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Practicalities

@ Lectures take place on Tuesday, Thursday and Saturday,
11am-12pm, online

@ Course materials (lecture notes, example sheets, etc.) will be
provided at http://www.damtp.cam.ac.uk/research/
cia/inverse-problems-michaelmas—-2020

@ Lectures will be recorded:;

@ Four example sheets and example classes (possibly in
person): 28 October, 18 November, 2 December & some time
in January

@ For further questions email y.korolev@maths.cam.ac.uk or
jl2160@cam.ac.uk


http://www.damtp.cam.ac.uk/research/cia/inverse-problems-michaelmas-2020
http://www.damtp.cam.ac.uk/research/cia/inverse-problems-michaelmas-2020
mailto:y.korolev@maths.cam.ac.uk
mailto:jl2160@cam.ac.uk

Example classes

Example classes will be held (most likely) online on the following
dates:

@ Wednesday 28 October, 1.30-3.00pm

@ Wednesday 18 November, 1.30-3.00pm
@ Wednesday 2 December, 1.30-3.00pm
@ Wednesday 20 January, 1.30-3.00pm

Return solutions to two questions (specified in advance)

@ Example sheets will be made available one week before the
deadline.

@ Upload your answers on Moodle by 12 noon on Monday.

Office hours will be held online on Wednesdays 1:30-2:30pm.
Please send us an email in advance to arrange a meeting.



What do we mean by inverse problems?

@ Direct problem: Given an object (cause), determine data
(effect).

@ Inverse problem: Observing (noisy) data, recover the object.

Direct problem
—

Inverse problem



Image processing is a classical example of an inverse
problem

Direct problem
—

Inverse problem




Inverse problems are ill-posed

Well-posedness of a problem as defined by Jacques Hadamard
(1923):

[) Existence. There should be at least one solution.

[I) Uniqueness. There should be at most one solution.

II) Stability. The solution must depend continuously on data.

If any of the above conditions is violated the problem is called
ill-posed



Linear inverse problems

We consider the linear inverse problem

f=Au

@ The physical phenomenon that relates the unknown and the
measurement is modelled by a linear operator A: X — Y.

@ The ideal measurement is given by f = Au.
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Linear inverse problems

We consider the linear inverse problem

f=Au

@ The physical phenomenon that relates the unknown and the
measurement is modelled by a linear operator A: X — Y.

@ The ideal measurement is given by f = Au.
@ We can only observe noisy measurements f, = Au+n

We would like to recover the unknown u from a noisy measurement
fn.

Main difficulty: A~' does not exist or is not continuous.



Examples: matrix inversion

) A:RY — R(A) C RX, k > d, i.e. the system is
overdetermined. Because of the noise f, ¢ R(A)
= There is no solution.
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Examples: matrix inversion

) A:RY — R(A) C RX, k > d, i.e. the system is
overdetermined. Because of the noise f, ¢ R(A)
= There is no solution.

I) A:RY - R k < d, i.e. the system is underdetermined.
= There are several possible solutions.

IIl) There exists A~' : RY — RY, but the condition number
Kk = A\ /Aq is very large. Then A is almost singular and
|A="n|| = ||n||/ Ay can be arbitrarily large.
= The naive reconstruction t = A~ 'f,=u+ A 'nis
dominated by the noise.



Examples: Deblurring (deconvolution)

Figure: The Hubble space telescope had a flaw in its mirror which
resulted in the images being blurred.

100 = (Au)() = [ alx = y)uy)ay



Signal deblurring for noiseless data

The noiseless data f(t) = [*_a(t — s)u(s)ds has Fourier transform

(&) = /_ h e Sf(t)dt.
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Signal deblurring for noiseless data

The noiseless data f(t) = [*_a(t — s)u(s)ds has Fourier transform

fe) = / e Ef(1)al.
The Convolution Theorem implies

f(&) = ae)u(e),

and hence by inverse Fourier transform
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Signal deblurring for noisy data

We can only observe noisy data and get

~
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Signal deblurring for noisy data

We can only observe noisy data and get

fn(€) = &(£)0(&) + ().

