this section and we will write Φ(u; f) =
Φ(u).

We note that the properties of Φ we assume below are typically determined by the
forward operator, which maps the unknown function u to the data f . Probability theory
does not play a direct role in verifying these properties of Φ. Probability becomes relevant
when choosing the prior measure Π so that it charges the Banach space X, on which the
desired properties of Φ hold, with full measure.

Assumption 7.5.1. The function Φ : X → R satisfies the following conditions:

1) For every ε > 0 there is an R = R(ε) ∈ R, such that for all u ∈ X,

Φ(u) > R− ε‖u‖2X .

2) Φ is locally bounded above, that is, for every r > 0 there exists K = K(r) > 0 such
that, for all u ∈ X with ‖u‖X < r, we have

Φ(u) 6 K.

3) Φ is locally Lipschitz continuous i.e. for every r > 0 there exists L = L(r) > 0 such
that, for all u1, u2 ∈ X with ‖u1‖X , ‖u2‖X < r, we have

|Φ(u1)− Φ(u2)| 6 L‖u1 − u2‖X .

In finite dimensions there is an obvious notion of most likely points for measures which
have a continuous density with respect to Lebesgue measure: the points at which the
Lebesgue density is maximised. Unfortunately we can not translate this idea to infinite
dimensions. To fix this we will restate the idea in a way that will work also in infinite
dimensional settings. Fix a small radius δ > 0 and identify centres of balls of radius δ
which have maximal probability. Letting δ → 0 then recovers the maximums when there is
continuous Lebesgue density. We will use this small ball approach in infinite dimensional
settings.

Let z ∈ HΠ and Bδ(z) ⊂ X be the open ball centred at z ∈ X with radius δ in X. Let

Jfδ (z) = Πf (Bδ(z))
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be the mass of the ball Bδ(z) under the posterior measure Πf . Similarly we define

Jδ(z) = Π(Bδ(z))

to be the mass of the ball Bδ(z) under the Gaussian prior. We note that all balls in a
separable Banach space have positive Gaussian measure. Thus Jδ(z) is finite and positive
for any z ∈ HΠ. By the above assumptions on Φ and the Fernique Theorem 7.2.8 the same
is true for Jfδ (z). We will next prove that the probability is maximised where I is minimised.

Theorem 7.5.2. Let Assumption 7.5.1 hold and assume that Π(X) = 1. Then, for any
z1, z2 ∈ HΠ,

lim
δ→0

Jfδ (z1)

Jfδ (z2)
= exp

(
I(z2)− I(z1)

)
,

where the function I is defined by (7.5).

Before moving to prove the above theorem we state a result about the small ball prob-
abilities under Gaussian measure

Theorem 7.5.3. Let z ∈ HΠ and Bδ(z) ⊂ X be the open ball centred at z ∈ X with radius
δ in X. The ratio of small ball probabilities under Gaussian measure Π satisfies

lim
δ→0

Π(Bδ(z1))

Π(Bδ(z2))
= exp

(
1

2
‖z2‖2HΠ

− 1

2
‖z1‖2HΠ

)
.

Proof of theorem 7.5.2. The ratio is finite and positive since Jfδ (z) is finite and positive for
any z ∈ HΠ. The estimate given in Theorem 7.5.3 transfers the question about probability
into statement concerning the Cameron-Martin norm of Π. Note that if U ∼ Π then its
realisation is in HΠ only with probability zero and hence ‖u‖HΠ

=∞ almost surely.

We can write

Jfδ (z1)

Jfδ (z2)
=

∫
Bδ(z1) exp(−Φ(u))dΠ(u)∫
Bδ(z2) exp(−Φ(v))dΠ(v)

=

∫
Bδ(z1) exp(−Φ(u) + Φ(z1)) exp(−Φ(z1))dΠ(u)∫
Bδ(z2) exp(−Φ(v) + Φ(z2)) exp(−Φ(z2))dΠ(v)

.

By Assumption 7.5.1 there exists L = L(r) such that

−L‖u1 − u2‖X 6 Φ(u1)− Φ(u2) 6 L‖u1 − u2‖X

for all u1, u2 ∈ X with max{‖u1‖X , ‖u2‖X} < r. We can then write

Jfδ (z1)

Jfδ (z2)
6 e2δL

∫
Bδ(z1) exp(−Φ(z1))dΠ(u)∫
Bδ(z2) exp(−Φ(z2))dΠ(v)

6 e2δLe−Φ(z1)+Φ(z2) Π(Bδ(z1))

Π(Bδ(z2))
,
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Using Theorem 7.5.3 we get

Jfδ (z1)

Jfδ (z2)
6 r1(δ)e2δLe−I(z1)+I(z2)

where r1(δ)→ 1 as δ → 0. Thus

lim sup
δ→0

Jfδ (z1)

Jfδ (z2)
6 e−I(z1)+I(z2).

