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Chapter 1

Introduction to Inverse Problems

Inverse problems arise from the need to gain information about an unknown object of inter-
est from given indirect measurements. Inverse problems have several applications varying
from medical imaging and industrial process monitoring to ozone layer tomography and
modelling of financial markets. The common feature for inverse problems is the need to
understand indirect measurements and to overcome extreme sensitivity to noise and mod-
elling inaccuracies. In this course we employ both deterministic and probabilistic approach
to inverse problems to find stable and meaningful solutions that allow us quantify how
inaccuracies in the data or model affect the obtained estimate.

1.1 Well-posed and ill-posed problems

We start by considering the problem of finding u ∈ Rd that satisfies the equation

f = Au, (1.1)

where f ∈ Rk is given. We refer to f as observed data or measurement and u as an unknown.
The physical phenomena that relates the unknown and the measurement is modelled by a
matrix A ∈ Rk×d. In real life the perfect data given in (1.1) is perturbed by noise and we
observe measurements

fn = Au+ n, (1.2)

where n ∈ Rk represents the observational noise.
We are interested in ill-posed inverse problems, where the inverse problem is more

difficult to solve than the direct problem of finding fn when u is given. To explain this
we first need to introduce well-posedness as defined by Jacques Hadamard:

Definition 1.1.1. A problem is called well-posed if

1. There exists at least one solution. (Existence)

2. There is at most one solution. (Uniqueness)

3. The solution depends continuously on data. (Stability)

The direct or forward problem is assumed to be well-posed. The inverse problems are
ill-posed and break at least one of the above conditions.

7



8 CHAPTER 1. INTRODUCTION TO INVERSE PROBLEMS

1. Assume that d < k and A : Rd → R(A) ( Rk, where the range of A is a proper
subset of Rk. Furthermore, we assume that A has a unique inverse A−1 : R(A)→ Rk.
Because of the noise in the measurement fn 6∈ R(A) so that simply inverting A with
the data given in (1.2) is not possible. Note that usually only the statistical properties
of the noise n are known so we cannot just subtract it.

2. Assume next that d > k and A : Rd → Rk, in which case the system is underde-
termined. We then have more unknowns than equations which means that there are
several possible solutions.

3. Consider next case d = k and there exist A−1 : Rk → Rk but the condition number
κ = λ1/λk, where λ1 and λk are the biggest and smallest eigenvalues of A, is very
large. Such a matrix is said to be ill-conditioned and is almost singular. In this case
the problem is sensitive even to smallest errors in the measurement. Hence the naive
reconstruction ũ = A−1fn = u + A−1n does not produce a meaningful solution but
will be dominated by A−1n. Note that ‖A−1n‖2 ≈ ‖n‖2/λk can be arbitrarily large.

The last part illustrates one of the key perspectives of inverse problem theory; How can we
stabilise the reconstruction process while maintaining acceptable accuracy?

A deterministic way of achieving a unique and stable solution for the problem (1.2) is
to use regularisation theory. In the classical Tikhonov regularisation a solution is attained
by solving

min
u∈Rd

(
‖Au− fn‖2 + α‖Lu‖2

)
. (1.3)

Above α acts as a tuning parameter balancing the effect of the data fidelity term ‖Au− fn‖2
and the stabilising regularisation term ‖u‖2. The first half of the course will concentrate
on regularisation theory.

Another way of tackling problems arising from ill-posedness is Bayesian inversion. The
idea of statistical inversion methods is to rephrase the inverse problem as a question of
statistical inference. We then consider problem

F = AU +N, (1.4)

where the measurement, unknown and noise are now modelled as random variables. This
approach allows us to model the noise through its statistical properties. We can also encode
our a priori knowledge of the unknown in form of a probability distribution that assigns
higher probability to those values of u we expect to see. The solution to (1.4) is so-called
posterior distribution, which is the conditional probability distribution of u given a mea-
surement m. This distribution can then be used to obtain estimates that are most likely
in some sense. We will return to the Bayesian approach to inverse problems in the second
half of the course

In this course we will concentrate on continuous inverse problems where in (1.1) and
(1.2) A : X → Y is a linear or non-linear forward operator acting between some spaces
X and Y , typically Hilbert or Banach spaces, the measured data fn ∈ Y is a function
and u ∈ X is the quantity we want to reconstruct from the data. Linear inverse problems
include such important applications as computer tomography, magnetic resonance imaging
and image deblurring in microscopy or astronomy. In other important applications, such as
seismic imaging, the forward operator is non-linear (e.g., parameter identification problems
for PDEs). Next we will take a look at some examples of linear and non-linear inverse
problems to see what kind of challenges we face when trying to solve them.
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1.2 Examples of inverse problems

1.2.1 Signal deblurring

The deblurring (or deconvolution) problem of recovering an input signal u form an observed
signal

fn(t) =

∫ ∞
−∞

a(t− s)u(s)ds+ n(t)

occurs in many imaging, and image- and signal processing applications. Here the function
a is known as the blurring kernel.

The noiseless data is given by f(t) =
∫∞
−∞ a(t − s)u(s)ds and its Fourier transform is

f̂(ξ) =
∫∞
−∞ e

−iξtf(t)dt. The convolution theorem implies

f̂(ξ) = â(ξ)û(ξ),

and hence by inverse Fourier transform

u(t) =
1

2π

∫ ∞
−∞

eitξ
f̂(ξ)

â(ξ)
dξ.

However, we can only observe noisy measurements and hence we have on the frequency
domain f̂n(ξ) = â(ξ)û(ξ) + n̂(ξ). The estimate uest based on the convolution theorem is
given by

uest(t) = u(t) +
1

2π

∫ ∞
−∞

eitξ
n̂(ξ)

â(ξ)
dξ,

which is often not even well defined, since usually the kernel a decreases exponentially (or
has compact support), making the denominator small, whereas the Fourier transform of the
noise will be non-zero.

1.2.2 Heat equation

Next we study the problem of recovering the initial condition u of the heat equation from
a noisy observation fn of the solution at some time T > 0. We consider the heat equation
on a torus Td, with Dirichlet boundary conditions

dv
dt −∆v = 0 onTd × R+

v(x, t) = 0 on ∂Td × R+

v(x, T ) = f(x) onTd

v(x, 0) = u(x) onTd

where ∆ denotes the Laplace operator and D(∆) = H1
0 (Td) ∩ H2(Td). Note that the

operator −∆ is positive and self-adjoint on Hilbert space H = L2(Td).
Given a function u ∈ L2(Td) we can decompose it as a Fourier series

u(x) =
∑
n∈Zd

une
2πi〈n,x〉,
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where un = 〈u, e2πi〈n,x〉〉 are the Fourier coefficients, and the identity holds for almost every
x ∈ Td. The L2 norm of u is given by the Parseval’s identity ‖u‖2L2 =

∑ |un|2. Remember
that the Sobolev space Hs(Td), s ∈ N, consist of all L2(Td) integrable functions whose
αth order weak derivatives exist and are L2(Td) integrable for all |α| 6 s. The fractional
Sobolev space Hs(Td) is given by the subspace of functions u ∈ L2(Td), such that

‖u‖2Hs =
∑
n∈Zd

(1 + 4π2|n|2)s|un|2 <∞. (1.5)

Note that for a positive integer s, the above definition agrees with the definition given using
the weak derivatives. For s < 0, we define Hs(Td) via duality or as the closure of L2(Td)
under the norm (1.5). The resulting spaces are separable for all s ∈ R.

The eigenvectors of −∆ in Td form the orthonormal basis of L2(Td) and the eigenval-
ues are given by 4π2|n|2, n ∈ Zd. We can also work on real-valued functions where the
eigenfunctions {ϕj}∞j=1 comprise sine and cosine functions. The eigenvalues of −∆, when

ordered on a one-dimensional lattice, then satisfy λj � j
2
d . The notation � means that

there exist constants C1, C2 > 0, such that C1j
2
d 6 λj 6 C2j

2
d .

The solution to the forward heat equation can be written as

v(t) =
∞∑
j=1

uje
−λjtϕj .

We notice that

‖v(t)‖2Hs �
∞∑
j=1

j
2s
d e−2λjt|uj |2 = t−s

∞∑
j=1

(λjt)
se−2λjt|uj |2 6 Ct−s

∞∑
j=1

|uj |2 = Ct−s‖u‖L2

which implies that v(t) ∈ Hs(Td) for all s > 0.

We now have observation model

fn = Au+ n,

where A = eT∆ and n is the observational noise. The noise is not usually smooth (the often
assumed white noise is not even an L2 function) and hence measurement fn is not in the
image space D(eT∆) ⊂ ∩s>0H

s(Td).

1.2.3 Differentiation

Consider the problems of evaluation the derivative of a function f ∈ L2[0, π/2]. Let

Df = f ′,

where D : L2[0, π/2]→ L2[0, π/2].

Proposition 1.2.1. The operator D is unbounded from L2[0, π/2]→ L2[0, π/2].

Proof. Take a sequence fn(x) = sin(nx), n = 1, . . . ,∞. Clearly, fn ∈ L2[0, π/2] for all n and
‖fn‖ =

√
π
4 . However, Dfn(x) = n cos(nx) and ‖Dfn‖ = n→∞ as n→∞. Therefore, D

is unbounded.
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This shows that differentiation is ill-posed from L2 to L2. It does not mean that it can
not be well-posed in other spaces. For instance, it is well-posed from H1 (the Sobolev space
of L2 functions whose derivatives are also L2) to L2. Indeed, ∀u ∈ H1 we get

‖Df‖L2 = ‖f ′‖L2 6 ‖f‖H1 = ‖f‖L2 + ‖f ′‖L2 .

However, since in practice we typically deal with functions corrupted by nonsmooth
noise, the L2 setting is practice-relevant, while the H1 setting is not.

Differentiation can be written as an inverse problem for an integral equation. For in-
stance, the derivative u of some function f ∈ L2[0, 1] with f(0) = 0 satisfies

f(x) =

∫ x

0
u(t) dt,

which can be written as an operator equation Au = f with (A·)(x) :=
∫ x

0 ·(t) dt.

1.2.4 Matrix inversion

In finite dimensions, the inverse problem (1.1) is a linear system. Linear systems are formally
well-posed in the sense that the error in the solution is bounded by some constant times
the error in the right-hand side, however, this constant depends on the condition number
of the matrix A and can get arbitrary large for matrices with large condition numbers. In
this case, we speak of ill-conditioned problems.

Consider the problem (1.1) with u ∈ Rn and f ∈ Rn being n-dimensional vectors with
real entries and A ∈ Rn×n being a matrix with real entries. Assume further A to be
symmetric and positive definite.

We know from the spectral theory of symmetric matrices that there exist eigenvalues
λ1 > λ2 > . . . > λn > 0 and corresponding (orthonormal) eigenvectors aj ∈ Rn for
j ∈ {1, . . . , n} such that A can be written as

A =

n∑
j=1

λjaja
>
j . (1.6)

It is well known from numerical linear algebra that the condition number κ = λ1/λn is a
measure of how stable (1.1) can be solved, which we will illustrate what follows.

We assume that we measure fδ instead of f , with ‖f − fδ‖2 6 δ‖A‖ = δλ1, where ‖ · ‖2
denotes the Euclidean norm of Rn and ‖A‖ the operator norm of A (which equals the largest
eigenvalue of A). Then, if we further denote with uδ the solution of Auδ = fδ, the difference
between uδ and the solution u to (1.1) is

u− uδ =

n∑
j=1

λ−1
j aja

>
j (f − fδ).

Therefore, we can estimate

‖u− uδ‖22 =

n∑
j=1

λ−2
j ‖aj‖22︸ ︷︷ ︸

=1

|a>j (f − fδ)|2 6 λ−2
n ‖f − fδ‖22,

due to the orthonormality of eigenvectors, the Cauchy-Schwarz inequality, and λn 6 λj .
Thus, taking square roots on both sides yields the estimate

‖u− uδ‖2 6 λ−1
n ‖f − fδ‖2 6 κδ.
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Hence, we observe that in the worst case an error δ in the data y is amplified by the condition
number κ of the matrix A. A matrix with large κ is therefore called ill-conditioned. We
want to demonstrate the effect of this error amplification with a small example.

Example 1.2.1. Let us consider the matrix

A =

(
1 1
1 1001

1000

)
,

which has eigenvalues λj = 1 + 1
2000 ±

√
1 + 1

20002
, condition number κ ≈ 4002 � 1, and

operator norm ‖A‖ ≈ 2. For given data f = (1, 1)> the solution to Au = f is u = (1, 0)>.

Now let us instead consider perturbed data fδ = (99/100, 101/100)>. The solution uδ
to Auδ = fδ is then uδ = (−19.01, 20)>.

Let us reflect on the amplification of the measurement error. By our initial assumption
we find that δ = ‖f − fδ‖/‖A‖ ≈ ‖(0.01,−0.01)>‖/2 =

√
2/200. Moreover, the norm of

the error in the reconstruction is then ‖u− uδ‖ = ‖(20.01, 20)>‖ ≈ 20
√

2. As a result, the
amplification due to the perturbation is ‖u− uδ‖/δ ≈ 4000 ≈ κ.

1.2.5 Tomography

In almost any tomography application the underlying inverse problem is either the inversion
of the Radon transform1 or of the X-ray transform.

For u ∈ C∞0 (Rn), s ∈ R, and θ ∈ Sn−1 the Radon transform R : C∞0 (Rn)→ C∞(Sn−1×
R) can be defined as the integral operator

f(θ, s) = (Ru)(θ, s) =

∫
x·θ=s

u(x) dx (1.7)

=

∫
θ⊥
u(sθ + y) dy,

which, for n = 2, coincides with the X-ray transform,

f(θ, s) = (Pu)(θ, s) =

∫
R
u(sθ + tθ⊥) dt,

for θ ∈ Sn−1 and θ⊥ being the vector orthogonal to θ. Hence, the X-ray transform (and
therefore also the Radon transform in two dimensions) integrates the function u over lines
in Rn, see Fig. 1.12.

Example 1.2.2. Let n = 2. Then Sn−1 is simply the unit sphere S1 = {θ ∈ R2 | ‖θ‖ = 1}.
We can choose for instance θ = (cos(ϕ), sin(ϕ))>, for ϕ ∈ [0, 2π), and parametrise the
Radon transform in terms of ϕ and s, i.e.

f(ϕ, s) = (Ru)(ϕ, s) =

∫
R
u(s cos(ϕ)− t sin(ϕ), s sin(ϕ) + t cos(ϕ)) dt. (1.8)

1Named after the Austrian mathematician Johann Karl August Radon (16 December 1887 – 25 May
1956).

2Figure adapted from Wikipedia https://commons.wikimedia.org/w/index.php?curid=3001440, by
Begemotv2718, CC BY-SA 3.0.

https://commons.wikimedia.org/w/index.php?curid=3001440
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θ

s

u(x)

t

tθ⊥

Figure 1.1: Visualization of the Radon transform in two dimensions (which coincides with
the X-ray transform). The function u is integrated over the ray parametrized by θ and s.3

Note that—with respect to the origin of the reference coordinate system—ϕ determines the
angle of the line along one wants to integrate, while s is the offset from that line from the
centre of the coordinate system.

It can be shown that the Radon transform is linear and continuous, i.e. R ∈ L(L2(B), L2(Z)),
and even compact.

In X-ray Computed Tomography (CT), the unknown quantity u represents a spa-
tially varying density that is exposed to X-radiation from different angles, and that absorbs
the radiation according to its material or biological properties.

The basic modelling assumption for the intensity decay of an X-ray beam is that within
a small distance ∆t it is proportional to the intensity itself, the density, and the distance,
i.e.

I(x+ (t+ ∆t)θ)− I(x+ tθ)

∆t
= −I(x+ tθ)u(x+ tθ),

for x ∈ θ⊥. By taking the limit ∆t→ 0 we end up with the ordinary differential equation

d

dt
I(x+ tθ) = −I(x+ tθ)u(x+ tθ), (1.9)

Let R > 0 be the radius of the domain of interest centred at the origin. Then, we integrate
(1.9) from t = −

√
R2 − ‖x‖22, the position of the emitter, to t =

√
R2 − ‖x‖22, the position

of the detector, and obtain∫ √R2−‖x‖22

−
√
R2−‖x‖22

d
dtI(x+ tθ)

I(x+ tθ)
dt = −

∫ √R2−‖x‖22

−
√
R2−‖x‖22

u(x+ tθ) dt .