We assume that a is a Gaussian kernel

1 1 5
Then the estimate u given by the Convolution Theorem is

~ 1

w0 =ut) + 5 [ e (it + G )t

which may not be even well defined since the Fourier transform of
the noise will not decay fast enough.



Examples: Heat distribution in an insulated rod

Consider the problem

Vi—Vix =0 in(0,7) x Ry
v(0,-)=v(m,-)=0 onR;
v(-, T)="f in(0,7)
v(-,0)=u in(0,m)
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Examples: Heat distribution in an insulated rod

Consider the problem

Vi— Vi =0 in(0,7) x Ry
v(0,-)=v(m,-)=0 onR;
v(-, T)="f in(0,7)
v(-,0)=u in(0,m)

Forward problem: Determine the final distribution v(-, T) € L?(0, 7),
T > 0, when the initial distribution v(-,0) € L2(0, ) is given.

Inverse problem: Determine the initial distribution v(-,0) € L2(0, )
from observed (noisy) final distribution v(-, T) € L?(0, 7).



Forward problem

The solution to the forward problem can be given explicitly:
vix,T) = Z *Tsin(jx),

where {U;}°, are the Fourier (sine) coefficients of the initial heat
distribution v.



Forward problem

The solution to the forward problem can be given explicitly:
vix,T) = Z *Tsin(jx),

where {U;}°, are the Fourier (sine) coefficients of the initial heat
distribution v.

The solution operator
Ar:uw—v(, T)=f, L%0,7)— L%(0,7)

satisfies the following conditions:
@ Arisinjective,
@ R(Ar)is dense in L2(0, ),
@ Aris linear, bounded and compact = no continuous inverse.



Inverse problem

We notice that, for every s > 0,

2 22T 2
IvIEs = Z! ]
Jj=1

— =,. _ 02T~
=T SZ(IZT)Se 2j T|Uj|2
=
< CT~°||ull

and hence R(Ar) C Ns=oH*. However, noise is not smooth and
hence f, = v(-, T) + n ¢ R(Ar).



Heat distribution at t = 0.02,0.06,0.1,0.2,0.5 and
t=1




Another heat distribution at t = 0.02,0.06,0.1,0.2,0.5
and t =1




Comparison of the two heat distributions




Examples: Computerised tomography (CT)




The data are collected by rotating the X-ray source
and detectors around the object

Video by Samuli Siltanen. For more videos see
www.siltanen-research.net/IPexamples/xray_tomography
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www.siltanen-research.net/IPexamples/xray_tomography

Examples: Ozone layer tomography

Figure: Given star occultation measurements, what is the ozone profile?



Examples: Geodesic X-ray transform

Earthquake

Ao sarem g



Examples: Photo-acoustic tomography
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Figure: Photo-acoustic tomography is an example of a hybrid inverse
problem that aims to combine high contrast and resolution of different
imaging methods.



Examples: Photo-acoustic tomography

Figure: Images of superficial blood vessels. Image by UCL Photoacoustic
Imaging Group



Examples: Hydraulic tomography

Actual distribution of hydrauli ductivi Results of hydraulic tomography. Pumping and observation locations.

Figure: Hydraulic tomography: Measure water pressure in a groundwater
reservoir to estimate the hydraulic conductivity (Image by Dr Jim Yeh;
http://tian.hwr.arizona.edu/research/HT/examples)

fan=(p(x;) :i=1,..,1), where
—V - exp(u(x))Vp(x) = s(x) (x e D)+ b.c.