We can deduce in the same way that

Jfδ (z1)

Jfδ (z2)
> r2(δ)e−2δLe−I(z1)+I(z2)

with r2(δ)→ 1 as δ → 0 and furthermore

lim inf
δ→0

Jfδ (z1)

Jfδ (z2)
> e−I(z1)+I(z2),

which concludes the proof.

We will next show that the minimisation problem for I is well-defined when Assumption
7.5.1 holds.

Definition 7.5.4. Let E be a Hilbert space. The function I : E → R is weakly lower
semicontinuous if

lim inf
j→∞

I(uj) > I(u)

whenever uj ⇀ u in E. The function I : E → R is weakly continuous if

lim
j→∞

I(uj) = I(u)

whenever uj ⇀ u in E.

Lemma 7.5.5. Let (E, 〈·, ·〉E) be a Hilbert space with induced norm ‖ · ‖E. Then the
quadratic form J(u) = 1

2‖u‖2E is weakly lower semicontinuous.

Proof. We can write

J(uj)− J(u) =
1

2
‖uj‖2E −

1

2
‖u‖2E

=
1

2
〈uj − u, uj + u〉E

=
1

2
〈uj − u, 2u〉E +

1

2
‖uj − u‖2E

>
1

2
〈uj − u, 2u〉E → 0,

when uj ⇀ u in E.
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Theorem 7.5.6. Suppose that Assumption 7.5.1 holds and let E be a Hilbert space com-
pactly embedded in X. Then there exists u ∈ E such that

I(u) = I := inf{I(u) : u ∈ E}.

Furthermore if {uj} is a minimising sequence satisfying I(uj) → I(u) then there exists a
subsequence {uj′} that converges strongly to u in E.

Proof. Compactness of E ⊂ X implies that ‖u‖X 6 C‖u‖E . Hence by Assumption 7.5.1 1)
it follows that for any ε > 0 there is R(ε) ∈ R such that

I(u) >
(1

2
− εC

)
‖u‖2E +R(ε).

We can choose ε small enough so that

I(u) >
1

4
‖u‖2E +R (7.6)

for all u ∈ E with some R ∈ R.
Let uj be minimising sequence satisfying I(uj)→ I(u) as j →∞. For any δ > 0 there

is N = N(δ), such that for all j > N

I 6 I(uj) 6 I + δ. (7.7)

We can then use (7.6) to conclude that {uj} is bounded in E. We assumed that E is a
Hilbert space so there exists u ∈ E and a subsequence uj′ such that uj′ ⇀ u in E. Since E
is compactly embedded in X we can deduce that there is a subsubsequence (also denoted by
uj′) so thatuj′ → u strongly in X. By the Assumption 7.5.1 3) the potential Φ is Lipschitz
continuous and hence Φ(uj′) → Φ(u). Thus Φ is weakly continuous on E. Using Lemma
7.5.5 we see that I(u) = J(u) + Φ(u) is weakly lower semicontinuous on E. Using (7.7) we
can then conclude that, for any δ > 0,

I 6 I(u) 6 I + δ.

Since δ can be chosen arbitrarily small the first result follows.
Next we study a subsequence of uj′ . For large enough n, ` we can write

1

4
‖un − u`‖2E =

1

2
‖un‖2E +

1

2
‖u`‖2E −

1

4
‖un + u`‖2E

= I(un) + I(u`)− 2I
(1

2
(un + u`)

)
− Φ(un)− Φ(u`) + 2Φ

(1

2
(un + u`)

)
6 2(I + δ)− 2I − Φ(un)− Φ(u`) + 2Φ

(1

2
(un + u`)

)
6 2δ − Φ(un)− Φ(u`) + 2Φ

(1

2
(un + u`)

)
.

The subsequences un, u` and 1
2(un + u`) converge strongly to u ∈ X. Since Φ is continuous

we see that for large enough n, `

1

4
‖un − u`‖2E 6 3δ.

We have shown that the subsequence is Cauchy in E which completes the proof.

Note that by Theorem 7.4.7 the Cameron–Martin space HΠ is a Hilbert space that is
compactly embedded in X and hence we can find a minimiser in HΠ.
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Appendix; Sobolev spaces

Sobolev spaces constitute one of the most relevant functional settings for the treatment of
PDEs and boundary value problems. This appendix gives a short introduction to the topic.
Sobolev spaces are covered properly on course Analysis of Partial Differential Equations.
For more a more detailed treatment of Sobolev spaces and applications to PDEs see [17].
For a comprehensive study of Sobolev spaces see e.g. [2].

We start by introducing the notion of a weak derivatives that generalises the classical
partial derivatives.