Note that, due to d/dx log(f(x)) = f ′(x)/f(x), the left hand side in the above equation
simplifies to∫ √R2−‖x‖22

−
√
R2−‖x‖22

d
dtI(x+ tθ)

I(x+ tθ)
dt = log

(
I

(
x+

√
R2 − ‖x‖22θ

))
− log

(
I

(
x−

√
R2 − ‖x‖22θ

))
.

As we know the radiation intensity at both the emitter and the detector, we therefore
know f(x, θ) = log(I(x− θ

√
R2 − ‖x‖22))− log(I(x+ θ

√
R2 − ‖x‖22)) and we can write the
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estimation of the unknown density u as the inverse problem of the X-ray transform (1.8)
(if we further assume that u can be continuously extended to zero outside of the circle of
radius R).

1.2.6 Groundwater flow/hydraulic tomography

One goal in hydraulic tomography is to estimate the permeability of a groundwater reservoir.
The permeability describes the conductivity of the groundwater reservoir and is, e.g., used
to estimate the travel time of toxic or radioactive particles in the groundwater.

To estimate the permeability, the water pressure in several position within the reser-
voir is measured. Pressure head and permeability are linked through Darcy’s law and the
(assumed) incompressibility of water.

Let D ⊆ Rd (d = 1, 2, 3) be an open, bounded, connected set with smooth boundary
representing the groundwater reservoir. Let a : D → (0,∞) be a continuously differentiable
function representing the permeability and let s : D → R be a continuous function repre-
senting the water sources in the reservoir. Furthermore, assume that the water pressure is
0 outside of D.

Darcy’s law states that the pressure p : D → R, the flux ~q : D → Rd, and the perme-
ability in the reservoir are related as follows:

~q(x) = −a(x)∇p(x) (x ∈ D).

Incompressibility on the other hand requires that the divergence of the flux is fully controlled
by in- and outflow given through the source term s:

∇ · ~q(x) = s(x) (x ∈ D).

Finally, we can combine these assertions and obtain the elliptic partial differential equation

−∇ · a(x)∇p(x) = s(x) (x ∈ D)

p(x) = 0 (x ∈ ∂D).

In the described set-up, we now observe the pressure p in several positions x1, . . . , xI ∈ D,
e.g., we observe fn = (p(xi) : i = 1, ..., I) + n. We consider the inverse problem consisting
in the estimation of the permeability a using the pressure measurements fn. Indeed, using
noisy point evaluations of the solution of the partial differential equation, we try to estimate
its diffusion coefficient. Note that the map a 7→ (p(xi) : i = 1, ..., I) is non-linear. Hence,
this inverse problem is a non-linear inverse problem.



Chapter 2

Generalised Solutions

Functional analysis is the basis of the theory that we will cover in this course. We cannot
recall all basic concepts of functional analysis and instead refer to popular textbooks that
deal with this subject, e.g., [12, 37, 33]. Nevertheless, we shall recall a few important
definitions that will be used in this lecture.

We will focus on inverse problems with bounded linear operators A, i.e. A ∈ L(X ,Y)
with

‖A‖L(X ,Y) := sup
u∈X\{0}

‖Au‖Y
‖u‖X

= sup
‖u‖X61

‖Au‖Y <∞.

For A : X → Y we further want to denote by

1. D(A) := X the domain,

2. N (A) := {u ∈ X | Au = 0} the kernel,

3. R(A) := {f ∈ Y | f = Au, u ∈ X} the range

of A.

We say that A is continuous at u ∈ X if for all ε > 0 there exists δ > 0 with

‖Au−Av‖Y 6 ε for all v ∈ X with ‖u− v‖X 6 δ.

For linear K it can be shown that continuity is equivalent to boundedness, i.e. the existence
of a constant C > 0 such that

‖Au‖Y 6 C‖u‖X

for all u ∈ X . Note that this constant C actually equals the operator norm ‖A‖L(X ,Y).

In this Chapter we only consider A ∈ L(X ,Y) with X and Y being Hilbert spaces. From
functional calculus we know that every Hilbert space U is equipped with a scalar product,
which we are going to denote by 〈·, ·〉U (or simply 〈·, ·〉, whenever the space is clear from the
context). In analogy to the transpose of a matrix, this scalar product structure together
with the theorem of Fréchet-Riesz [37, Section 2.10, Theorem 2.E] allows us to define the
(unique) adjoint operator of A, denoted with A∗, as follows:

〈Au, v〉Y = 〈u,A∗v〉X , for all u ∈ X , v ∈ Y.

15
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In addition to that, a scalar product can be used to define orthogonality. Two elements
u, v ∈ X are said to be orthogonal if 〈u, v〉 = 0. For a subset X ′ ⊂ X the orthogonal
complement of X ′ in X is defined as

X ′⊥ :=
{
u ∈ X | 〈u, v〉X = 0 for all v ∈ X ′

}
.

One can show that X ′⊥ is a closed subspace and that X⊥ = {0}. Moreover, we have that
X ′ ⊂ (X ′⊥)⊥. If X ′ is a closed subspace then we even have X ′ = (X ′⊥)⊥. In this case there
exists the orthogonal decomposition

X = X ′ ⊕X ′⊥,
which means that every element u ∈ X can uniquely be represented as

u = x+ x⊥ with x ∈ X ′ and x⊥ ∈ X ′⊥,
see for instance [37, Section 2.9, Corollary 1].

The mapping u 7→ x defines a linear operator PX ′ ∈ L(X ,X ) that is called orthogonal
projection on X ′.
Lemma 2.0.1 (cf. [28, Section 5.16]). Let X ′ ⊂ X be a closed subspace. The orthogonal
projection onto X ′ satisfies the following conditions:

1. PX ′ is self-adjoint, i.e. P ∗X ′ = PX ′,

2. ‖PX ′‖L(X ,X ) = 1 (if X ′ 6= {0}),

3. I − PX ′ = PX ′⊥,

4. ‖u− PX ′u‖X 6 ‖u− v‖X for all v ∈ X ′,
5. x = PX ′u if and only if x ∈ X ′ and u− x ∈ X ′⊥.

Remark 2.0.2. Note that for a non-closed subspace X ′ we only have (X ′⊥)⊥ = X ′. For
A ∈ L(X ,Y) we therefore have

• R(A)⊥ = N (A∗) and thus N (A∗)⊥ = R(A),

• R(A∗)⊥ = N (A) and thus N (A)⊥ = R(A∗).

Hence, we can deduce the following orthogonal decompositions

X = N (A)⊕R(A∗) and Y = N (A∗)⊕R(A).

We will also need the follwoing relationship between the ranges of A∗ and A∗A.

Lemma 2.0.3. Let A ∈ L(X ,Y). Then R(A∗A) = R(A∗).

Proof. It is clear that R(A∗A) = R(A∗|R(A)) ⊆ R(A∗), so we are left to prove that R(A∗) ⊆
R(A∗A).

Let u ∈ R(A∗) and let ε > 0. Then, there exists f ∈ N (A∗)⊥ = R(A) with ‖A∗f−u‖X <
ε/2 (recall the orthogonal decomposition in Remark 2.0.2). AsN (A∗)⊥ = R(A), there exists
x ∈ X such that ‖Ax− f‖Y < ε/(2‖A‖L(X ,Y)). Putting these together we have

‖A∗Ax− u‖X 6 ‖A∗Ax−A∗f‖X + ‖A∗f − u‖X
6 ‖A∗‖L(Y,X )‖Ax− f‖Y︸ ︷︷ ︸

<ε/2

+ ‖A∗f − u‖X︸ ︷︷ ︸
<ε/2

< ε

which shows that u ∈ R(A∗A) and thus also R(A∗) ⊆ R(A∗A).
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2.1 Generalised Inverses

Recall the inverse problem
Au = f, (2.1)

where A : X → Y is a linear bounded operator and X and Y are Hilbert spaces.

Definition 2.1.1 (Minimal-norm solutions). An element u ∈ X is called

• a least-squares solution of (2.1) if

‖Au− f‖Y = inf{‖Av − f‖Y , v ∈ X};

• a minimal-norm solution of (2.1) (and is denoted by u†) if

‖u†‖X 6 ‖v‖X for all least squares solutions v.

Remark 2.1.2. Since R(A) is not closed in general (it is never closed for a compact
operator, unless the range is finite-dimensional), a least-squares solution may not exist. If
it exists, then the minimal-norm solution is unique (it is the orthogonal projection of the
zero element onto an affine subspace defined by ‖Au− f‖Y = min{‖Av − f‖Y , v ∈ X}).

In numerical linear algebra it is a well known fact that the normal equations can be used
to compute least-squares solutions. The same holds true in the infinite-dimensional case.

Theorem 2.1.3. Let f ∈ Y and A ∈ L(X ,Y). Then, the following three assertions are
equivalent.

1. u ∈ X satisfies Au = PR(A)
f .

2. u is a least squares solution of the inverse problem (2.1).

3. u solves the normal equation
A∗Au = A∗f. (2.2)

Remark 2.1.4. The name normal equation is derived from the fact that for any solution
u its residual Au− f is orthogonal (normal) to R(A). This can be readily seen, as we have
for any v ∈ X that

0 = 〈v,A∗(Au− f)〉X = 〈Av,Au− f〉Y
which shows Au− f ∈ R(A)⊥.

Proof of Theorem 2.1.3. For 1 ⇒ 2: Let u ∈ X such that Au = PR(A)
f and let v ∈ X be

arbitrary. With the basic properties of the orthogonal projection, Lemma 2.0.1 4, we have

‖Au− f‖Y = ‖ff − PR(A)
f‖Y 6 inf

g∈R(A)
‖g − f‖Y 6 inf

g∈R(A)
‖g − f‖Y = inf

v∈X
‖Av − f‖Y ,

which shows that u is a least squares solution.
For 2 ⇒ 3: Let u ∈ X be a least squares solution and let v ∈ X an arbitrary element.

We define the quadratic polynomial F : R→ R,

F (λ) := ‖A(u+ λv)− f‖2Y = λ2‖Av‖2Y − 2λ 〈Av, f −Au〉Y + ‖f −Au‖2Y .
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A necessary condition for u ∈ X to be a least squares solution is F ′(0) = 0, which leads to
〈v,A∗(f −Au)〉X = 0. As v was arbitrary, it follows that the normal equation (2.2) must
hold.

For 3⇒ 1: From the normal equation it follows that A∗(f−Au) = 0, which is equivalent

to f −Au ∈ R(A)⊥, see Remark 2.1.4. Since R(A)⊥ =
(
R(A)

)⊥
and Au ∈ R(A) ⊂ R(A),

the assertion follows from Lemma 2.0.1 5:

Au = PR(A)
f ⇔ Au ∈ R(A) and f −Au ∈

(
R(A)

)⊥
.

Lemma 2.1.5. Let f ∈ Y and let L be the set of least squares solutions to the inverse
problem (2.1). Then, L is non-empty if and only if f ∈ R(A)⊕R(A)⊥.

Proof. Let u ∈ L. It is easy to see that f = Au+ (f −Au) ∈ R(A)⊕R(A)⊥ as the normal
equations are equivalent to f −Au ∈ R(A)⊥.

Consider now f ∈ R(A)⊕R(A)⊥. Then there exists u ∈ X and g ∈ R(A)⊥ =
(
R(A)

)⊥
such that f = Au+ g and thus PR(A)

f = PR(A)
Au+PR(A)

g = Au and the assertion follows

from Theorem 2.1.3 1.

Remark 2.1.6. If the dimensions of X and R(A) are finite, then R(A) is closed, i.e.
R(A) = R(A). Thus, in a finite dimensional setting, there always exists a least squares
solution.

Theorem 2.1.7. Let f ∈ R(A)⊕R(A)⊥. Then there exists a unique minimal norm solution
u† to the inverse problem (2.1) and all least squares solutions are given by {u†}+N (A).

Proof. From Lemma 2.1.5 we know that there exists a least squares solution. As noted
in Remark 2.1.2, in this case the minimal-norm solution is unique. Let ϕ be an arbitrary
least-squares solution. Using Theorem 2.1.3 we get

A(ϕ− u†) = Aϕ−Au† = PR(A)
f − PR(A)

f = 0, (2.3)

which shows that ϕ− u† ∈ N (A), hence the assertion.

If a least-squares solution exists for a given f ∈ Y then the minimal-norm solution can
be computed (at least in theory) using the Moore-Penrose generalised inverse.

Definition 2.1.8. Let A ∈ L(X ,Y) and let

Ã := A|N (A)⊥ : N (A)⊥ → R(A)

denote the restriction of A to N (A)⊥. The Moore-Penrose inverse A† is defined as the
unique linear extension of Ã−1 to

D(A†) = R(A)⊕R(A)⊥

with

N (A†) = R(A)⊥.
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Remark 2.1.9. Due to the restriction to N (A)⊥ and R(A) we have that Ã is injective and
surjective. Hence, Ã−1 exists and is linear and – as a consequence – A† is well-defined on
R(A).

Moreover, due to the orthogonal decomposition D(A†) = R(A)⊕R(A)⊥, there exist for
arbitrary f ∈ D(A†) elements f1 ∈ R(A) and f2 ∈ R(A)⊥ with f = f1 + f2. Therefore, we
have

A†f = A†f1 +A†f2 = A†f1 = Ã−1f1 = Ã−1PR(A)
f , (2.4)

where we used that f2 ∈ R(A)⊥ = N (A†). Thus, A† is well-defined on the entire domain
D(A†).

Remark 2.1.10. As orthogonal complements are always closed we get that

D(A†) = R(A)⊕R(A)⊥ = Y,

and hence, D(A†) is dense in Y. Thus, if R(A) is closed it follows that D(A†) = Y and on
the other hand, D(A†) = Y implies R(A) is closed. We note that for ill-posed problems
R(A) is usually not closed; for instance, if A is compact then R(A) is closed if and only if
it is finite-dimensional [1, Ex.1 Section 7.1].

If A is bijective we have that A† = A−1. We also highlight that the extension A† is not
necessarily continuous.

Theorem 2.1.11 ([20, Prop. 2.4]). Let A ∈ L(X ,Y). Then A† is continuous, i.e. A† ∈
L(D(A†),X ), if and only if R(A) is closed.

Example 2.1.12. To illustrate the definition of the Moore-Penrose inverse we consider a
simple example in finite dimensions. Let the linear operator A : R3 → R2 be given by

Ax =

(
2 0 0
0 0 0

)x1

x2

x3

 =

(
2x1

0

)
.

It is easy to see that R(A) = {f ∈ R2 | f2 = 0} and N (A) = {x ∈ R3 | x1 = 0}. Thus,
N (A)⊥ = {x ∈ R3 | x2, x3 = 0}. Therefore, Ã : N (A)⊥ → R(A), given by x 7→ (2x1, 0)>, is
bijective and its inverse Ã−1 : R(A)→ N (A)⊥ is given by f 7→ (f1/2, 0, 0)>.

To get the Moore-Penrose inverse A†, we need to extend Ã−1 to R(A)⊕R(A)⊥ in such
a way that A†f = 0 for all f ∈ R(A)⊥ = {f ∈ R2 | f1 = 0}. It is easy to see that the
Moore-Penrose inverse A† : R2 → R3 is given by the following expression

A†f =

1/2 0
0 0
0 0

(f1

f2

)
=

f1/2
0
0

 .

Let us consider data f̃ = (8, 1)> 6∈ R(A). Then, A†f̃ = A†(8, 1)> = (4, 0, 0)>.

It can be shown that A† can be characterised by the Moore-Penrose equations.

Theorem 2.1.13 ([20, Prop. 2.3]). The Moore-Penrose inverse A† satisfies R(A†) =
N (A)⊥ and the Moore-Penrose equations
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1. A†A = PN (A)⊥,

2. AA† = PR(A)

∣∣∣
D(A†)

,

3. AA†A = A,

4. A†AA† = A†,

where PN (A) and PR(A)
denote the orthogonal projections on N (A) and R(A), respectively.

