

Department of Applied Mathematics
and Theoretical Physics
Hanne Kekkonen & Yury KorolevInverse ProblemsExample sheet 4Presentation 20 Jan. 2020, 2-3:30pm, MR15.

Exercise 1 (Gaussian model)

Assume that we observe measurement F = AU + N, where $A : \mathbb{R}^d \to \mathbb{R}^k$ is a known matrix, $N \sim \mathcal{N}(0, \Sigma_n)$ and $U \sim \pi = \mathcal{N}(\theta_u, \Sigma_u)$, where Σ_n and Σ_u are both invertible. i) Show that the posterior covariance Σ and mean \overline{u} can be written as

$$\Sigma = (A^{\top} \Sigma_n^{-1} A + \Sigma_u^{-1})^{-1}$$

and

$$\overline{u} = \Sigma (A^{\top} \Sigma_n^{-1} f + \Sigma_u^{-1} \theta_u).$$

ii) What happens on the small noise limit $\delta \to 0$, $\Sigma_{\eta} = \delta^2 \Sigma_0$, if we assume that k = n and A invertible?

iii) What happens if we only assume that $null(A) = \{0\}$?

Exercise 2 (Underdetermined Gaussian model*)

Assume the same model as in 1. but this time $F \in \mathbb{R}^{k'}$ and $U \in \mathbb{R}^{d}$ with k < d, and $\operatorname{rank}(A) = k$. We can then write

$$A = (A_0 \ 0)Q^{\top},$$

with $Q \in \mathbb{R}^{d \times d}$ being an orthonormal matrix, $Q^{\top}Q = I$, and $A_0 \in \mathbb{R}^{k \times k}$ an invertible matrix. We denote $L_u = \Sigma_u^{-1}$ and write

$$Q^{\top}L_{u}Q = \begin{bmatrix} L_{11} & L_{12} \\ L_{12}^{\top} & L_{22} \end{bmatrix}, \quad L_{11} \in \mathbb{R}^{k \times k}, \ L_{22} \in \mathbb{R}^{(d-k) \times (d-k)}.$$

We also write $Q = (Q_1 \ Q_2)$ with $Q_1 \in \mathbb{R}^{d \times k}$ and $Q_1 \in \mathbb{R}^{d \times (d-k)}$. Define $z \in \mathbb{R}^k$ to be the unique solution of $A_0 z = f$. Let $w \in \mathbb{R}^k$ and $w' \in \mathbb{R}^{d-k}$ be defined via $\Sigma_u^{-1} \theta_u = Q(w \ w')^{\top}$. Show that on the small noise limit $\delta \to 0$, $\Sigma_n = \delta^2 \Sigma_0$,

$$\Pi^f \rightharpoonup \mathcal{N}(\overline{\theta}_f, \overline{\Sigma}_f)$$

where

$$\overline{\theta}_f = Q(z \ z')^\top$$
 and $\overline{\Sigma}_f = Q_2 L_{22}^{-1} Q_2^\top$.

Above $z' = -L_{22}^{-1}L_{12}^{\top}z + L_{22}^{-1}w' \in \mathbb{R}^{d-k}$.

Exercise 3 (Estimators)

Let $U \in \mathbb{R}$ and assume that the posterior distribution is given by

$$\pi^{f}(u) = \frac{c}{\sigma_{1}}\varphi\Big(\frac{u}{\sigma_{1}}\Big) + \frac{1-c}{\sigma_{2}}\varphi\Big(\frac{u-1}{\sigma_{2}}\Big),$$

where 0 < c < 1, $\sigma_1, \sigma_2 > 0$ and φ is density function of standard normal distribution $\varphi(u) = (2\pi)^{-1/2} \exp(-u^2/2)$. Calculate the conditional mean (CM) and maximum a posterior (MAP) estimates, and the posterior variance. Does MAP or CM always give a better estimator for u?

Exercise 4 (Sampling)

Let V be a real valued random variable with probability density $\pi(v)$, such that $\pi(v) = 0$ only at isolated points. We define the cumulative distribution function

$$\Phi(t) = \int_{-\infty}^t \pi(v) dv.$$

Define a new random variable $T = \Phi(V)$. Show that $T \sim \mathcal{U}([0, 1])$.

Exercise 5 (Hyperpriors)

Assume that we observe a measurement F+AU+N and the null space of A is zero. We model $U \sim \mathcal{U}$, where \mathcal{U} is uninformative and improper prior with constant density on \mathbb{R}^d , that is, $\pi(u) = c > 0$. Furthermore, assume that $N | \delta \sim \mathcal{N}(0, \delta^2 I)$, where $\delta > 0$ is unknown. The noise amplitude is modelled by assuming $1/\delta^2 = \gamma \sim \Gamma(\alpha, \beta)$, where $\alpha, \beta > 0$, and $\Gamma(\alpha, \beta)$ is the Gamma distribution, with the density

$$\pi_h(\gamma) \propto \gamma^{\alpha-1} \exp(-\beta\gamma).$$

Write down the posterior distribution $\pi^{f}(u, \gamma)$ and the densities of $u | \gamma, f$ and $\gamma | u, f$. Give the MAP estimators for u and γ .

Exercise 6 (Towards continuous models 1)

The Lebesgue measure ν_n on Euclidean space \mathbb{R}^n is countably additive and translation invariant. Show that there is no analogue of Lebesgue measure on infinite-dimensional Banach space X.

Exercise 7 (Towards continuous models 2)

Let $U \sim \mathcal{N}(0, I)$, where $0 \in \mathbb{R}^d$ and $I \in \mathbb{R}^{d \times d}$ is identity matrix. Where does most of the probability mass lie when d is large? Hint: What happens to the volume of d-dimensional unit ball $B_d(0, 1)$ when $d \to \infty$?

Exercise 8 (Hellinger distance 1)

Let μ and μ' be two probability measures on a separable Banach space X. Let $(Y, \|\cdot\|)$ be a separable Banach space and assume that $g: X \to Y$ is measurable and has second moments with respect to both μ and μ' . Show that

$$\|\mathbb{E}^{\mu}(g) - \mathbb{E}^{\mu'}(g)\| \le 2\left(\mathbb{E}^{\mu}\|g\|^2 + \mathbb{E}^{\mu'}\|g\|^2\right)^{\frac{1}{2}} d_{Hell}(\mu, \mu'),$$

Exercise 9 (Hellinger distance 2)

Assume that the measures μ' and μ are equivalent, that is, $\mu' \ll \mu$ and $\mu \ll \mu'$. The Kullback–Leibler divergence between μ' and μ is defined as

$$D_{KL}(\mu'||\mu) = \int \log\left(\frac{d\mu'}{d\mu}\right) d\mu'$$

Is D_{KL} a metric? Assume that the measures μ' and μ are equivalent. Show that

$$d_{Hell}(\mu,\mu')^2 \le \frac{1}{2} D_{KL}(\mu||\mu').$$

Exercise 10 (Matlab exercises)

1. Sample from ℓ^1 , Cauchy and Gaussian priors using Matlab. Plot the samples as a 2D image.

2. Assume that we have a posterior distribution with density

$$\pi(x,y) = \exp\left(-10(x^2 - y)^2 - (y - 1/4)^4\right).$$

Write a Metropolis–Hastings algorithm to sample from π using the pseudocode given in Example 6.5.3. Try your code with different choices of γ and plot the first co-ordinates of the samples. What do you notice? What percentage of the suggested moves is accepted?