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Practicalities

Lectures take place on Tuesday, Thursday and Saturday,
11am-12pm, online

Course materials (lecture notes, example sheets, etc.) will be
provided at http://www.damtp.cam.ac.uk/research/
cia/inverse-problems-michaelmas-2020

Lectures will be recorded;

Four example sheets and example classes (possibly in
person): 28 October, 18 November, 2 December & some time
in January

For further questions email y.korolev@maths.cam.ac.uk or
jl2160@cam.ac.uk

http://www.damtp.cam.ac.uk/research/cia/inverse-problems-michaelmas-2020
http://www.damtp.cam.ac.uk/research/cia/inverse-problems-michaelmas-2020
mailto:y.korolev@maths.cam.ac.uk
mailto:jl2160@cam.ac.uk


Example classes
Example classes will be held (most likely) online on the following
dates:

Wednesday 28 October, 1.30-3.00pm

Wednesday 18 November, 1.30-3.00pm

Wednesday 2 December, 1.30-3.00pm

Wednesday 20 January, 1.30-3.00pm

Return solutions to two questions (specified in advance)

Example sheets will be made available one week before the
deadline.

Upload your answers on Moodle by 12 noon on Monday.

Office hours will be held online on Wednesdays 1:30-2:30pm.
Please send us an email in advance to arrange a meeting.



What do we mean by inverse problems?

Direct problem: Given an object (cause), determine data
(effect).

Inverse problem: Observing (noisy) data, recover the object.



Image processing is a classical example of an inverse
problem



Inverse problems are ill-posed

Well-posedness of a problem as defined by Jacques Hadamard
(1923):

I) Existence. There should be at least one solution.

II) Uniqueness. There should be at most one solution.

III) Stability. The solution must depend continuously on data.

If any of the above conditions is violated the problem is called
ill-posed



Linear inverse problems

We consider the linear inverse problem

f = Au

The physical phenomenon that relates the unknown and the
measurement is modelled by a linear operator A : X → Y .
The ideal measurement is given by f = Au.

We can only observe noisy measurements fn = Au + n

We would like to recover the unknown u from a noisy measurement
fn.

Main difficulty: A−1 does not exist or is not continuous.
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Examples: matrix inversion

I) A : Rd → R(A) ( Rk , k > d , i.e. the system is
overdetermined. Because of the noise fn /∈ R(A)
⇒ There is no solution.

II) A : Rd → Rk , k < d , i.e. the system is underdetermined.
⇒ There are several possible solutions.

III) There exists A−1 : Rd → Rd , but the condition number
κ = λ1/λd is very large. Then A is almost singular and
‖A−1n‖ ≈ ‖n‖/λd can be arbitrarily large.
⇒ The naive reconstruction ũ = A−1fn = u + A−1n is
dominated by the noise.
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dominated by the noise.



Examples: Deblurring (deconvolution)

Figure: The Hubble space telescope had a flaw in its mirror which
resulted in the images being blurred.

f (x) = (Au)(x) =

∫
R2

a(x − y)u(y)dy



Signal deblurring for noiseless data

The noiseless data f (t) =
∫∞
−∞ a(t − s)u(s)ds has Fourier transform

f̂ (ξ) =

∫ ∞
−∞

e−iξt f (t)dt .

The Convolution Theorem implies

f̂ (ξ) = â(ξ)û(ξ),

and hence by inverse Fourier transform

u(t) =
1

2π

∫ ∞
−∞

eitξ f̂ (ξ)

â(ξ)
dξ.
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Signal deblurring for noisy data

We can only observe noisy data and get

f̂n(ξ) = â(ξ)û(ξ) + n̂(ξ).

We assume that a is a Gaussian kernel

a(t) =
1√

2πα2
exp

(
− 1

2α2 t2
)
.

Then the estimate ũ given by the Convolution Theorem is

ũ(t) = u(t) +
1

2π

∫ ∞
−∞

n̂(ξ) exp
(

itξ +
α2

2
ξ2
)

dξ,

which may not be even well defined since the Fourier transform of
the noise will not decay fast enough.
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Examples: Heat distribution in an insulated rod

Consider the problem

vt − vxx = 0 in (0, π)× R+

v(0, ·) = v(π, ·) = 0 on R+

v(·,T ) = f in (0, π)

v(·,0) = u in (0, π)

Forward problem: Determine the final distribution v(·,T ) ∈ L2(0, π),
T > 0, when the initial distribution v(·,0) ∈ L2(0, π) is given.

Inverse problem: Determine the initial distribution v(·,0) ∈ L2(0, π)
from observed (noisy) final distribution v(·,T ) ∈ L2(0, π).
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Forward problem

The solution to the forward problem can be given explicitly:

v(x ,T ) =
∞∑

j=1

ûje−j2T sin(jx),

where {ûj}∞j=0 are the Fourier (sine) coefficients of the initial heat
distribution u.

The solution operator

AT : u 7→ v(·,T ) = f , L2(0, π)→ L2(0, π)

satisfies the following conditions:
AT is injective,
R(AT ) is dense in L2(0, π),
AT is linear, bounded and compact⇒ no continuous inverse.
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Inverse problem

We notice that, for every s > 0,

‖v‖2Hs =
∞∑

j=1

j2se−2j2T |ûj |2

= T−s
∞∑

j=1

(j2T )se−2j2T |ûj |2

≤ CT−s‖u‖2L2

and hence R(AT ) ⊂ ∩s>0Hs. However, noise is not smooth and
hence fn = v(·,T ) + n /∈ R(AT ).