Proof. First, by the definition of the Moore-Penrose inverse we have for any u ∈ X

A†Au = A†A(PN (A)u+ PN (A)⊥u) = A†APN (A)⊥u = Ã−1APN (A)⊥u = PN (A)⊥u,

which proves 1. Now, for any f ∈ D(A†) we have (see (2.4))

AA†f = AÃ−1PR(A)
f = PR(A)

f,

which proves 2. Applying A to 1., we get 3., and applying A† to 2., we get 4., which
completes the proof.

Corollary 2.1.14. The Moore-Penrose inverse is uniquely characterised by 1.–2., that is,
if a linear operator B : R(A) ⊕ R(A)⊥ → N (A) satisfies BA = PN (A)⊥ and AB = PR(A)

then B = A†.

Proof. First we show that B|R(A) = Ã−1. Indeed, let f = Au ∈ R(A), where u ∈ N (A)⊥.
Then

Bf = BAu = PN (A)⊥u = u = Ã−1f,

where the last equality holds since Ã is bijective and hence uniquely invertible.
Now we prove that B|R(A)⊥ = 0. Indeed, for any f ∈ R(A)⊥ we have

ABf = PR(A)
f = 0.

Therefore, B is an extension of Ã−1 to R(A)⊕R(A)⊥ with N (B) = R(A)⊥. Since such an
extension is unique, B = A†.

Remark 2.1.15. If an operator B satisfies only ABA = A (resp. BAB = B), it is called
the inner inverse (resp. outer inverse) of A.

The next theorem shows that minimal-norm solutions can indeed be computed using
the Moore-Penrose generalised inverse.

Theorem 2.1.16. For each f ∈ D(A†), the minimal norm solution u† to the inverse
problem (2.1) is given via

u† = A†f.

Proof. As f ∈ D(A†), we know from Theorem 2.1.7 that the minimal norm solution u†

exists and is unique. With u† ∈ N (A)⊥, Lemma 2.1.13, and Theorem 2.1.3 we conclude
that

u† = (I − PN (A))u
† = A†Au† = A†PR(A)

f = A†AA†f = A†f.
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As a consequence of Theorem 2.1.16 and Theorem 2.1.3, we find that the minimum
norm solution u† of Au = f is a minimum norm solution of the normal equation (2.2), i.e.

u† = (A∗A)†A∗f.

Thus, in order to compute u† we can equivalently consider finding the minimum norm
solution of the normal equation.

2.2 Compact Operators

Definition 2.2.1. Let A ∈ L(X ,Y). Then A is said to be compact if for any bounded set
B ⊂ X the closure of its image A(B) is compact in Y. We denote the space of compact
operators by K(X ,Y).

Remark 2.2.2. We can equivalently define an operator A to be compact if the image of a
bounded sequence {uj}j∈N ⊂ X contains a convergent subsequence {Aujk}k∈N ⊂ Y.

Compact operators are very common in inverse problems. In fact, almost all (linear)
inverse problems involve the inversion of a compact operator. As the following result shows,
compactness of the forward operator is a major source if ill-posedness.

Theorem 2.2.3. Let A ∈ K(X ,Y) with an infinite dimensional range. Then, the Moore-
Penrose inverse of A is discontinuous.

Proof. As the range R(A) is of infinite dimension, we can conclude that X and N (A)⊥

are also infinite dimensional. We can therefore find a sequence {uj}j∈N with uj ∈ N (A)⊥,
‖uj‖X = 1 and 〈uj , uk〉X = 0 for j 6= k. Since A is a compact operator the sequence
fj = Auj has a convergent subsequence, hence, for all δ > 0 we can find j, k such that
‖fj − fk‖Y < δ. However, we also obtain

‖A†fj −A†fk‖2X = ‖A†Auj −A†Auk‖2X
= ‖uj − uk‖2X = ‖uj‖2X − 2 〈uj , uk〉X + ‖uk‖2X = 2,

which shows that A† is discontinuous. Here, the second identity follows from Lemma 2.1.13 1
and the fact that uj , uk ∈ N (A)⊥.

To have a better understanding of when we have f ∈ R(A)\R(A) for compact operators
A, we want to consider the singular value decomposition of compact operators.

Singular value decomposition of compact operators

Theorem 2.2.4 ([23, p. 225, Theorem 9.16]). Let X be a Hilbert space and A ∈ K(X ,X ) be
self-adjoint. Then there exists an orthonormal basis {xj}j∈N ⊂ X of R(A) and a sequence
of eigenvalues {λj}j∈N ⊂ R with |λ1| > |λ2| > . . . > 0 such that for all u ∈ X we have

Au =
∞∑
j=1

λj 〈u, xj〉X xj .

The sequence {λj}j∈N is either finite or we have λj → 0.
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Remark 2.2.5. The notation in the theorem above only makes sense if the sequence
{λj}j∈N is infinite. For the case that there are only finitely many λj the sum has to
be interpreted as a finite sum.

Moreover, as the eigenvalues are sorted by absolute value |λj |, we have ‖A‖L(X ,X ) = |λ1|.

If A is not self-adjoint, the decomposition in Theorem 2.2.4 does not hold any more.
Instead, we can consider the so-called singular value decomposition of a compact linear
operator.

Theorem 2.2.6. Let A ∈ K(X ,Y). Then there exists

1. a not-necessarily infinite null sequence {σj}j∈N with σ1 > σ2 > . . . > 0,

2. an orthonormal basis {xj}j∈N ⊂ X of N (A)⊥,

3. an orthonormal basis {yj}j∈N ⊂ Y of R(A) with

Axj = σjyj , A∗yj = σjxj , for all j ∈ N. (2.5)

Moreover, for all u ∈ X we have the representation

Au =
∞∑
j=1

σj 〈u, xj〉 yj . (2.6)

The sequence {(σj , xj , yj)} is called singular system or singular value decomposition
(SVD) of A.

For the adjoint operator A∗ we have the representation

A∗f =
∞∑
j=1

σj 〈f, yj〉 xj ∀f ∈ Y. (2.7)

Proof. Consider B = A∗A and C = AA∗. Both B and C are compact, self-adjoint and
positive semidefinite, so that by Theorem 2.2.4 both admit a spectral representation and,
by positive semidefiniteness, their eigenvalues are positive. Therefore, we can write

Cf =
∞∑
j=1

σ2
j 〈f, yj〉 yj ∀f ∈ Y,

where {yj} is an orthonormal basis of R(AA∗) = R(A) (Lemma 2.0.3), σj > 0 for all j and
σj → 0 as j →∞.

Now consider the element A∗yj ∈ X . Since σ2
j is an eigenvalue of C for the eigenvector

yj , we get that
σ2
jA
∗yj = A∗(σ2

j yj) = A∗Cyj = A∗AA∗yj = BA∗yj

and therefore σ2
j is also an eigenvalue of B (for the eigenvector A∗yj). Now we will show

that the system
{
A∗yj
σj

}
j∈N

forms an orthonormal basis of R(A∗) = N (A)⊥. Indeed, we

have 〈
A∗yj
σj

,
A∗yk
σk

〉
=

1

σjσk
〈yj , AA∗yk〉 =

1

σjσk

〈
yj , σ

2
kyk
〉

=

{
1, if j = k,

0, otherwise.
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Hence,
{
A∗yj
σj

}
j∈N

are orthonormal. It is also clear that they are dense in R(A∗) = N (A)⊥,

hence they form a basis. Therefore, we can choose {xj}j∈N =
{
A∗yj
σj

}
j∈N

, i.e.

xj = σ−1
j A∗yj

and we get (by construction) that

A∗yj = σjxj .

We also observe that

Axj = σ−1
j AA∗yj = σ−1

j σ2
j yj = σjyj ,

which proves (2.5).

Extending the basis {xj} ofR(A∗) to a basis {x̃j} of X , we expand an arbitrary u ∈ X as

u =
∑∞

j=1 〈u, x̃j〉 x̃j . Applying A and using the fact that X = N (A)⊕R(A∗) (Remark 2.0.2),
we obtain the singular value decomposition (2.6) (and also (2.7) in a similar manner)

Au =

∞∑
j=1

σj 〈u, xj〉 yj ∀u ∈ X , A∗f =

∞∑
j=1

σj 〈f, yj〉xj ∀f ∈ Y.

We can now derive a representation of the Moore-Penrose inverse in terms of the singular
value decomposition.

Theorem 2.2.7. Let A ∈ K(X ,Y) with singular system {(σj , xj , yj)}j∈N and f ∈ D(A†).
Then the Moore-Penrose inverse of A can be written as

A†f =
∞∑
j=1

σ−1
j 〈f, yj〉xj . (2.8)

Proof. We know that, since f ∈ D(A†), u† = A†f solves the normal equations

A∗Au† = A∗f.

From Theorem 2.2.6 we know that

A∗Au† =
∞∑
j=1

σ2
j

〈
u†, xj

〉
xj , A∗f =

∞∑
j=1

σj 〈f, yj〉xj , (2.9)

which implies that 〈
u†, xj

〉
= σ−1

j 〈f, yj〉

Expanding u† ∈ N (A)⊥ in the basis {xj}, we get

u† =

∞∑
j=1

〈
u†, xj

〉
xj =

∞∑
j=1

σ−1
j 〈f, yj〉xj = A†f.
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The representation (2.8) makes it clear again that the Moore-Penrose inverse is un-
bounded if R(A) is infinite dimensional. Indeed, taking the sequence yj we note that
‖A†yj‖ = σ−1

j →∞, although ‖yj‖ = 1.
The unboundedness of the Moore-Penrose inverse is also reflected in the fact that the

series in (2.8) may not converge for a given f . The convergence criterion for the series is
called the Picard criterion.

Definition 2.2.8. We say that the data f satisfy the Picard criterion, if

‖A†f‖2 =
∞∑
j=1

|〈f, yj〉|2
σ2
j

<∞. (2.10)

Remark 2.2.9. The Picard criterion is a condition on the decay of the coefficients 〈f, yj〉.
As the singular values σj decay to zero as j → ∞, the Picard criterion is only met if the
coefficients 〈f, yj〉 decay sufficiently fast.

In case the singular system is given by the Fourier basis, then the coefficients 〈f, yj〉 are
just the Fourier coefficients of f . Therefore, the Picard criterion is a condition on the decay
of the Fourier coefficients which is equivalent to the smoothness of f .

It turns our that the Picard criterion also can be used to characterise elements in the
range of the forward operator.

Theorem 2.2.10. Let A ∈ K(X ,Y) with singular system {(σj , xj , yj)}j∈N, and f ∈ R(A).
Then f ∈ R(A) if and only if the Picard criterion

∞∑
j=1

∣∣〈f, yj〉Y ∣∣2
σ2
j

<∞ (2.11)

is met.

Proof. Let f ∈ R(A), thus there is a u ∈ X such that Au = f . It is easy to see that we
have

〈f, yj〉Y = 〈Au, yj〉Y = 〈u,A∗yj〉X = σj 〈u, xj〉X
and therefore

∞∑
j=1

σ−2
j | 〈f, yj〉Y |2 =

∞∑
j=1

| 〈u, xj〉X |2 6 ‖u‖2X <∞ .

Now let the Picard criterion (2.11) hold and define u :=
∑∞

j=1 σ
−1
j 〈f, yj〉Y xj ∈ X . It is

well-defined by the Picard criterion (2.11) and we conclude

Au =
∞∑
j=1

σ−1
j 〈f, yj〉Y Axj =

∞∑
j=1

〈f, yj〉Y yj = PR(A)
f = f ,

which shows f ∈ R(A).

Although all ill-posed problems are not easy to solve, some are worse than others,
depending on how fast the singular values decay to zero.
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Definition 2.2.11. We say that an ill-posed inverse problem (2.1) is mildly ill-posed if
the singular values decay at most with polynomial speed, i.e. there exist γ,C > 0 such that
σj > Cj−γ for all j. We call the ill-posed inverse problem severely ill-posed if its singular
values decay faster than with polynomial speed, i.e. for all γ,C > 0 one has that σj 6 Cj−γ

for j sufficiently large.

Example 2.2.12. Let us consider the example of differentiation again, as introduced in
Section 1.2.3. The forward operator A : L2([0, 1])→ L2([0, 1]) in this problem is given by

(Au)(t) =

∫ t

0
u(s) ds =

∫ 1

0
K(s, t)u(s) ds ,

with K : [0, 1]× [0, 1]→ R defined as

K(s, t) :=

{
1 s 6 t

0 else
.

This is a special case of the integral operators as introduced in Section 1.2.1. Since the
kernel K is square integrable, A is compact.

The adjoint operator A∗ is given via

(A∗f)(s) =

∫ 1

0
K(t, s)f(t) dt =

∫ 1

s
v(t) dt . (2.12)

Now we want to compute the eigenvalues and eigenvectors of A∗A, i.e. we look for σ2

and x ∈ L2([0, 1]) with

σ2x(s) = (A∗Ax)(s) =

∫ 1

s

∫ t

0
x(r) dr dt .

We immediately observe x(1) = 0 and further

σ2x′(s) =
d

ds

∫ 1

s

∫ t

0
x(r) dr dt = −

∫ s

0
x(r) dr ,

from which we conclude x′(0) = 0. Taking the derivative another time thus yields the
ordinary differential equation

σ2x′′(s) + x(s) = 0 ,

for which solutions are of the form

x(s) = c1 sin(σ−1s) + c2 cos(σ−1s) ,

with some constants c1, c2. In order to satisfy the boundary conditions x(1) = c1 sin(σ−1)+
c2 cos(σ−1) = 0 and x′(0) = c1 = 0, we chose c1 = 0 and σ such that cos(σ−1) = 0. Hence,
we have

σj =
2

(2j − 1)π
for j ∈ N ,
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and by choosing c2 =
√

2 we obtain the following normalised representation of xj :

xj(s) =
√

2 cos

((
j − 1

2

)
πs

)
.

According to (2.5) we further obtain

yj(s) = σ−1
j (Axj)(s) =

(
j − 1

2

)
π

∫ s

0

√
2 cos

((
j − 1

2

)
πt

)
dt =

√
2 sin

((
j − 1

2

)
πs

)
,

and hence, for f ∈ L2([0, 1]) the Picard criterion becomes

2

∞∑
j=1

σ−2
j

(∫ 1

0
f(s) sin

(
σ−1
j s
)
ds

)2

<∞ .

Expanding f in the basis {yj}

f(t) = 2
∞∑
j=1

(∫ 1

0
f(s) sin

(
σ−1
j s
)
ds

)
sin
(
σ−1
j t
)

and formally differentiating the series, we obtain

f ′(t) = 2

∞∑
j=1

σ−1
j

(∫ 1

0
f(s) sin

(
σ−1
j s
)
ds

)
cos
(
σ−1
j t
)
.

Therefore, the Picard criterion is nothing but the condition for the legitimacy of such differ-
entiation, i.e. for the differentiability of the Fourier series by differentiating its components,
and it holds if f is differentiable and f ′ ∈ L2([0, 1]).

From the decay of the singular values we see that this inverse problem is mildly ill-posed.

Example 2.2.13 (Heat equation). Consider the problem of recovering the initial condition
u of the heat equation from an observation f of the solution at some time T > 0 (see
Section 1.2.2). We consider the heat equation on (0, π) × R+, with Dirichlet boundary
conditions 

vt − vxx = 0 on (0, π)× R+,

v(0, t) = v(π, t) = 0 onR+,

v(x, T ) = f(x) on (0, π),

v(x, 0) = u(x) on (0, π).

The solution to the forward problem (determine f given u) is given by

f = Au :=

∞∑
j=1

e−j
2T ûj sin(jx),

where ûj = 〈u, sin(j·)〉 are Fourier coefficients of u. Hence, singular values of A are given
by

σj = e−j
2T , j ∈ N,

and
1

σj
= ej

2T .

Singular values decay exponentially and the inverse problem is severely (exponentially)
ill-posed.