Definition 8.0.1 (Test functions). Let O ∈ Rd. We set

C∞0 (O) = {ϕ ∈ C∞(O) : supp(ϕ) ∈ V ⊂ O},

the smooth functions with compact support. This space is often referred as the space of test
functions and denoted by D(O).

If u ∈ C1(R) then we can define ∂u
∂x by∫

∂u

∂x
(x)ϕ(x)dx = −

∫
u(x)

∂ϕ

∂x
(x)dx,

for all ϕ ∈ D(R). We notice that the right hand side is well-defined for all u ∈ L1
loc(R).

Definition 8.0.2. Let α = α1, · · · , αd be a multi-index, αi ∈ N, and |α| = α1 + · · · + αd.
A function u ∈ L1

loc(O) has a weak derivative v = Dαu ∈ L1
loc(O) if∫

O
v(x)ϕ(x)dx = (−1)|α|

∫
O
u(x)Dαϕ(x)dx,

For all test functions ϕ ∈ D(O). Above Dαϕ = ∂α1

∂x
α1
1

· · · ∂αd
∂x
αd
d

ϕ. Note that when the

weak derivative Dαu exists, it is defined only up to a set of measure zero. So any point-wise
statements to be made about Dαu is understood to only hold almost surely. Most of the
classical differential calculus can be reproduced for weak derivatives (e.g. the product rule
and the chain rule).

Definition 8.0.3. The Sobolev space Hs(O), s ∈ N, is defined as the set of all functions
u ∈ L2(O) with weak derivatives Dαu ∈ L2(O) up to the order |α| 6 s.
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The above definition can be generalised for functions u ∈ Lp(O), 1 6 p 6 ∞, and the
resulting Sobolev spaces are usually denoted by W s,p(O). In this course we only consider
L2(O) Sobolev spaces. The Sobolev spaces Hs(O) are Banach spaces with the norm

‖u‖Hs =

( ∑
|α|6s

‖Dαu‖2L2(O)dx

) 1
2

. (8.1)

The Sobolev spaces are separable Hilbert spaces with inner product

〈u, v〉Hs =
∑
|α|6s

〈Dαu,Dαv〉L2 =
∑
|α|6s

∫
O
Dαu(x)Dαv(x)dx,

for all u, v ∈ Hs(O).

Definition 8.0.4. The space Hs
0(O) are the closure of C∞0 (O) under the Sobolev norm

(8.1).

The spaces Hs
0(O) is a closed subspace of Hs(O). If O = Rd then Hs

0(O) = Hs(O).
We can define H1

0 (O) also through Trace Theorem (see [17, Section 5.5]) which states that
there is a continuous linear mapping tr : H1(O) → L2(∂O) called the trace operator. In
this sense, we say that functions from H1(O) have traces (boundary values) in L2(∂O) and

H1
0 (O) = {u ∈ H1(O) : u = 0 in ∂O}.

As defined above, Sobolev spaces concern integer numbers of derivatives. However, the
concept can be extended to fractional derivatives using Fourier transform.

Definition 8.0.5. Assume 0 6 s <∞ and u ∈ L2(Rd). Then u ∈ Hs(Rd) if (1 + |ξ|s)û ∈
L2(Rd). The Sobolev norm is given by

‖u‖Hs = ‖(1 + | · |s)û‖L2 ,

where û = F(u) is the Fourier transform. Note that for a positive integer s, the above
definition agrees with the definition given by the weak derivatives. For s < 0, we define
Hs(Rd) via duality. The resulting spaces are separable for all s ∈ R. If O ⊂ Rd then
H−1(O) is the dual space of H1

0 (O).
In these notes we often consider u ∈ L2(Td), Td being the d-dimensional unit torus,

found by identifying opposite faces of the unit cube [0, 1]d. In this periodic case the Sobolev
norm of the space H(Td) can be written as

‖u‖Hs =
∑
`∈Zd

(1 + |`|2)sû(`)2.

We define the Laplace operator ∆ = ∇ · ∇ as ∆u =
∑d

i=1
∂iu
∂x2
i

and note that the

eigenvalues of (I−∆) with domain H2(Td) are simply 1+4π2|`|2, for ` ∈ Zd. The fractional
powers of (I + ∆) are defined as follows

(I −∆)γu =
∑
`∈Zd

(1 + |`|2)γ û(`)ϕ`,

where ϕk are the eigenvectors of −∆ in Td, that form the orthonormal basis of L2(Td). We
see that on the torus Hs = D((I + ∆)

s
2 ) and we have ‖u‖Hs = ‖(I + ∆)

s
2u‖L2 . We also

note that that (1−∆)−r : Ht(Td)→ Ht+r(Td) for all t, r ∈ R.
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