

 Department of Applied Mathematics

 and Theoretical Physics

 Hanne Kekkonen & Yury Korolev

 Inverse Problems

 Example sheet 2
 Presentation 18 Nov. 2019, 2-3:30pm, MR15.

 Please submit after the lecture on 14 November 2019.

Please submit Exercises 3 and 5.

Exercise 1 (Subdifferential)

Let \mathcal{U} be a Banach space and $J: \mathcal{U} \to \overline{\mathbb{R}}$ be a functional. We define the *subdifferential* of J at any $v \in \mathcal{U}$ as

$$\partial J(v) := \left\{ p \in \mathcal{U}^* \, \middle| \, J(u) \ge J(v) + \langle p, u - v \rangle \text{ for all } u \in \mathcal{U} \right\}.$$

Characterise the subdifferential for the

- (a) absolute value function: $\mathcal{U} = \mathbb{R}, J(v) = |v|,$
- (b) ℓ^1 -norm: $\mathcal{U} = \ell^2$,

$$J(u) = ||u||_{\ell^1} := \begin{cases} \sum_{j=1}^{\infty} |u_j| & \text{if } u \in \ell^1 \\ \infty & \text{else.} \end{cases}$$

(c) characteristic function of the unit ball in \mathbb{R} : $\mathcal{U} = \mathbb{R}$, $J(u) = \chi_C(u)$, $C := \{u \in \mathbb{R} \mid |u| \le 1\}$.

Exercise 2 (Proximal operators)

Let \mathcal{U} be a Hilbert space and $J : \mathcal{U} \to \mathbb{R}$ be a l.s.c., convex and proper functional. The *proximal* operator of J at any $z \in \mathcal{U}$ and step size $\alpha \ge 0$ is defined as $\operatorname{prox}_{\alpha J} : \mathcal{U} \to \mathcal{U}$ with

$$\operatorname{prox}_{\alpha J}(z) := \arg\min_{u \in \mathcal{U}} \Phi_{\alpha, z}(u)$$

and $\Phi_{\alpha,z}(u) := \frac{1}{2} \|u - z\|_{\mathcal{U}}^2 + \alpha J(u)$. It can be shown that $\partial \Phi_{\alpha,z}(u) = u - z + \alpha \partial J(u)$.

(a) Compute the proximal operators for the following functionals

- (i) absolute value function: $\mathcal{U} = \mathbb{R}, J(u) = |u|;$
- (ii) squared ℓ^2 -norm: $\mathcal{U} = \ell^2, J(u) = \frac{1}{2} ||u||_{\ell^2}^2 := \frac{1}{2} \sum_{j=1}^{\infty} u_j^2;$
- (iii) ℓ^1 -norm: $\mathcal{U} = \ell^2$,

$$J(u) = \|u\|_{\ell^1} := \begin{cases} \sum_{j=1}^{\infty} |u_j| & \text{if } u \in \ell^1\\ \infty & \text{else.} \end{cases}$$

(b) For a subset $C \subset \mathcal{U}$ of the Hilbert space \mathcal{U} we consider the characteristic function

$$\chi_C(u) := \begin{cases} 0 & \text{if } u \in C \\ \infty & \text{else.} \end{cases}$$

(i) For which subsets C is the proximal operator of χ_C well-defined?

- (ii) Compute the proximal operators for
 - $C = [0, \infty) \subset \mathbb{R},$
 - $C = \{ u \in \mathbb{R}^n \mid ||u||_2 \le 1 \}$, and
 - $C = \{ u \in \mathbb{R}^n \mid ||u||_{\infty} \le 1 \}.$

Exercise 3 (Convex conjugate – submit)

Let \mathcal{U} be a Banach space and let $E: \mathcal{U} \to \overline{\mathbb{R}}$ be proper, lower semi-continuous and convex. Then the *Fenchel conjugate* or *convex conjugate* of E is defined to be the mapping $E^*: \mathcal{U}^* \to \overline{\mathbb{R}}$ with

$$E^*(v) := \sup_{u \in \mathcal{U}} \left\{ \langle v, u \rangle - E(u) \right\}.$$

- (a) Compute the convex conjugates of the following functionals.
 - (i) $E \colon \mathbb{R} \to \mathbb{R}, E(u) = \frac{1}{p} |u|^p$ and $1 < p, q < \infty$ with $\frac{1}{p} + \frac{1}{q} = 1$.
 - (ii) $E(u) = \frac{1}{2} ||u||^2$ for a Hilbert space \mathcal{U} .
 - (iii) $E(u) = ||u||_{\mathcal{U}}$ for a Banach space \mathcal{U} .
- (b) Let \mathcal{U} be a Hilbert space and $E: \mathcal{U} \to \overline{\mathbb{R}}$ a proper, lower semi-continuous and convex functional. Show that

$$p \in \partial E(u) \quad \Leftrightarrow \quad u \in \partial E^*(p)$$

for all $u, p \in \mathcal{U}$.

Hint: You may exploit the fact that under the stated assumptions $E = E^{**}$ holds true.

Exercise 4 (Bregman distances)

Let $u, v \in \mathcal{U}$ and $p \in \partial J(v)$ be an element of the subdifferential. Then the *Bregman distance* of J at u, v is defined as

$$D^p_{I}(u,v) := J(u) - J(v) - \langle p, u - v \rangle.$$

In this exercise, we will investigate the properties of the Bregman distance for convex J.

(a) Show that Bregman distances are non-negative, i.e. for all $u, v \in \mathcal{U}, p \in \partial J(v)$ it holds

$$D_J^p(u,v) \ge 0$$
.

(b) Show that Bregman distances may not be symmetric, i.e. there exists a J and $u, v \in \mathcal{U}$ with $p \in \partial J(v), q \in \partial J(u)$ so that

$$D^p_I(u,v) \neq D^q_I(v,u)$$
.

(c) Show that a vanishing Bregman distance may not imply that the two arguments are already the same, i.e. $D_J^p(u,v) = 0 \neq u = v$? What if J is strictly convex?

Exercise 5 (Absolute one-homogeneous functionals – submit) Recall that a functional $J: \mathcal{U} \to \overline{\mathbb{R}}$ is called absolutely one-homogeneous if

$$J(\lambda u) = |\lambda| J(u) \quad \forall \lambda \in \mathbb{R}, \ \forall u \in \mathcal{U}.$$

Let J be convex, proper, l.s.c. and absolute one-homogeneous.

(a) Show that $p \in \partial J(v)$ if and only if $J(v) = \langle p, v \rangle$ and for all $u \in \mathcal{U}$ there is $J(u) \geq \langle p, u \rangle$. Thus,

$$D_J^p(u,v) = J(u) - \langle p, u \rangle.$$

(b) Show that Bregman distances associated with absolute one-homogeneous functionals fulfill the triangle inequality in the first argument, i.e. for all $u, v, w \in \mathcal{U}$ and $p \in \partial J(w)$ there is

$$D_J^p(u+v,w) \le D_J^p(u,w) + D_J^p(v,w)$$
.

(c) Show that the Fenchel conjugate $J^*(\cdot)$ is the characteristic function of the convex set $\partial J(0)$. Compare this to the results of Exercise 3 (a-iii).