Chapter 3

Classical Regularisation Theory

3.1 What is Regularisation?

We have seen that the Moore-Penrose inverse A† is unbounded if R(A) is not closed. There-
fore, given noisy data fδ such that ‖fδ−f‖ 6 δ, we cannot expect convergence A†fδ → A†f
as δ → 0. To achieve convergence, we replace A† with a family of well-posed (bounded)
operators Rα with α = α(δ, fδ) and require that Rα(δ,fδ)(fδ) → A†f for all f ∈ D(A†) and
all fδ ∈ Y s.t. ‖f − fδ‖Y 6 δ as δ → 0.

We remind ourselves that L(X ,Y) denotes the space of all bounded (equivalently, con-
tinuous) operators X → Y.

Definition 3.1.1. Let A ∈ L(X ,Y) be a bounded operator. A family {Rα}α>0 of continuous
operators is called regularisation (or regularisation operator) of A† if

Rαf → A†f = u†

for all f ∈ D(A†) as α→ 0.

Definition 3.1.2. If the family {Rα}α>0 consists of linear operators, then one speaks of
linear regularisation of A†.

Hence, a regularisation is a pointwise approximation of the Moore–Penrose inverse with
continuous operators. As in the interesting cases the Moore–Penrose inverse may not be
continuous we cannot expect that the norm of Rα stays bounded as α→ 0. This is confirmed
by the following results (in the linear case).

Theorem 3.1.3 (Banach–Steinhaus e.g. [12, p. 78], [38, p. 173]). Let X ,Y be Hilbert
spaces and {Aj}j∈N ⊂ L(X ,Y) a family of point-wise bounded operators, i.e. for all u ∈ X
there exists a constant C(u) > 0 s.t. supj∈N ‖Aju‖Y 6 C(u). Then

sup
j∈N
‖Aj‖L(X ,Y) <∞ .

Corollary 3.1.4 ([38, p. 174]). Let X ,Y be Hilbert spaces and {Aj}j∈N ⊂ L(X ,Y). Then
the following two conditions are equivalent:

1. There exists A ∈ L(X ,Y) such that

Au = lim
j→∞

Aju for all u ∈ X .

27
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2. There is a dense subset X ′ ⊂ X such that limj→∞Aju exists for all u ∈ X ′ and

sup
j∈N
‖Aj‖L(X ,Y) <∞ .

Theorem 3.1.5. Let X , Y be Hilbert spaces, A ∈ L(X ,Y) and {Rα}α>0 a linear regulari-
sation as defined in Definition 3.1.2. If A† is not continuous, {Rα}α>0 cannot be uniformly
bounded. In particular, there exist f ∈ Y and a sequence αj → 0 such that ‖Rαjf‖ → ∞ as
j →∞.

Proof. We prove the theorem by contradiction and assume that {Rα}α>0 is uniformly
bounded. Hence, there exists a constant C with ‖Rα‖L(Y,X ) 6 C for all α > 0. Due

to Definition 3.1.1, we have Rαj → A† on D(A†) for any sequence αj → 0. Since D(A†)

is dense in Y, by Corollary 3.1.4 we get that Rαj converges on D(A†) = Y and therefore
A† can be extended to a bounded operator on L(Y,X ), which is a contradiction to the
assumption that A† is not continuous (on D(A†)).

To prove the second statement, assume that for all f ∈ Y and any sequence αj → 0 we
have

sup
j∈N
‖Rαjf‖Y 6 C(f) <∞.

Then by Theorem 3.1.3 we have that

sup
j∈N
‖Rαj‖L(Y,X ) 6 C <∞,

which contradicts the first part of the proof.

With the additional assumption that ‖ARα‖L(X ,X ) is bounded, we can even show that

Rαf diverges for all f 6∈ D(A†).

Theorem 3.1.6. Let A ∈ L(X ,Y) and {Rα}α>0 be a linear regularisation of A†. If

sup
α>0
‖ARα‖L(X ,X ) <∞ ,

then ‖Rαf‖X →∞ for all f 6∈ D(A†).

Proof. Define uα := Rαf for f 6∈ D(A†). Assume that there exists a sequence αk → 0
such that ‖uαk‖X is uniformly bounded. Since bounded sets in a Hilbert space are weakly
pre-compact, there exists a weakly convergent subsequence uαkl with some limit u ∈ X , cf.
[21, Section 2.2, Theorem 2.1]. As continuous linear operators are also weakly continuous,
we further have Auαkl ⇀ Au.

On the other hand, for any g ∈ D(A†) we have that ARαklg → AA†g = PR(A)
g as

l → ∞. By Corollary 3.1.4 we then conclude that this also holds for any f ∈ Y, i.e. also
for f 6∈ D(A†). Hence, we get that

ARαklf → PR(A)
f

and (see first part of proof)
ARαklf = Auαkl ⇀ Au.

Therefore, we get that Au = PR(A)
f . Since Y = R(A) ⊕R(A)⊥, we get that f ∈ R(A) ⊕

R(A)⊥ = D(A†) in contradiction to the assumption f /∈ D(A†).
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data error
approximation error
total error

Figure 3.1: The total error between a regularised solution and the minimal norm solu-
tion decomposes into the data error and the approximation error. These two errors have
opposing trends: For a small regularisation parameter α the error in the data gets ampli-
fied through the ill-posedness of the problem and for large α the operator Rα is a poor
approximation of the Moore–Penrose inverse.

3.2 Parameter Choice Rules

We have stated in the beginning of this chapter that we would like to obtain a regularisation
that would guarantee that Rα(fδ)→ A†f for all f ∈ D(A†) and all fδ ∈ Y s.t. ‖f−fδ‖Y 6 δ
as δ → 0. This means that the parameter α, referred to as the regularisation parameter,
needs to be chosen as a function of δ (and perhaps also fδ) so that α→ 0 as δ → 0 (i.e. we
need to regularise less as the data get more precise).

This can be illustrated with the following observation. For linear regularisations we can
split the total error between the regularised solution of the noisy problem Rαfδ and the
minimal norm solution of the noise-free problem u† = A†f as

‖Rαfδ − u†‖X 6 ‖Rαfδ −Rαf‖X + ‖Rαf − u†‖X
6 δ‖Rα‖L(Y,X )︸ ︷︷ ︸

data error

+ ‖Rαf −A†f‖X︸ ︷︷ ︸
approximation error

. (3.1)

The first term of (3.1) is the data error ; this term unfortunately does not stay bounded
for α → 0, which we can conclude from Theorem 3.1.5. The second term, known as the
approximation error, however vanishes for α → 0, due to the pointwise convergence of Rα
to A†. Hence it becomes evident from (3.1) that a good choice of α depends on δ, and needs
to be chosen such that the approximation error becomes as small as possible, whilst the
data error is being kept at bay. See Figure 3.1 for an illustration.

Parameter choice rules are defined as follows.

Definition 3.2.1. A function α : R>0 × Y → R>0, (δ, fδ) 7→ α(δ, fδ) is called a parameter
choice rule. We distinguish between

1. a priori parameter choice rules, which depend on δ only;

2. a posteriori parameter choice rules, which depend on both δ and fδ;
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3. heuristic parameter choice rules, which depend on fδ only.

Now we are ready to define a regularisation that ensures the convergence Rα(δ,fδ)(fδ)→
A†f as δ → 0.

Definition 3.2.2. Let {Rα}α>0 be a regularisation of A†. If for all f ∈ D(A†) there exists
a parameter choice rule α : R>0 × Y → R>0 such that

lim
δ→0

sup
fδ : ‖f−fδ‖Y6δ

‖Rαfδ −A†f‖X = 0 (3.2)

and

lim
δ→0

sup
fδ : ‖f−fδ‖Y6δ

α(δ, fδ) = 0 (3.3)

then the pair (Rα, α) is called a convergent regularisation.

3.2.1 A priori parameter choice rules

First of all we want to discuss a priori parameter choice rules in more detail. Historically,
they were the first to be studied. For every regularisation there exists an a priori parameter
choice rule and thus a convergent regularisation.

Theorem 3.2.3 ([20, Prop 3.4]). Let {Rα}α>0 be a regularisation of A†, for A ∈ L(X ,Y).
Then there exists an a priori parameter choice rule α = α(δ) such that (Rα, α) is a conver-
gent regularisation.

For linear regularisations, an important characterisation of a priori parameter choice
strategies that lead to convergent regularisation methods is as follows.

Theorem 3.2.4. Let {Rα}α>0 be a linear regularisation, and α : R>0 → R>0 an a priori
parameter choice rule. Then (Rα, α) is a convergent regularisation method if and only if

a) limδ→0 α(δ) = 0

b) limδ→0 δ‖Rα(δ)‖L(Y,X ) = 0

Proof. ⇐: Let condition a) and b) be fulfilled. From (3.1) we then observe that for any
f ∈ D(A†) and fδ ∈ Y s.t. ‖f − fδ‖Y 6 δ∥∥∥Rα(δ)fδ −A†f

∥∥∥
X
→ 0 for δ → 0.

Hence, (Rα, α) is a convergent regularisation method.
⇒: Now let (Rα, α) be a convergent regularisation method. We prove that conditions 1
and 2 have to follow from this by showing that violation of either one of them leads to
a contradiction to (Rα, α) being a convergent regularisation method. If condition a) is
violated, (3.3) is violated and hence, (Rα, α) is not a convergent regularisation method. If
condition a) is fulfilled but condition b) is violated, there exists a null sequence {δk}k∈N with
δk‖Rα(δk)‖L(Y,X ) > C > 0, and hence, we can find a sequence {gk}k∈N ⊂ Y with ‖gk‖Y = 1

and δk‖Rα(δk)gk‖X > C̃ for some C̃. Let f ∈ D(A†) be arbitrary and define fk := f + δkgk.
Then we have on the one hand ‖f − fk‖Y 6 δk, but on the other hand the norm of

Rα(δk)fk −A†f = Rα(δk)f −A†f + δkRα(δk)gk

cannot converge to zero, as the second term δkRα(δk)gk is bounded from below by a positive
constant C by construction. Hence, (3.2) is violated for fδ = f + δkgk and thus, (Rα, α) is
not a convergent regularisation method.
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3.2.2 A posteriori parameter choice rules

It is easy to convince oneself that if an a priori parameter choice rule α = α(δ) defines a
convergence regularisation then α̃ = α(Cδ) with any C > 0 also defines a convergent regu-
larisation (for linear regularisations, it is a trivial corollary of Theorem 3.2.4). Therefore,
from the asymptotic point of view, all these regularisations are equivalent. For a fixed error
level δ, however, they can produce very different solutions. Since in practice we have to
deal with a typically small, but fixed δ, we would like to have a parameter choice rule that
is sensitive to this value. To achieve this, we need to use more information than merely
the error level δ to choose the parameter α and we will obtain this information from the
approximate data fδ.

The basic idea is as follows. Let f ∈ D(A†) and fδ ∈ Y such that ‖f − fδ‖ 6 δ and
consider the residual between fδ and uα := Rαfδ, i.e.

‖Auα − fδ‖ .

Let u† be the minimal norm solution and define

µ := inf{‖Au− f‖, u ∈ X} = ‖Au† − f‖.

We observe that u† satisfies the following inequality

‖Au† − fδ‖ 6 ‖Au† − f‖+ ‖fδ − f‖ 6 µ+ δ

and in some cases this estimate may be sharp. Hence, it appears not to be useful to choose
α(δ, fδ) with ‖Auα − fδ‖ < µ + δ. In general, it may be not straightforward to estimate
µ, but if R(A) is dense in Y, we get that R(A)⊥ = {0} due to Remark 2.0.2 and µ = 0.
Therefore, we ideally ensure that R(A) is dense.

These observations motivate the Morozov’s discrepancy principle, which in the case
µ = 0 reads as follows.

Definition 3.2.5 (Morozov’s discrepancy principle). Let uα = Rαfδ with α(δ, fδ) chosen
as follows

α(δ, fδ) = sup{α > 0 | ‖Auα − fδ‖ 6 ηδ} (3.4)

for given δ, fδ and a fixed constant η > 1. Then uα(δ,fδ) = Rα(δ,fδ)fδ is said to satisfy
Morozov’s discrepancy principle.

It can be shown that the a-posteriori parameter choice rule (3.4) indeed yields a con-
vergent regularization method [20, Chapter 4.3].

3.2.3 Heuristic parameter choice rules

As the measurement error δ is not always easy to obtain in practice, it is tempting to
use a parameter choice rule that only depends on the measured data fδ and not on their
error δ, i.e. to use a heuristic parameter choice rule. Unfortunately, heuristic rules yield
convergent regularisations only for well-posed problems, as the following result, known as
the Bakushinskii veto [7], demonstrates.

Theorem 3.2.6 ([20, Thm 3.3]). Let A ∈ L(X ,Y) and {Rα} be a regularization for A†.
Let α = α(fδ) be a parameter choice rule such that (Rα, α) is a convergent regularization.
Then A† is continuous from Y to X .
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3.3 Spectral Regularisation

Recall the spectral representation (2.8) of the Moore-Penrose inverse A†

A†f =

∞∑
j=1

1

σj
〈f, yj〉xj ,

where {(σj , xj , yj)} is the singular system of A.
The source of ill-posedness of A† are the eigenvalues 1/σj , which explode as j → ∞,

since σj → 0 as j → ∞. Let us construct a regularisation by modifying these eigenvalues
as follows

Rαf :=
∞∑
j=1

gα(σj) 〈f, yj〉xj , f ∈ Y, (3.5)

with an appropriate function gα : R+ → R+ such that gα(σ) → 1
σ as α → 0 for all σ > 0

and

gα(σ) 6 Cα for all σ ∈ R+. (3.6)

Theorem 3.3.1. Let gα : R+ → R+ be a piecewise continuous function satisfying (3.6),
limα→0 gα(σ) = 1

σ and

sup
α,σ

σgα(σ) 6 γ (3.7)

for some constant γ > 0. If Rα is defined as in (3.5), we have

Rαf → A†f as α→ 0

for all f ∈ D(A†).

Proof. From the singular value decomposition of A† and the definition of Rα we obtain

Rαf −A†f =

∞∑
j=1

(
gα(σj)−

1

σj

)
〈f, yj〉Y xj =

∞∑
j=1

(σjgα(σj)− 1) 〈u†, xj〉X xj .

Consider

‖Rαf −A†f‖2X =
∞∑
j=1

(σjgα(σj)− 1)2
∣∣∣〈u†, xj〉X ∣∣∣2 .

From (3.7) we can conclude

(σjgα(σj)− 1)2 6 (1 + γ2) ,

whilst

∞∑
j=1

(1 + γ2)
∣∣∣〈u†, xj〉X ∣∣∣2 = (1 + γ2)‖u†‖2 < +∞.
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Therefore, by the reverse Fatou lemma we get the following estimate

lim sup
α→0

∥∥∥Rαf −A†f∥∥∥2

X
= lim sup

α→0

∞∑
j=1

(σjgα(σj)− 1)2
(
〈u†, xj〉X

)2

6
∞∑
j=1

(
lim sup
α→0

σjgα(σj)− 1

)2 ∣∣∣〈u†, xj〉X ∣∣∣2 = 0 ,

where the last equality is due to the pointwise convergence of gα(σj) to 1/σj . Hence, we
have

∥∥Rαf −A†f∥∥X → 0 for α→ 0 for all f ∈ D(A†).

Theorem 3.3.2. Let the assumptions of Theorem 3.3.1 hold and let α = α(δ) be an a-
priori parameter choice rule. Then (Rα(δ), α(δ)) with Rα as defined in (3.5) is a convergent
regularisation method if

lim
δ→0

δCα(δ) = 0.

Proof. The result follows immediately from ‖Rα(δ)‖L(X ,Y) 6 Cα(δ) and Theorem 3.2.4.

3.3.1 Truncated singular value decomposition

As a first example for a spectral regularisation of the form (3.5) we want to consider the
so-called truncated singular value decomposition. The idea is to discard all singular values
below a certain threshold α, which is achieved using the following function gα

gα(σ) =

{
1
σ σ > α

0 σ < α
. (3.8)

Note that for all σ > 0 we naturally obtain limα→0 gα(σ) = 1/σ. Condition (3.7) is obviously
satisfied with γ = 1 and condition (3.6) with Cα = 1

α . Therefore, truncated SVD is a
convergent regularisation if

lim
δ→0

δ

α
= 0. (3.9)

Equation (3.5) then reads as follows

Rαf =
∑
σj>α

1

σj
〈f, yj〉Y xj , (3.10)

for all f ∈ Y. Note that the sum in (3.10) is always well-defined (i.e. finite) for any α > 0
as zero is the only accumulation point of singular vectors of compact operators.