Heat distribution at t = 0.02,0.06,0.1,0.2,0.5 and
t = 1



Another heat distribution at t = 0.02,0.06,0.1,0.2,0.5
and t = 1



Comparison of the two heat distributions



Examples: Computerised tomography (CT)

f (θ, s) = (Au)(θ, s) =

∫
x ·θ=s

u(x)dx



The data are collected by rotating the X-ray source
and detectors around the object

Video by Samuli Siltanen. For more videos see
www.siltanen-research.net/IPexamples/xray_tomography


var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton0'){ocgs[i].state=false;}}



www.siltanen-research.net/IPexamples/xray_tomography


Examples: Ozone layer tomography

Figure: Given star occultation measurements, what is the ozone profile?



Examples: Geodesic X-ray transform

f (γ) = (Au)(γ) =

∫
u(γ(t))dt



Examples: Photo-acoustic tomography

Figure: Photo-acoustic tomography is an example of a hybrid inverse
problem that aims to combine high contrast and resolution of different
imaging methods.



Examples: Photo-acoustic tomography

Figure: Images of superficial blood vessels. Image by UCL Photoacoustic
Imaging Group



Examples: Hydraulic tomography

Figure: Hydraulic tomography: Measure water pressure in a groundwater
reservoir to estimate the hydraulic conductivity (Image by Dr Jim Yeh;
http://tian.hwr.arizona.edu/research/HT/examples)

fn = (p(xi) : i = 1, ..., I), where

−∇ · exp(u(x))∇p(x) = s(x) (x ∈ D) + b.c.

NB. the map u 7→ fn is non-linear

http://tian.hwr.arizona.edu/research/HT/examples


Outline of the course

I Functional-analytic regularisation (ca. 12 lectures)
Regularisation theory in Hilbert spaces

singular value decomposition of compact operators, spectral
filtering;

Regularisation theory in Banach spaces
variational methods, convex analysis, duality;

II Bayesian inverse problems (ca. 12 lectures)
Uncertainty, statistics, and learning

Bayesian and conditional probability on separable Banach
spaces, random fields
Bayesian inverse problems and the linear Gaussian case

Well-posedness of Bayesian inverse problems
existence, uniqueness, and stability of posterior measures

Algorithms for Bayesian inversion
Importance sampling, Markov chain Monte Carlo



Solving an inverse problem: Variational approach

We want to approximate u from a measurement

fn = Au + n,

where A : X → Y is linear and bounded, X and Y are Banach
spaces and n /∈ R(A) is a perturbation such that ‖n‖Y ≤ δ.

One approach is to use the least squares method

ũ = arg min
u∈X

{
‖Au − fn‖2Y

}
.

Problem: Multiple minima (if A is not injective) and no stability with
respect to the data fn.
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To regularise the problem we add a regularisation term and define

ũ = arg min
u∈X

{
‖Au − fn‖2Y + αR(u)

}
Regularisation gives a stable approximate solution for the inverse
problem. Parameter α depends on the magnitude δ of the
perturbation n.
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the constraint ‖n‖Y ≤ δ will not be satisfied for a random n.



Solving an inverse problem: Stochastic approach

Problem: perturbation n does not have a statistical interpretation,
the constraint ‖n‖Y ≤ δ will not be satisfied for a random n.
Problem: variational approach gives an estimate for the solution of

fn = Au + n

Questions:
how good is this estimate?
statistical properties?
uncertainties?



Solving an inverse problem: Stochastic approach

We consider a measurement model

fn = A(u) + n

u and n are uncertain
[Cox, 1946]

=⇒ represent through random variables

U describing our a priori knowledge concerning the parameter

P(U ∈ ·) is called prior distribution

N describing our knowledge concerning the noise

obtaining the measurement is an event:

{fn = A(U) + N}
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The solution is a probability distribution

“Learn” data by conditioning the parameter U on {fn = A(U) + N},
i.e., determine the posterior distribution:

P(U ∈ ·|fn = A(U) + N)

posterior distribution describes our knowledge a posteriori to
seeing the data
posterior distribution is obtained through Bayes’ formula

⇒ Bayesian inverse problem

Bayes’ theorem (informal)

πposterior(u|fn) ∝ L(fn|u)πprior(u),

πprior, πposterior are prior/posterior densities, and L is the likelihood
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The solution is a probability distribution

Finite dimensional Gaussian example

X = Rd and Y = Rk , A : X → Y linear,

N ∼ N(0, Idk ) is white Gaussian noise

We choose Gaussian prior P(U ∈ ·) = N(0,Σ)

Posterior has density

πposterior(u|fn) ∝ exp
(
− 1

2
‖fn − Au‖2Rk −

1
2
‖u‖2Σ

)

here: posterior has a closed form solution
Optimising πposterior(u|fn)⇒ regularisation (with R(u) = ‖u‖2Σ)
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Questions? Comments?


	fd@rm@0: 