NB. the map u — f, is non-linear


http://tian.hwr.arizona.edu/research/HT/examples

Outline of the course

@ Functional-analytic regularisation (ca. 12 lectures)
e Regularisation theory in Hilbert spaces
@ singular value decomposition of compact operators, spectral
filtering;
e Regularisation theory in Banach spaces
@ variational methods, convex analysis, duality;

@ Bayesian inverse problems (ca. 12 lectures)
e Uncertainty, statistics, and learning

@ Bayesian and conditional probability on separable Banach
spaces, random fields
@ Bayesian inverse problems and the linear Gaussian case

o Well-posedness of Bayesian inverse problems

@ existence, uniqueness, and stability of posterior measures
@ Algorithms for Bayesian inversion

@ Importance sampling, Markov chain Monte Carlo



Solving an inverse problem: Variational approach

We want to approximate u from a measurement
fn=Au+ n,

where A: X — Y is linear and bounded, X and Y are Banach
spaces and n ¢ R(A) is a perturbation such that ||n||y < 4.

One approach is to use the least squares method

u=arg [r}‘lel)n( {I|Au — |5}

Problem: Multiple minima (if A is not injective) and no stability with
respect to the data f,.
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Solving an inverse problem: Variational approach

We want to approximate u from a measurement
fn=Au+ n,

where A: X — Y is linear and bounded, X and Y are Banach
spaces and n ¢ R(A) is a perturbation such that ||n||y < 0.

To regularise the problem we add a regularisation term and define
U= in{||Au— f,||3 + aR(u
arg min { | nlly + aR(u)}
Regularisation gives a stable approximate solution for the inverse

problem. Parameter o« depends on the magnitude § of the
perturbation n.

Problem: perturbation n does not have a statistical interpretation,
the constraint ||n||y < ¢ will not be satisfied for a random n.



Solving an inverse problem: Stochastic approach

Problem: perturbation n does not have a statistical interpretation,
the constraint ||n||y < ¢ will not be satisfied for a random n.
Problem: variational approach gives an estimate for the solution of

fr=Au+n

Questions:
@ how good is this estimate?
@ statistical properties?
@ uncertainties?
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. [Cox, 1946 :
u and n are uncertain [“222%] represent through random variables
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Solving an inverse problem: Stochastic approach
We consider a measurement model

. [Cox, 1946 .
u and n are uncertain [*?229%! represent through random variables

@ U describing our a priori knowledge concerning the parameter
P(U € ) is called prior distribution

@ N describing our knowledge concerning the noise

obtaining the measurement is an event:

{fo = A(U) + N}



The solution is a probability distribution

“Learn” data by conditioning the parameter U on {f, = A(U) + N},
i.e., determine the posterior distribution:

P(U € -|f, = A(U) + N)
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The solution is a probability distribution

“Learn” data by conditioning the parameter U on {f, = A(U) + N},
i.e., determine the posterior distribution:

P(U € -|f, = A(U) + N)

@ posterior distribution describes our knowledge a posteriori to
seeing the data

@ posterior distribution is obtained through Bayes’ formula
= Bayesian inverse problem

Bayes’ theorem (informal)

Tposterior(U]fn) o L(fn|U)prior(U),

Toorior» Tposterior @re prior/posterior densities, and L is the likelihood



The solution is a probability distribution

Finite dimensional Gaussian example
@ X=R%and Y =RX, A: X — Y linear,
@ N ~ N(0,Idy) is white Gaussian noise

@ We choose Gaussian prior P(U € -) = N(0,X)

Posterior has density

1 1
mpostrior(ulfa) o< exp (= 5 1fn = AulZc — [}



The solution is a probability distribution

Finite dimensional Gaussian example
@ X=R%and Y =RX, A: X — Y linear,
@ N ~ N(0,Idy) is white Gaussian noise

@ We choose Gaussian prior P(U € -) = N(0,X)

Posterior has density

1 1
mpostrior(ulfa) o< exp (= 5 1fn = AulZc — [}

@ here: posterior has a closed form solution
@ Optimising mposterior(U|fn) = regularisation (with R(u) = ||u||Z)



Questions? Comments?



	fd@rm@0: 