Let A ∈ K(X ,Y) with singular system {(σj , xj , yj)}j∈N, and choose for δ > 0 an index
function j∗ : R+ → N with j∗(δ) → ∞ for δ → 0 and limδ→0 δ/σj∗(δ) = 0. We can
then choose α(δ) = σj∗(δ) as an a-priori parameter choice rule to obtain a convergent
regularisation.

Note that in practice a larger δ implies that more and more singular values have to be
cut off in order to guarantee a stable recovery that successfully suppresses the data error.

A disadvantage of this approach is that it requires the knowledge of the singular vectors
of A (only finitely many, but the number can still be large).
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3.3.2 Tikhonov regularisation

The main idea behind Tikhonov regularisation1 is to consider the normal equations and shift
the eigenvalues of A∗A by a constant factor, which will be associated with the regularisation
parameter α. This shift can be realised via the function

gα(σ) =
σ

σ2 + α
(3.11)

and the corresponding Tikhonov regularisation (3.5) reads as follows

Rαf =

∞∑
j=1

σj
σ2
j + α

〈f, yj〉Y xj . (3.12)

Again, we immediately observe that for all σ > 0 we have limα→0 gα(σ) = 1/σ. Condi-
tion (3.7) is satisfied with γ = 1. Since 0 6 (σ − √α)2 = σ2 − 2σ

√
α + α, we get that

σ2 + α > 2σ
√
α and

σ

σ2 + α
6

1

2
√
α
.

This estimate implies that (3.6) holds with Cα = 1
2
√
α

. Therefore, Tikhonov regularisation

is a convergent regularisation if

lim
δ→0

δ√
α

= 0. (3.13)

The formula (3.12) suggests that we need all singular vectors of A in order to compute
the regularisation. However, we note that σ2

j are the eigenvalues of A∗A and, hence, σ2
j +α

are the eigenvectors of A∗A+αI (where I is the identity operator). Applying this operator
to the regularised solution uα = Rαf , we get

(A∗A+ αI)uα =
∞∑
j=1

(σ2
j + α)〈uα, xj〉X xj =

∞∑
j=1

(σ2
j + α)

σj
σ2
j + α

〈f, yj〉Y xj = A∗f.

Therefore, the regularised solution uα can be computed without knowing the singular system
of A by solving the following well-posed linear equation

(A∗A+ αI)uα = A∗f. (3.14)

Remark 3.3.3. Rewriting equation (3.14) as

A∗(Auα − f) + αuα = 0,

we note that it looks like a condition for the minimum of some quadratic form. Indeed,
it can be easily checked that (3.14) is the first order optimality condition for the following
optimisation problem

min
u∈X

1

2
‖Au− f‖2 + α‖u‖2. (3.15)

The condition (3.14) is necessary (and, by convexity, sufficient) for the minimum of the
functional in (3.15). Therefore, the regularised solution uα can also be computed by solv-
ing (numerically) the variational problem (3.15). This is the starting point for modern
variational regularisation methods, which we will consider in the next chapter.

1Named after the Russian mathematician Andrey Nikolayevich Tikhonov (30 October 1906 - 7 October
1993)



Chapter 4

Variational Regularisation

Recall the variation formulation of Tikhonov regularisation for some data fδ ∈ Y

min
u∈X
‖Au− fδ‖2 + α‖u‖2.

The first term in this expression, ‖Au − fδ‖2, penalises the misfit between the predictions
of the operator A and the measured data fδ and is called the fidelity function or fidelity
term. The second term, ‖u‖2 penalises some unwanted features of the solution (in this case,
a large norm) and is called the regularistaion term. The regularisation parameter α in this
context balances the influence of these two terms on the functional to be minimised.

More generally, using the notation J (u) for the regulariser, we can formally write down
the variational regularisation problem as follows

min
u∈X

1

2
‖Au− fδ‖2 + αJ (u), (4.1)

(the 1
2 in front of the fidelity term is there to simplify notation later). The regularisation

operator Rα is defined as follows

Rαfδ ∈ arg min
u∈X

1

2
‖Au− fδ‖2 + αJ (u).

In general, the minimiser doesn’t have to unique, hence the inclusion and not equality.
Other fidelity terms (not just ‖Au − fδ‖2) are possible and useful in many situations. In
this course, however, we will use the squared norm for the sake of simplicity.

In this chapter, we will study the properties of (4.1) for different choices of J , but before
that we will recall some necessary theoretical concepts.

4.1 Background

4.1.1 Banach spaces and weak convergence

Banach spaces are complete, normed vector spaces (as Hilbert spaces) but they may not
have an inner product. For every Banach space X , we can define the space of linear and
continuous functionals which is called the dual space X ∗ of X , i.e. X ∗ := L(X ,R). Let
u ∈ X and p ∈ X ∗, then we usually write the dual product 〈p, u〉 instead of p(u). Moreover,

35
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for any A ∈ L(X ,Y) there exists a unique operator A∗ : Y∗ → X ∗, called the adjoint of A
such that for all u ∈ X and p ∈ Y∗ we have

〈A∗p, u〉 = 〈p,Au〉 .

It is easy to see that either side of the equation are well-defined, e.g. A∗p ∈ X ∗ and u ∈ X .

The dual space of a Banach space X can be equipped with the following norm

‖p‖X ∗ = sup
u∈X ,‖u‖X61

〈p, u〉 .

With this norm the dual space is itself a Banach space. Therefore, it has a dual space as
well which we will call the bi-dual space of X and denote it with X ∗∗ := (X ∗)∗. As every
u ∈ X defines a continuous and linear mapping on the dual space X ∗ by

〈E(u), p〉 := 〈p, u〉 ,

the mapping E : X → X ∗∗ is well-defined. It can be shown that E is a linear and continuous
isometry (and thus injective). In the special case when E is surjective, we call X reflexive.
Examples of reflexive Banach spaces include Hilbert spaces and Lq, `q spaces with 1 <
q < ∞. We call the space X separable if there exists a set X ′ ⊂ X of at most countable
cardinality such that X ′ = X .

A problem in infinite dimensional spaces is that bounded sequences may fail to have
convergent subsequences. An example is for instance in `2 the sequence {uk}k∈N ⊂ `2, ukj = 1

if k = j and 0 otherwise. It is easy to see that ‖uk‖`2 = 1 and that there is no u ∈ `2 such
that uk → u. To circumvent this problem, we define a weaker topology on X . We say that
{uk}k∈N ⊂ X converges weakly to u ∈ X if and only if for all p ∈ X ∗ the sequence of real
numbers {

〈
p, uk

〉
}k∈N converges and

〈p, uj〉 → 〈p, u〉 .

We will denote weak convergence by uk ⇀ u. On a dual space X ∗ we could define another
topology (in addition to the strong topology induced by the norm and the weak topology
as the dual space is a Banach space as well). We say a sequence {pk}k∈N ⊂ X ∗ converges
weakly-∗ to p ∈ X ∗ if and only if〈

pk, u
〉
→ 〈p, u〉 for all u ∈ X

and we denote weak-∗ convergence by pk ⇀∗ p. Similarly, for any topology τ on X we
denote the convergence in that topology by uk

τ→ u.

With these two new notions of convergence, we can solve the problem of bounded se-
quences:

Theorem 4.1.1 (Banach-Alaoglu Theorem, e.g. [32, p. 70] or [36, p. 141]). Let X = (X �)∗
be the dual of a Banach space X �. Then the unit ball BX = {u ∈ X : ‖x‖ 6 1} is compact in
the weak-∗ topology. If X � is separable, then the weak-∗ topology is metrisable on bounded
sets and every bounded sequence {uk}k∈N ⊂ X has a weak-∗ convergent subsequence.

Theorem 4.1.2 ([38, p. 64]). Each bounded sequence {uk}k∈N in a reflexive separable
Banach space X has a weakly convergent subsequence.
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Figure 4.1: Visualisation of lower semi-continuity. The solid dot at a jump indicates the
value that the function takes. The function on the left is continuous and thus lower semi-
continuous. The functions in the middle and on the right are discontinuous. While the
function in the middle is lower semi-continuous, the function on the right is not (due to the
limit from the left at the discontinuity).

An important property of functionals, which we will need later, is sequential lower
semicontinuity. Roughly speaking this means that the functional values for arguments near
an argument u are either close to E(u) or greater than E(u).

Definition 4.1.3. Let X be a Banach space with topology τX . The functional E : X → R̄
is said to be sequentially lower semi-continuous with respect to τX (τX -l.s.c.) at u ∈ X if

E(u) 6 lim inf
j→∞

E(uj)

for all sequences {uj}j∈N ⊂ X with uj → u in the topology τX of X .

Remark 4.1.4. For topologies that are not induced by a metric we have to differ between a
topological property and its sequential version, e.g. continuous and sequentially continuous.
If the topology is induced by a metric, then these two are the same. However, for instance
the weak and weak-∗ topology are generally not induced by a metric (but this is true on
bounded sets).

Example 4.1.5. The functional ‖ · ‖1 : `2 → R̄ with

‖u‖1 =

{∑∞
j=1 |uj | if u ∈ `1

∞ else

is weakly (and, hence, strongly) lower semi-continuous in `2.

Proof. Let {uj}j∈N ⊂ `2 be a weakly convergent sequence with uj ⇀ u ∈ `2. We have with
δk : `2 → R, 〈δk, v〉 = vk that for all k ∈ N

ujk = 〈δk, uj〉 → 〈δk, u〉 = uk .

The assertion follows then with Fatou’s lemma

‖u‖1 =

∞∑
k=1

|uk| =
∞∑
k=1

lim
j→∞

|ujk| 6 lim inf
j→∞

∞∑
k=1

|ujk| = lim inf
j→∞

‖uj‖1 .

Note that it is not clear whether both the left and the right hand side are finite.
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4.1.2 Convex analysis

Infinity calculus

We will look at functionals E : X → R̄ whose range is modelled to be the extended real line
R̄ := R∪ {−∞,+∞} where the symbol +∞ denotes an element that is not part of the real
line that is by definition larger than any other element of the reals, i.e.

x < +∞

for all x ∈ R (similarly, x > −∞ for all x ∈ R). This is useful to model constraints: for
instance, if we were trying to minimise E : [−1,∞) → R, x 7→ x2 we could remodel this
minimisation problem by Ẽ : R→ R̄

Ẽ(x) =

{
x2 if x > −1

∞ else
.

Obviously both functionals have the same minimiser but Ẽ is defined on a vector space
and not only on a subset. This has two important consequences: on the on hand, it makes
many theoretical arguments easier as we do not need to worry whether E(x+ y) is defined
or not. On the other hand, it makes practical implementations easier as we are dealing
with unconstrained optimisation instead of constrained optimisation. This comes at a cost
that some algorithms are not applicable any more, e.g. the function Ẽ is not differentiable
everywhere whereas E is (in the interior of its domain).

It is useful to note that one can calculate on the extended real line R̄ as we are used to
on the real line R but the operations with ±∞ need yet to be defined.

Definition 4.1.6. The extended real line is defined as R̄ := R ∪ {−∞,+∞} with the
following rules that hold for any x ∈ R and λ > 0:

x±∞ := ±∞+ x := ±∞
λ · (±∞) := ±∞ · λ := ±∞, −1 · (±∞) := ∓∞
x/(±∞) := 0

∞+∞ :=∞, −∞−∞ := −∞ .

Some calculations are not defined, e.g.,

+∞−∞ and (±∞) · (±∞) .

Using functions with values on the extended real line, one can easily describe sets C ⊂ X .

Definition 4.1.7 (Characteristic function). Let C ⊂ X be a set. The function χC : X → R̄,

χC(u) =

{
0 u ∈ C
∞ u ∈ X \ C

is called the characteristic function of the set C.

Using characteristic functions, one can easily write constrained optimisation problems
as unconstrained ones:

min
u∈C

E(u) ⇔ min
u∈X

E(u) + χC(u).
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Definition 4.1.8. Let X be a vector space and E : X → R̄ a functional. Then the effective
domain of E is

dom(E) := {u ∈ X | E(u) <∞} .

Definition 4.1.9. A functional E is called proper if the effective domain dom(E) is not
empty.

Convexity

A property of fundamental importance of sets and functions is convexity.

Definition 4.1.10. Let X be a vector space. A subset C ⊂ X is called convex, if λu+ (1−
λ)v ∈ C for all λ ∈ (0, 1) and all u, v ∈ C.

Figure 4.2: Example of a convex set (left) and non-convex set (right).

Definition 4.1.11. A functional E : X → R̄ is called convex, if

E(λu+ (1− λ)v) 6 λE(u) + (1− λ)E(v)

for all λ ∈ (0, 1) and all u, v ∈ dom(E) with u 6= v. It is called strictly convex if the
inequality is strict. It is called strongly convex with constant θ if E(u)− θ‖u‖2 is convex.

Obviously, strong convexity implies strict convexity and strict convexity implies convex-
ity.

Example 4.1.12. The absolute value function R → R, x 7→ |x| is convex but not strictly
convex. The quadratic function x 7→ x2 is strongly (and hence strictly) convex. The function
x 7→ x4 is strictly convex, but not strongly convex. For other examples, see Figure 4.3.

∞
∅

Figure 4.3: Example of a convex function (left), a strictly convex function (middle) and a
non-convex function (right).
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Example 4.1.13. The characteristic function χC(u) is convex if and only if C is a convex
set. To see the convexity, let u, v ∈ dom(χC) = C. Then by the convexity of C the convex
combination λu + (1 − λ)v is as well in C and both the left and the right hand side of the
desired inequality are zero.

Lemma 4.1.14. Let α > 0 and E,F : X → R̄ be two convex functionals. Then E +
αF : X → R̄ is convex. Furthermore, if α > 0 and F strictly convex, then E+αF is strictly
convex.

Fenchel conjugate

In convex optimisation problems (i.e. those involving convex functions) the concept of
Fenchel conjugates plays a very important role.

Definition 4.1.15. Let E : X → R̄ be a functional. The functional E∗ : X ∗ → R̄,

E∗(p) = sup
u∈X

[〈p, u〉 − E(u)],

is called the Fenchel conjugate of E.

Theorem 4.1.16 ([19, Prop. 4.1]). For any functional E : X → R̄ the following inequality
holds:

E∗∗ := (E∗)∗ 6 E.

If E is proper, lower-semicontinuous (see Def. 4.1.3) and convex, then

E∗∗ = E.

Subgradients

For convex functions one can generalise the concept of a derivative so that it would also
make sense for non-differentiable functions.

Definition 4.1.17. A functional E : X → R̄ is called subdifferentiable at u ∈ X , if there
exists an element p ∈ X ∗ such that

E(v) > E(u) + 〈p, v − u〉

holds, for all v ∈ X . Furthermore, we call p a subgradient at position u. The collection of
all subgradients at position u, i.e.

∂E(u) := {p ∈ X ∗ | E(v) > E(u) + 〈p, v − u〉 ,∀v ∈ X} ,

is called subdifferential of E at u.

It is clear that if a convex functional E : X → R̄ is proper, i.e. dom(E) 6= ∅, then for all
u 6∈ dom(E) the subdifferential is empty. A sufficient (but not necessary) condition for E
to have a subgradient at u ∈ dom(E) is given by

Proposition 4.1.18 ([19, Prop. 5.2]). Let E : X → R̄ be a convex functional and u ∈
dom(E) such that E is continuous at u. Then ∂E(u) 6= ∅.

Theorem 4.1.19 ([4, Thm. 7.13]). Let E : X → R̄ be a proper convex function and u ∈
dom(E). Then ∂E(u) is a weak-∗ compact convex subset of X ∗.
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Figure 4.4: Visualisation of the subdifferential. Linear approximations of the functional have
to lie completely underneath the function. For points where the function is not differentiable
there may be more than one such approximation.

For differentiable functions the subdifferential consists of just one element – the deriva-
tive. For non-differentiable functionals the subdifferential is multivalued; we want to con-
sider the subdifferential of the absolute value function as an illustrative example.

Example 4.1.20. Let E : R → R be the absolute value function E(u) = |u|. Then, the
subdifferential of E at u is given by

∂E(u) =


{1} for u > 0

[−1, 1] for u = 0

{−1} for u < 0

,

which you will prove as an exercise. A visual explanation is given in Figure 4.4.

The subdifferential of a sum of two functions can be characterised as follows.

Theorem 4.1.21 ([19, Prop. 5.6]). Let E : X → R̄ and F : X → R̄ be proper l.s.c. convex
functions and suppose ∃u ∈ dom(E) ∩ dom(F ) such that E is continuous at u. Then

∂(E + F ) = ∂E + ∂F.

Using the subdifferential, one can characterise minimisers of convex functionals.

Theorem 4.1.22. An element u ∈ X is a minimiser of the functional E : X → R̄ if and
only if 0 ∈ ∂E(u).

Proof. By definition, 0 ∈ ∂E(u) if and only if for all v ∈ X it holds

E(v) > E(u) + 〈0, v − u〉 = E(u) ,

which is by definition the case if and only if u is a minimiser of E.

The next result connects subgradients and convex conjugates

Theorem 4.1.23 ([19, Prop. 5.1]). Let E : X → R̄ be a convex function and E∗ : X ∗ → R̄
its convex conjugate. Then p ∈ ∂E(u) if and only if

E(u) + E∗(p) = 〈p, u〉.

Proof. Left as an exercise.



42 CHAPTER 4. VARIATIONAL REGULARISATION

Bregman distances

Convex functions naturally define some distance measure that became known as the Breg-
man distance.

Definition 4.1.24. Let E : X → R̄ be a convex functional. Moreover, let u, v ∈ X , E(v) <
∞ and q ∈ ∂E(v). Then the (generalised) Bregman distance of E between u and v is defined
as

Dq
E(u, v) := E(u)− E(v)− 〈q, u− v〉 . (4.2)

v u

Dp
E(u, v)E(u)

E
E(v) + 〈p, u− v〉

Figure 4.5: Visualization of the Bregman distance.

Remark 4.1.25. It is easy to check that a Bregman distance somewhat resembles a metric
as for all u, v ∈ X , q ∈ ∂E(v) we have that Dq

E(u, v) > 0 and Dq
E(v, v) = 0. There are

functionals where the Bregman distance (up to a square root) is actually a metric; e.g.
E(u) := 1

2‖u‖2X for Hilbert space X , then Dq
E(u, v) = 1

2‖u − v‖2X . However, in general,
Bregman distances are not symmetric and Dq

E(u, v) = 0 does not imply u = v, as you will
see on the example sheets.

To overcome the issue of non-symmetry, one can introduce the so-called symmetric
Bregman distance.

Definition 4.1.26. Let E : X → R̄ be a convex functional. Moreover, let u, v ∈ X , E(u) <
∞, E(v) < ∞, q ∈ ∂E(v) and p ∈ ∂E(u). Then the symmetric Bregman distance of E
between u and v is defined as

Dsymm
E (u, v) := Dq

E(u, v) +Dp
E(v, u) = 〈p− q, u− v〉 . (4.3)

Absolutely one-homogeneous functionals

Definition 4.1.27. A functional E : X → R̄ is called absolutely one-homogeneous if

E(λu) = |λ|E(u) ∀λ ∈ R, ∀u ∈ X .

Absolutely one-homogeneous convex functionals have some useful properties, for exam-
ple, it is obvious that E(0) = 0. Some further properties are listed below.

Proposition 4.1.28. Let E(·) be a convex absolutely one-homogeneous functional and let
p ∈ ∂E(u). Then the following equality holds:

E(u) = 〈p, u〉.
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Proof. Left as exercise.

Remark 4.1.29. The Bregman distance Dp
E(v, u) in this case can be written as follows:

Dp
E(v, u) = E(v)− 〈p, v〉.

Proposition 4.1.30. Let E(·) be a proper, convex, l.s.c. and absolutely one-homogeneous
functional. Then the Fenchel conjugate E∗(·) is the characteristic function of the convex
set ∂E(0).

Proof. Left as exercise.

An obvious consequence of the above results is the following

Proposition 4.1.31. For any u ∈ X , p ∈ ∂E(u) if and only if p ∈ ∂E(0) and E(u) = (p, u).

4.1.3 Minimisers

Definition 4.1.32. Let E : X → R̄ be a functional. We say that u∗ ∈ X solves the min-
imisation problem

min
u∈X

E(u)

if and only if E(u∗) <∞ and E(u∗) 6 E(u), for all u ∈ X . We call u∗ a minimiser of E.

Definition 4.1.33. A functional E : X → R̄ is called bounded from below if there exists a
constant C > −∞ such that for all u ∈ X we have E(u) > C.

This condition is obviously necessary for the finiteness of the infimum infu∈X E(u).

Existence

If all minimising sequences (that converge to the infimum assuming it exists) are unbounded,
then there cannot exist a minimiser. A sufficient condition to avoid such a scenario is
coercivity.

Definition 4.1.34. A functional E : X → R̄ is called coercive, if for all {uj}j∈N with
‖uj‖X →∞ we have E(uj)→∞.

x2

x

exp(x)

x

Figure 4.6: While the coercive function on the left has a minimiser, it is easy to see that
the non-coercive function on the right does not have a minimiser.

Remark 4.1.35. Coercivity is equivalent to its negated statement which is “if the function
values {E(uj)}j∈N ⊂ R are bounded, so is the sequence {uj}j∈N ⊂ X”.
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Although coercivity is not strictly speaking necessary, it is sufficient that all minimising
sequences are bounded.

Lemma 4.1.36. Let E : X → R̄ be a proper, coercive functional and bounded from below.
Then the infimum infu∈X E(u) exists in R, there are minimising sequences, i.e. {uj}j∈N ⊂
X with E(uj)→ infu∈X E(u), and all minimising sequences are bounded.

Proof. As E is proper and bounded from below, there exists a C1 > 0 such that we have
−∞ < −C1 < infuE(u) <∞ which also guarantees the existence of a minimising sequence.
Let {uj}j∈N be any minimising sequence, i.e. E(uj) → infuE(u). Then there exists a
j0 ∈ N such that for all j > j0 we have

E(uj) 6 inf
u
E(u) + 1︸ ︷︷ ︸
=:C2

<∞ .

With C := max{C1, C2} we have that |E(uj)| < C for all j > j0 and thus from the
coercivity it follows that {uj}j>j0 is bounded, see Remark 4.1.35. Including a finite number
of elements does not change its boundedness which proves the assertion.

A positive answer about the existence of minimisers is given by the following Theorem
known as the “direct method” or “fundamental theorem of optimisation”.

Theorem 4.1.37 (“Direct method”, David Hilbert, around 1900). Let X be a Banach space
and τX a topology (not necessarily the one induced by the norm) on X such that bounded
sequences have τX -convergent subsequences. Let E : X → R̄ be proper, bounded from below,
coercive and τX -l.s.c. Then E has a minimiser.

Proof. From Lemma 4.1.36 we know that infu∈X E(u) is finite, minimising sequences exist
and that they are bounded. Let {uj}j∈N ∈ X be a minimising sequence. Thus, from
the assumption on the topology τX there exists a subsequence {ujk}k∈N and u∗ ∈ X with

ujk
τX→ u∗ for k →∞. From the sequential lower semi-continuity of E we obtain

E(u∗) 6 lim inf
k→∞

E(ujk) = lim
j→∞

E(uj) = inf
u∈X

E(u) <∞ ,

which shows that E(u∗) <∞ and E(u∗) 6 E(u) for all u ∈ X ; thus u∗ minimises E.

The above theorem is very general but its conditions are hard to verify but the situation
is a easier in reflexive Banach spaces (thus also in Hilbert spaces).

Corollary 4.1.38. Let X be a reflexive Banach space and E : X → R̄ be a functional which
is proper, bounded from below, coercive and l.s.c. with respect to the weak topology. Then
there exists a minimiser of E.

Proof. The statement follows from the direct method, Theorem 4.1.37, as in reflexive
Banach spaces bounded sequences have weakly convergent subsequences, see Theorem
4.1.2.

Remark 4.1.39. For convex functionals, the situation is even easier. It can be shown that
a convex function is l.s.c. with respect to the weak topology if and only if it is l.s.c. with
respect to the strong topology (see e.g. [19, Corollary 2.2., p. 11] or [8, p. 149] for Hilbert
spaces).
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Remark 4.1.40. It is easy to see that the key ingredient for the existence of minimisers is
that bounded sequences have a convergent subsequence. In variational regularisation this
is usually ensured by an appropriate choice of the regularisation functional.

Uniqueness

Theorem 4.1.41. Assume that the functional E : X → R̄ has at least one minimiser and
is strictly convex. Then the minimiser is unique.

Proof. Let u, v be two minimisers of E and assume that they are different, i.e. u 6= v. Then
it follows from the minimising properties of u and v as well as the strict convexity of E that

E(u) 6 E(1
2u+ 1

2v) <
1

2
E(u) +

1

2
E(v)︸ ︷︷ ︸
6E(u)

6 E(u)

which is a contradiction. Thus, u = v and the assertion is proven.

Example 4.1.42. Convex (but not strictly convex) functions may have have more than
one minimiser, examples include constant and trapezoidal functions, see Figure 4.7. On
the other hand, convex (and even non-convex) functions may have a unique minimiser, see
Figure 4.7.

a) b)

Figure 4.7: a) Convex functions may not have a unique minimiser. b) Neither strict con-
vexity nor convexity is necessary for the uniqueness of a minimiser.

4.1.4 Duality in convex optimisation

Consider the following optimisation problem

inf
u∈X

E(Au) + F (u), (P)

where E : Y → R̄ and F : X → R̄ are proper, convex and lower semicontinuous functions
and A ∈ L(X ,Y) is a linear bounded operator.

Since E is convex and lower semicontinuous, it can be written as the convex conjugate
of its conjugate E∗

E(y) = sup
η∈Y∗
〈η, y〉 − E∗(η) y ∈ Y.

Hence, we can rewrite (P) as follows

inf
u∈X

sup
η∈Y∗
〈η,Au〉 − E∗(η) + F (u). (S)
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This problem is referred to as the saddle point problem, whereas (P) is referred to as the
primal problem. Since inf sup > sup inf always holds, we get that

inf
u∈X

E(Au) + F (u) > sup
η∈Y∗

inf
u∈X
〈η,Au〉 − E∗(η) + F (u)

= sup
η∈Y∗

inf
u∈X
〈A∗η, u〉 − E∗(η) + F (u)

= sup
η∈Y∗

{
−E∗(η)− sup

u∈X
[〈−A∗η, u〉 − F (u)]

}
= sup

η∈Y∗
−E∗(η)− F ∗(−A∗η).

The last problem

sup
η∈Y∗

−E∗(η)− F ∗(−A∗η) (D)

is called the dual problem. The fact that the optimal value of the primal is always less
or equal to the optimal value of the dual problem is referred to as weak duality and the
difference between these two optimal values is referred to as the duality gap. Whenever the
two optimal values are in fact equal, one speaks of strong duality. Sufficient conditions for
strong duality are given by

Theorem 4.1.43 ([19, Ch.III Thm 4.1 and Rem. 4.2]). Suppose that

(i) the function E(Au) + F (u) : X → R̄ is proper, convex, l.s.c. and coercive;

(ii) ∃u0 ∈ X s.t. F (u0) < +∞, E(Au0) < +∞ and E(y) is continuous at y = Au0.

Then

(i) The dual problem (D) has at least one solution η̂;

(ii) There is no duality gap between (P) and (D), i.e. strong duality holds;

(iii) If (P) has an optimal solution û, then the following optimality conditions hold

−A∗η̂ ∈ ∂F (û), η̂ ∈ ∂E(Aû).

Note that existence of a primal solution is not guaranteed by this theorem.

4.2 Well-posedness and Regularisation Properties

Our goal is to study the properties of optimisation problem (4.1) as a convergent regulari-
sation for the ill-posed problem

Au = f, (4.4)

where A : X → Y is a linear bounded operator, Y is a Banach space and X is the dual of
a separable Banach space. In particular, we will ask questions of existence of minimisers
(well-posedness of the regularised problem) and parameter choice rules that guarantee the
convergence of the minimisers to an appropriate generalised solution of (4.4) for different
choices of the regularisation functional. To this end, we need to extend the definition of a
minimal-norm solution (Def. 2.1.1) to an arbitrary regularisation term.
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Definition 4.2.1 (J -minimising solutions). Let u†J be a least squares solution, i.e.

‖Au†J − f‖Y = inf{‖Av − f‖Y , v ∈ X}

and
J (u†J ) 6 J (ũ) for all least squares solutions ũ.

Then u†J is called a J -minimising solution of (4.4).

We will assume that there exists a least-squares solution with a finite value of J , i.e.
there exists at least one element u such that ‖Au − f‖Y = inf{‖Av − f‖Y , v ∈ X} and
J (u) < +∞.

Remark 4.2.2. A J -minimising solution may not exist and if it does, it may be non-unique.
We will later see conditions, under which a J -minimising solution exists. Non-uniqueness,
however, is common with popular choices of J . In this case we need to define a selection
operator that will select a single element from all the J -minimising solutions (see [9]). We
will not explicitly mention this, stating all results for just a J -minimising solution.

We will need the following

Lemma 4.2.3. Let J (u) =
∑n

i=1 Ji(u), where each Ji(u) is convex and pi-homogeneous
(pi > 0), that is,

Ji(λu) = |λ|piJi(u) ∀u ∈ X , λ ∈ R.

The the set
N (J ) := {u ∈ X : J (u) = 0}

is a linear subspace of X .

Proof. First of all, we note that Ji(u) > 0 for all u ∈ X . Indeed, we have

0 = Ji(0) = Ji
(

1

2
u− 1

2
u

)
6

1

2
Ji(u) +

1

2
Ji(−u) = Ji(u).

Now let u, v ∈ N (J ) be arbitrary. Then Ji(u) = Ji(v) = 0 for all i = 1, ..., n, hence for any
λ ∈ R

0 6 Ji(λu+ v) = 2piJi
(
λu

2
+
v

2

)
6 2pi

(
1

2
Ji
(
λu

2

)
+

1

2
Ji
(v

2

))
=

1

2
Ji(λu) +

1

2
Ji(v) =

|λ|pi
2
Ji(u) +

1

2
Ji(v) = 0.

Therefore, Ji(λu+ v) = 0 for all i and hence J (λu+ v) = 0.

Lemma 4.2.4. Let assumptions of Lemma 4.2.3 be satisfied. Suppose that u ∈ X and
v ∈ N (J ). Then J (u+ v) = J (u).

Proof. Left as exercise.

If dimN (J ) <∞, the subspace N (J ) is complemented in X [4, Thm. 5.89], i.e. there
exists a closed subspace X0 ⊂ X such that X0 ∩N (J ) = {0} and

X = X0 ⊕N (J ). (4.5)

We will use this to establish coercivity of the functional (4.1).
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Lemma 4.2.5. Suppose that the regularisation functional J : X → R̄+ is proper, convex
and satisfies conditions of Lemma (4.2.3) and let A ∈ L(X ,Y) be a bounded linear operator.
Suppose also that

(i) dimN (J ) <∞ and J is coercive on X0, where X0 is such that X = X0 ⊕N (J );

(ii) the kernels of A and J have a trivial intersection, i.e. N (A) ∩N (J ) = {0}.

Then the function

Φα(u) :=
1

2
‖Au− f‖2Y + αJ (u)

is coercive on X for any α > 0.

Proof. Let {uj}j∈N be a sequence in X . Due to (4.5), there exists a unique decomposition

uj = u0
j + uNj , u0

j ∈ X0, u
N
j ∈ N (J ).

Let Φα(uj) 6 C for all j ∈ N. Then J (uj) 6 C and

J
(
u0
j

)
= J

(
u0
j + uNj

)
= J (uj) 6 C.

Since J is coercive on X0, we get that ‖u0
j‖ 6 C ′. Now, define

Ã : N (J )→ AN (J ), Ã = A|N (J ) .

That is, Ã is the restriction of A to N (J ). Clearly, Ã is surjective and by assumption (ii) it
is also injective. Since N (J ) (and, subsequently, AN (J )) is finite-dimensional, Ã−1 exists
and is bounded. Denote ‖Ã−1‖ =: C̃. Then

‖uNj ‖ = ‖Ã−1(ÃuNj )‖ 6 C̃‖AuNj ‖ = C̃‖AuNj +Au0
j − f − (Au0

j − f)‖
6 C̃

∥∥Auj − f‖+ ‖Au0
j − f‖

)
6 C̃(C + ‖A‖‖u0

j‖+ ‖f‖) 6 C ′′.

Therefore,
‖uj‖ = ‖u0

j + uNj ‖ 6 ‖u0
j‖+ ‖uNj ‖ 6 C ′′′,

which means that Φα is coercive.

Now we are ready to establish the existence of a J -minimising solution and a regularised
solution for any α > 0.

Theorem 4.2.6. Let X and Y be a Banach spaces and τX and τY some topologies (not
necessarily induced by the norm) in X and Y, respectively. Assume that

(i) bounded sequences in X have τX -convergent subsequences;

(ii) J : X → R̄+ is proper, convex τX -l.s.c. and satisfies assumptions of Lemma 4.2.5;

(iii) A : X → Y is τX → τY continuous;

(iv) ‖ · ‖Y is τY-lower semicontinuous;

Then

(i’) there exists a J -minimising solution u†J of (4.4);
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(ii’) for any fixed α > 0 and f ∈ Y there exists a minimiser

uα ∈ arg min
u∈X

1

2
‖Au− f‖2Y + αJ (u). (4.6)

Proof. (i) Let L be the set of least-squares solutions of (4.4). Then L can written as
follows

L = {u ∈ X : ‖Au− f‖Y 6 µ},
where µ := inf{‖Av − f‖Y : v ∈ X}. Since A is τX → τY continuous and ‖ · ‖Y is
τY -l.s.c., L is τX -closed.

Consider the following problem

inf
u∈L
J (u) = inf

u∈X
J (u) + χL(u). (4.7)

By the assumption that we made in the beginning of this section, this problem is
feasible, i.e. there exists u ∈ L with J (u) < ∞. The objective function in (4.7) is
bounded from below. Using similar arguments as in Lemma 4.2.5, we conclude that
it is also coercive. Since L is τX -closed, χL is τX -l.s.c. By assumption ii, J is also
τX -l.s.c. So, (4.7) satisfies the assumptions of the direct method (Theorem 4.1.37) and
hence a minimiser exists.

(ii) From Lemma 4.2.5 we know that the objective function Φα in (4.6) is coercive. It is
also bounded from below. Since J is τX -l.s.c., A is τX → τY continuous and ‖ · ‖Y is
τY -l.s.c., we get that Φα is τX -l.s.c. Using the direct method, we conclude that (4.6)
has a minimiser.

Now we study the behaviour of the minimiser of (4.6) with f = fδ (perturbed measure-
ment) as δ → 0 when α = α(δ) is chosen according to an appropriate a priori parameter
choice rule. For simplicity, we will do this in the case when inf{‖Av − f‖Y : v ∈ X} = 0,
i.e. least-squares solutions are actually solutions of (4.4).

Theorem 4.2.7. Let the assumptions of Theorem 4.2.6 hold and suppose that inf{‖Av −
f‖Y : v ∈ X} = 0. Let α = α(δ) be such that

lim
δ→0

α(δ) = 0 and lim sup
δ→0

δ2

α(δ)
= 0.

Then uδ := u
α(δ)
δ

τX→ u†J as δ → 0 (possibly, along a subsequence) and J (uδ) → J (u†J ),

where u†J is a J -minimising solution.

Proof. Let u0 be any J -minimising solution (which exists by Theorem 4.2.6). Since uδ
solves (4.6) with α = α(δ), we get that

1

2
‖Auδ − fδ‖2Y + α(δ)J (uδ) 6

1

2
‖Au0 − fδ‖2Y + α(δ)J (u0)

6
δ2

2
+ α(δ)J (u0). (4.8)
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Therefore, we have the following two estimates

J (uδ) 6
δ2

2α(δ)
+ J (u0) 6 C, (4.9a)

‖Auδ − fδ‖Y 6
√
δ2 + 2α(δ)J (u0) 6 C ′, (4.9b)

The right-hand side in (4.9a) is bounded uniformly in δ, because lim supδ→0 δ
2/α(δ) = 0

by assumption and J (u0) is a constant independent of δ. The right-hand side in (4.9b) is
bounded, because J (u0) is a constant and δ, α(δ)→ 0.

Therefore, both J (uδ) and ‖Auδ − fδ‖Y are uniformly bounded. Proceeding similarly
to Lemma 4.2.5, we get that

‖uδ‖ 6 C

for all δ. Now let δn ↓ 0 be an arbitrary null sequence. Since uδn is bounded, it contains a
τX -convergent subsequence (which we don’t relabel)

uδn
τX→ u†J as n→∞.

We will show that u†J is a J -minimising solution. From (4.9b) we observe that

lim inf
n→∞

‖Auδn − fδn‖Y 6 lim inf
n→∞

√
δ2
n + 2α(δn)J (u0) = 0.

Since A is τX → τY continuous and ‖ · ‖Y is τY -l.s.c., we get that

‖Au†J − f‖Y 6 lim inf
n→∞

‖Auδn − f‖Y 6 lim inf
n→∞

(‖Auδn − fδn‖Y + ‖f − fδn‖Y) = 0,

which shows that u†J is a least-squares solution. Using the estimate (4.9a) and τX -lower
semicontinuity of J , we obtain

J (u†J ) 6 lim inf
n→∞

J (uδn) 6 lim sup
n→∞

J (uδn) 6 lim sup
n→∞

δ2

2α(δ)
+ J (u0) = J (u0). (4.10)

Since u0 was an arbitrary J -minimising solution and J (u†J ) 6 J (u0), we conclude that

J (u†J ) is also a J -minimising solution. Finally, since J (u†J ) = J (u0), we conclude
from (4.10) that

lim inf
n→∞

J (uδn) = lim sup
n→∞

J (uδn) = lim
n→∞

J (uδn) = J (u†J ),

which completes the proof.

Remark 4.2.8. The theorem proves convergence of the regularised solutions in τX , which
may differ from the strong topology. However, if J satisfies the Radon-Riesz property with
respect to the topology τX , i.e. uj

τX→ u and J (uj) → J (u) imply ‖uj − u‖ → 0, then we
get convergence in the norm topology. An example of a functional satisfying the Radon-
Riesz property is the norm in a Hilbert (or reflexive Banach) space with τX being the weak
topology.
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Examples of regularisers

Example 4.2.9. Let X be a Hilbert space and J (u) = ‖u‖2. The norm in a Hilbert space
is weakly l.s.c. By Theorem 4.1.2 we know that (norm) bounded sequences have weakly
convergent subsequences. Therefore, Assumption (ii) of Theorem 4.2.6 is satisfied with
τX being the weak topology and we obtain weak convergence of the regularised solutions.
However, since the norm in a Hilbert space has the Radon-Riesz property, we also get strong
convergence. The same approach works in reflexive Banach spaces.

A classical example is regularisation in Sobolev spaces such as the space H1 of L2

functions whose weak derivatives are also in L2. In the one-dimensional case, the space H1

consists only of continuous functions (in higher dimensions it is true for Sobolev spaces with
some other exponents), therefore, the regularised solutions will also be continuous. For this
reason, the regulariser J (u) = ‖u‖H1 is sometimes referred to as the smoothing functional.
Whilst desirable in some applications, in imaging smooth reconstructions are usually not
favourable, since images naturally contain edges and therefore are not continuous functions.
To overcome this issue, other regularisers have been introduced that we will discuss later.

Example 4.2.10 (`1-regularisation). Let X = `2 be space of all square summable sequences
(i.e. such that ‖u‖2`2 =

∑∞
i=1 u

2
i < +∞). For example, u can represent the coefficients of a

function in a basis (e.g., a Fourier basis or a wavelet basis). As a regularisation functional,
let us use not the `2-norm, but the `1-norm:

J (u) = ‖u‖`1 =
∞∑
i=1

|ui|.

By Example 4.1.5 J (·) is weakly l.s.c. in `2. It is evident that `q ⊂ `p and ‖ · ‖`p 6 ‖ · ‖`q
for q 6 p. Therefore, J (u) 6 C implies that ‖ · ‖`2 6 C and, since `2 is a Hilbert space and
bounded sequences have weakly convergent subsequences, we conclude that the sublevel sets
of J (·) are weakly sequentially compact in `2. Therefore, Assumption (ii) of Theorem 4.2.6
is satisfied with τX being the weak topology in `2. Hence, we get weak convergence of
regularised solutions in `2.

The motivation for using the `1-norm as the regulariser instead of the `2-norm is as
follows. If the forward operator is non-injective, the inverse problem has more than one
solution and the solutions form an affine subspace. In the context of sequence spaces
representing coefficients of the solution in a basis, it is sometimes beneficial to look for
solutions that are sparse in the sense that they have finite support, i.e. | supp(u)| < ∞
with supp(u) = {i ∈ N |ui 6= 0}. This allows explaining the signal with a finite (and
often relatively small) number of basis functions and has widely ranging applications in,
for instance, compressed sensing. A finite dimensional illustration of the sparsity of `1-
regularised solutions is given in Figure 4.8. The corresponding minimisation problem

min
u∈`2

{
1

2
‖Au− f‖2`2 + α‖u‖1

}
. (4.11)

is also called lasso in the statistical literature.

Example 4.2.11 (Elastic net regularisation). The `1 regulariser described in the previous
example sometimes delivers undesirable results for problems where there are highly cor-
related features and we need to identify all relevant ones, e.g. microarray data analysis
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minimal `2-norm minimal `1-norm

Figure 4.8: Non-injective operators have a non-trivial kernel such that the inverse problem
has more than one solution and the solutions form an affine subspace visualised by the
solid line. Different regularisation functionals favour different solutions. The circle and the
diamond indicate all points with constant `2-norm, respectively `1-norm, and the minimal
`2-norm and `1-norm solutions are the intersections of the line with the circle, respectively
the diamond. As it can be seen, the minimal `2-norm solution has two non-zero components
while the minimal `1-norm solution has only one non-zero component and thus is sparser.

(analysis of genomic sequences), in that it tends to select only one feature out of the rel-
evant group instead of all relevant features of the group, i.e. it fails to identify the group
structure. Elastic net regularisation helps to overcome this issue. The elastic net regulariser
J : `2 → R̄+ is defined as follows

J (u) := α‖u‖`1 + β‖u‖2`2 ,

where α, β > 0 are constants that balance the influence of the two terms. Since J is
the sum of a 1-homogeneous term and a 2-homogeneous term, it satisfies assumptions of
Lemma 4.2.3.

4.3 Total Variation Regularisation

As pointed out in Example 4.2.9, in imaging we are interested in regularisers that allow for
discontinuities while maintaining sufficient regularity of the reconstructions. One popular
choice is the so-called total variation regulariser [15].

Definition 4.3.1. Let Ω ⊂ Rn be a bounded domain and u ∈ L1(Ω). Let D(Ω,Rn) be the
following set of vector-valued test functions (i.e. functions that map from Ω to Rn)

D(Ω,Rn) :=
{
ϕ ∈ C∞0 (Ω;Rn)

∣∣∣ sup
x∈Ω
‖ϕ(x)‖2 6 1

}
.

Total variation of u ∈ L1(Ω) is defined as follows

TV(u) = sup
ϕ∈D(Ω,Rn)

∫
Ω
u(x) divϕ(x) dx .
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Remark 4.3.2. Definition 4.3.1 may seem a bit strange at the first glance, but we note
that for a function u ∈ L1(Ω) whose weak derivative ∇u exists and is also in L1(Ω,Rn) (i.e.
u belongs to the Sobolev space W 1,1(Ω)) we obtain, integrating by parts, that

TV(u) = sup
ϕ∈D(Ω,Rn)

∫
Ω
−〈∇u(x), ϕ(x)〉 dx.

By the Cauchy-Schwartz inequality we get that | 〈∇u(x), ϕ(x)〉 | 6 ‖∇u(x)‖2‖ϕ(x)‖2 6

‖∇u(x)‖2 for a.e. x ∈ Ω. On the other hand, choosing ϕ such that ϕ(x) = − ∇u(x)
‖∇u(x)‖2 (tech-

nically, such ϕ is not necessarily in D(Ω,Rn), but we can approximate it with functions from
D(Ω,Rn), since any function in W 1,1(Ω) can be approximated with smooth functions [2,
Thm. 3.17]; we omit the technicalities here), we get that −〈∇u(x), ϕ(x)〉 = ‖∇u(x)‖2.
Therefore, the supremum over ϕ ∈ D(Ω,Rn) is equal to

TV(u) =

∫
Ω
‖∇u(x)‖2 dx = ‖∇u‖L1 .

This shows that TV just penalises the the L1 norm (of the pointwise 2-norm) of the gradient
for any u ∈W 1,1(Ω). However, we will see that the space of functions that have finite value
of TV is larger than W 1,1(Ω) and contains, for instance, discontinuous functions.

Remark 4.3.3. It can be shown [13] that for any u ∈ L1(Ω)

TV(u) = ‖∇u‖M,

where ∇ is the distributional gradient and ‖ · ‖M is the Radon norm. That is, Total
Variation extends the L1 norm of the gradient for functions whose gradient is not a Lebesgue-
measurable function. We will not use this interpretation of the Total Variation to simplify
the presentation and refer the interested reader to [13] for details.

Proposition 4.3.4. TV is a proper, convex and absolutely 1-homogeneous functional L1(Ω)→
R̄. For any constant function c : c(x) ≡ c ∈ R for all x and any u ∈ L1(Ω)

TV(c) = 0 and TV(u+ c) = TV(u).

Proof. Left as exercise.

Remark 4.3.5. It can be shown that the opposite implication holds, i.e. TV(u) = 0 implies
that u is constant. in other words,

N (TV) = {u ∈ L1(Ω): u = const}. (4.12)

The easiest way to see this is using the Radon measure interpretation in Remark 4.3.3.
Because time constraints, we will omit the proof.

Example 4.3.6 (TV of an indicator function). Suppose C ⊂ Ω ⊂ R2 is a bounded domain
with smooth boundary and u(·) = 1C(·) is its indicator function, i.e.

1C(x) =

{
1 x ∈ C
0 x ∈ X \ C

.
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Then, using the divergence theorem, we get that for any test function ϕ ∈ D(Ω,Rn)∫
Ω
u(x) divϕ(x) dx =

∫
C

divϕ(x) dx =

∫
∂C
〈ϕ(x),n∂C(x)〉 dl,

where ∂C is the boundary of C and n∂C(x) is the unit normal at x. Hence,

TV(u) = sup
ϕ∈D(Ω,Rn)

∫
Ω
u(x) divϕ(x) dx = sup

ϕ∈D(Ω,Rn)

∫
∂C
〈ϕ(x),n∂C(x)〉 dl

6 sup
ϕ∈D(Ω,Rn)

∫
∂C
‖ϕ(x)‖‖n∂C(x)‖ dl 6 sup

ϕ∈D(Ω,Rn)

∫
∂C
dl = PerC ,

where Per(C) is the perimeter of C. On the other hand, since ∂C is smooth and ‖n∂C(x)‖ = 1
for every x, n∂C can be extended to feasible vector field on Ω (i.e. one that is in D(Ω,Rn)).
Therefore, we get that

TV(u) =

∫
∂C
〈ϕ(x),n∂C(x)〉 dl >

∫
∂C
‖n∂C(x)‖2 dl =

∫
∂C

1 · dl = Per(C),

Therefore, TV(1C) = PerC for any domain with smooth boundary. This can be extended to
domains with Lipschitz boundary by constructing a sequence of functions in D(Ω,Rn) that
converge pointwise to n∂C .

We now study properties of functions that have a finite value of TV.

Definition 4.3.7. The functions u ∈ L1(Ω) with a finite value of TV form a normed space
called the space of functions of bounded variation (the BV-space) defined as follows

BV(Ω) :=
{
u ∈ L1(Ω)

∣∣∣ ‖u‖BV := ‖u‖L1 + TV(u) <∞
}
.

Remark 4.3.8. It can be shown that the space BV is the dual of a separable Banach
space [13] and that weak-* convergence un ⇀

∗ u in BV is equivalent to strong convergence
un → u in L1 and convergence of the values TV(un) → TV(u). The proof is outside the
scope of these notes.

We note that BV(Ω) is compactly embedded in L1(Ω). We start with the following
classical result.

Theorem 4.3.9 (Rellich-Kondrachov, [2, Thm. 6.3]). Let Ω ⊂ Rn be a bounded Lipschitz
domain (i.e. non-empty, open, connected and with Lipschitz boundary) and p,m ∈ N. Let

p∗ :=

{
np

n−mp if n > mp,

∞ if n 6 mp.

Then the embedding Wm,p(Ω) → Lq(Ω) is continuous for all 1 6 q 6 p∗ and compact for
all 1 6 q < p∗.

Since functions from BV(Ω) can be approximated by functions in the Sobolev space
W 1,1(Ω) [5, Thm. 3.9], the Rellich-Kondrachov Theorem (with p = 1, m = 1) gives us the
following
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Corollary 4.3.10 ([5, Corrollary 3.49]). For any bounded Lipschitz domain Ω ⊂ Rn, the
embedding

BV(Ω) ⊂⊂ L1(Ω)

is compact for any n > 2 and the embedding

BV(Ω) ↪→ L2(Ω)

is continuous for n = 2.

Now we will show that TV is lower-semicontinuous in L1.

Theorem 4.3.11. Let Ω ⊂ Rn be open and bounded. Then the total variation is l.s.c. in
L1(Ω).

Proof. Let {uj}j∈N ⊂ BV(Ω) be a sequence converging in L1(Ω) with uj → u in L1(Ω).
Then for any test function ϕ ∈ D(Ω,Rn) we have that∫

Ω
uj(x) divϕ(x)dx→

∫
Ω
u(x) divϕ(x)dx

(strong convergence implies weak convergence) and therefore

TV(u) = sup
ϕ∈D(Ω,Rn)

∫
Ω
u(x) divϕ(x)dx

= sup
ϕ∈D(Ω,Rn)

lim
j→∞

∫
Ω
uj(x) divϕ(x)dx

6 lim inf
j→∞

sup
ϕ∈D(Ω,Rn)

∫
Ω
uj(x) divϕ(x)dx

= lim inf
j→∞

TV(uj).

Here the lim inf appears when we swap the sup and the lim, because the limit of the suprema
may not exist; however, the inequality holds for any subsequence and hence also for the
lim inf. Note also that the left and right hand sides may not be finite.

Since the null space of total variation (4.12) is nontrivial, TV cannot be coercive on L1.
However, the following result helps.

Proposition 4.3.12 ([5, Remark 3.50]). Let Ω ⊂ Rn be a bounded Lipschitz domain. Then
there exists a constant C > 0 such that for all u ∈ BV(Ω) the Poincaré inequality is satisfied

‖u− uΩ‖L1 6 C TV(u),

where uΩ := 1
|Ω|
∫

Ω u(x)dx is the mean-value of u over Ω.

Corollary 4.3.13. It is often useful to consider a subspace BV0(Ω) ⊂ BV(Ω) of functions
with zero mean, i.e.

BV0(Ω) := {u ∈ BV(Ω):

∫
Ω
u(x)dx = 0}. (4.13)

Then for every function u ∈ BV0(Ω) we have that

‖u‖L1 6 C TV(u).

Clearly, BV0 ⊂ L1
0 := {u ∈ L1 :

∫
ω u(x) dx = 0} in TV is coercive on this subspace. Since

dim(N (TV)) = 1 <∞, we have

L1 = L1
0 ⊕N (TV).
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Combining all the above results we get

Theorem 4.3.14. Let X = L1(Ω), where Ω ⊂ Rn is bounded Lipschitz, and Y be a Banach
space. Let A : L1 → Y be a linear bounded operator such that A1 6= 0, where 1 is the
constant-one function. Then minimisers of the following problem

min
u∈L1(Ω)

1

2
‖Au− fδ‖2Y + α(δ) TV(u)

converge strongly in L1 to a TV-minimising solution as δ → 0 if α(δ) is chosen as required
by Theorem 4.2.7.

Proof. We have established all ingredients required for Theorem 4.2.7 to hold except that
bounded sequences in L1 may not have convergent subsequences (L1 is not a dual space).
However, the compact embedding from Corollary 4.3.10 guarantees that sequences with a
bounded value of TV have subsequences that converge strongly in L1.

Remark 4.3.15. One can replace optimisation over u ∈ L1 with optimisation over u ∈ BV,
which is the effective domain of the objective function.

Total Variation is widely used in imaging applications [34]. The so-called Rudin–Osher–
Fatemi (ROF) model for image denoising [31] consists in minimising the following functional

min
u∈BV(Ω)

1

2
‖Iu− fδ‖2L2(Ω) + αTV(u), (4.14)

where Ω ⊂ R2. In this case, the forward operator I is the embedding operator BV(Ω) →
L2(Ω), which is continuous for two-dimensional domains (see Corollary 4.3.10). Clearly,
A1 6= 0 is satisfied. More generally, one considers the following optimisation problem

min
u∈BV(Ω)

‖Au− fδ‖22 + αTV(u), (4.15)

where A : BV(Ω)→ L2(Ω) is such that A1 6= 0.



Chapter 5

Convex Duality

In Chapter 4 we have established convergence of a regularised solution uδ to a J -minimising
solution u†J as δ → 0. However, we didn’t get any results on the speed of this convergence,
which is referred to as the convergence rate.

In modern regularisation methods, convergence rates are usually studied using Bregman
distances associated with the (convex) regularisation functional J . Recall that for a convex
functional J , u, v ∈ X such that J (v) < ∞ and q ∈ ∂J (v), the (generalised) Bregman
distance is given by the following expression (cf. Def. 4.1.24)

Dq
J (u, v) = J (u)− J (v)− 〈q, u− v〉 .

Also widely used is the symmetric Bregman distance (cf. Def. 4.1.26) given by the following
expression (here p ∈ ∂J (u))

Dsymm
J (u, v) = Dq

J (u, v) +Dp
J (v, u) = 〈p− q, u− v〉 .

Bregman distances appear to be a natural distance measure between a regularised solu-
tion uδ and a J -minimising solution u†J . For instance, for classical Hilbert space regulari-

sation with J (u) = 1
2‖u‖2X , the subgradient at u†J is p

u†J
= u†J (since J is differentiable)

and we get the following expression

D
u†J
J (uδ, u

†
J ) =

1

2
‖uδ‖2X −

1

2
‖u†J ‖2X −

〈
u†J , uδ − u

†
J

〉
=

1

2
(‖uδ‖2X − 2

〈
u†J , uδ

〉
+ ‖u†J ‖2X ) =

1

2
‖uδ − u†J ‖2X ,

which happens to coincide with the symmetric Bregman distance. Therefore, in the clas-
sical L2-case, the Bregman distance just measures the L2-distance between a regularised
solution and a J -minimising solution. As we have seen in an example sheet, subgradients
of absolutely one-homogeneous functional carry structural information about the solution
such as locations of non-zero components of a vector u†J ∈ `1.

We are looking for a convergence rate of the following form

Dsymm
J (uδ, u

†
J ) 6 ψ(δ),

where ψ : R+ → R+ is a known function of δ such that ψ(δ)→ 0 as δ → 0.
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5.1 Dual Problem

Recall that uδ solves the following problem

min
u∈X

1

2
‖Au− fδ‖2Y + αJ (u). (5.1)

with an appropriately chosen α = α(δ), where X and Y are Banach spaces, A ∈ L(X ,Y)
and E : Y → R̄ and J : X → R̄ is proper, convex and l.s.c. and satisfies Assumptions of
Theorem 4.2.6. For simplicity of presentation, we will also assume throughout this chapter
that J is absolutely one-homogeneous and that inf{‖Av − f‖ : v ∈ X} = 0, i.e. Au†J = f
for any J -minimising solution.

To apply the results of Section 4.1.4 to (5.1), we take (in the notation of Section 4.1.4)

E(y) :=
1

2
‖y − f‖2Y , F (u) := αJ (u).

Lemma 5.1.1. Let X be a Banach space with norm ‖ · ‖X and let ‖ · ‖X∗ be the norm in
the dual space of X. Let ϕ(x) := 1

2‖x‖2X . Then the convex conjugate of ϕ is

ϕ∗(ξ) =
1

2
‖ξ‖2X∗ , ξ ∈ X∗.

Proof. First, we note that

ϕ∗(ξ) = sup
x∈X
〈ξ, x〉 − 1

2
‖x‖2X 6 sup

x∈X
‖x‖X‖ξ‖X∗ −

1

2
‖x‖2X .

The function on the right-hand side is a parabola in the scalar variable ‖x‖X and its
maximum is 1

2‖ξ‖2X∗ . Now, fix ξ ∈ X∗. We have that

‖ξ‖X∗ = sup
x∈X
‖x‖=1

〈ξ, x〉 = sup
x∈X
‖x‖=‖ξ‖

〈ξ, x〉
‖ξ‖ .

Let xξn ∈ X be a maximising sequence (that is, ‖xξn‖ = ‖ξ‖ and 〈ξ, xξn〉 → ‖ξ‖2). Then

ϕ∗(ξ) = sup
x∈X
〈ξ, x〉 − 1

2
‖x‖2X > lim sup

n→∞

(
〈ξ, xξn〉 −

1

2
‖xξn‖2X

)
= ‖ξ‖2 − 1

2
‖ξ‖2 =

1

2
‖ξ‖2.

The inequality here is due to the fact that the lim sup is a supremum over a smaller set than
the whole X. Hence, we have that 1

2‖ξ‖2 6 ϕ∗(ξ) 6 1
2‖ξ‖2 and the proof is complete.

Corollary 5.1.2. Theorem 4.1.23 implies that for any x ∈ X and any ξ ∈ ∂ϕ(x) it holds

1

2
‖x‖2X +

1

2
‖ξ‖2X∗ = 〈ξ, x〉.

Using the Cauchy-Schwarz inequality on the right-hand side and rearranging terms, we get
that (‖x‖X − ‖ξ‖X∗)2 = 0 and hence

‖ξ‖X∗ = ‖x‖X .
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Now, for E and F as defined above, we get

E∗(η) = sup
y∈Y
〈η, y〉 − 1

2
‖y − f‖2Y = 〈η, f〉 − sup

z∈Y

(
〈η, z〉 − 1

2
‖z‖2Y

)
= 〈η, f〉+

1

2
‖η‖Y∗ ,

F ∗(p) = χ∂J (0)

( p
α

)
,

where the second equality holds since F is absolutely one-homogeneous. Hence, the dual
problem of (5.1) is given by

sup
η∈Y∗

−〈η, f〉 − 1

2
‖η‖2Y∗ − χ∂J (0)

(−A∗η
α

)
.

Denote µ := − η
α ∈ Y∗. Since −χ∂J (0) = −∞ outside ∂J (0), we get the following equivalent

problem

sup
µ∈Y∗

A∗µ∈∂J (0)

α
(
〈µ, f〉 − α

2
‖µ‖2Y

)
. (5.2)

Let us check if Assumptions of Theorem 4.1.43 are satisfied. Condition (i) (coercivity)
is guaranteed by Lemma 4.2.5. Condition (ii) (continuity of E) is satisfied at u0 = 0.
Therefore, for any δ > 0 there exists a solution µδ of the dual problem (5.2).

Existence of a primal solution uδ is guaranteed by Theorem 4.2.6. Indeed, let us take
τX to be the weak* topology in X and τY a topology in Y such that A is τX -τY continuous
and the norm in Y is τY -l.s.c. (weak*, weak or strong topologies will work). For example, if
Y has a separable predual, we can take τY to be the weak* topology on Y. It can be easily
verified that A is weak*-weak* continuous if it is the dual of another operator A = B∗

(where B acts from the predual of Y into the predual of X ). With these choices, the
conditions of Theorem 4.2.6 are satisfied.

Hence, by strong duality we have that

1

2
‖Auδ − fδ‖2Y + αJ (uδ) = α 〈µδ, fδ〉 −

α2

2
‖µδ‖2Y .

Optimality conditions (iii) from Theorem 4.1.43 take the following form

A∗µδ ∈ ∂J (uδ), −αµδ ∈ ∂
(

1

2
‖ · ‖2Y

)
(Auδ − fδ). (5.3)

From Corollary 5.1.2 we conclude that

‖αµδ‖Y∗ = ‖Auδ − fδ‖Y . (5.4)

Also, comparing the values of 1
2‖ · ‖2 at 0 and at Auδ − fδ and using the fact that −αµδ is

a subgradient, we get that

0 >
1

2
‖Auδ − fδ‖2Y + 〈−αµδ, 0− (Auδ − fδ)〉

and therefore

〈αµδ, Auδ − fδ〉 6 −
1

2
‖Auδ − fδ‖2Y . (5.5)

We will use the estimates (5.4) and (5.5) later in Theorem 5.2.4.
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5.2 Source Condition and Convergence Rates

Formal limits of problems (5.1) and (5.2) at δ = 0 are

inf
u : Au=f

J (u) = inf
u∈X

χ{f}(Au) + J (u) (5.6)

and

sup
µ : A∗µ∈∂J (0)

〈µ, f〉 = sup
µ : A∗µ∈∂J (0)

〈
µ,Au†J

〉
= sup

µ : A∗µ∈∂J (0)

〈
A∗µ, u†J

〉
= sup

v∈R(A∗)∩∂J (0)

〈
v, u†J

〉
. (5.7)

Since the characteristic function χ{f}(·) is not continuous anywhere in its domain, The-
orem 4.1.43 does not apply and we cannot guarantee that a solution of the dual limit
problem (5.7) exists. Indeed, since R(A∗) is not closed (strongly and hence weakly, since it
is convex [18, Thm. V.3.13]), a solution may not exist.

We shall see that existence is guaranteed by the following condition

Definition 5.2.1 (Source condition [14]). We say that a J -minimising solution u†J satisfies
the source condition if

∃µ† ∈ Y∗ such that A∗µ† ∈ ∂J (u†J ), (5.8)

i.e. if R(A∗) ∩ ∂J (u†J ) 6= ∅.
First we will see that this condition is necessary for the dual solution µδ from (5.3) to

stay bounded as δ → 0.

Theorem 5.2.2 (Necessary conditions, [24]). Let X and Y be Banach spaces and Y sep-
arable. Let conditions of Theorem 4.2.6 be satisfied and α = α(δ) be chosen as required by
Theorem 4.2.7. Suppose that the dual solution µδ is bounded uniformly in δ. Then there
exists µ† ∈ Y∗ such that A∗µ† ∈ ∂J (u†J ).

Proof. Consider an arbitrary sequence δn ↓ 0. Since ‖µδ‖Y∗ 6 C for all δ, by the Banach-
Alaogly theorem we get that there exists a weakly-* convergent subsequence (that we do
not relabel), i.e.

µδn ⇀
∗ µ† ∈ Y∗.

Then we get that
A∗µδn ⇀

∗ A∗µ†.

Since ∂J (0) is weakly-* closed (Theorem 4.1.19) and A∗µδn ∈ ∂J (0) by (5.3), we get that

A∗µ† ∈ ∂J (0).

Since J is absolute one-homogeneous, we get by Proposition 4.1.28 that

〈A∗µδn , uδn〉 = J (uδn)→ J (u†J ), (5.9)

where convergence follows from Theorem 4.2.7. We also observe that

|〈A∗µδ, uδ〉 − 〈A∗µ†, u†J 〉| = |〈A∗µδ, uδ − u†J 〉 − 〈A∗(µ† − µδ), u
†
J 〉|

6 |〈µδ, Auδ − f〉|+ |〈µ† − µδ, f〉|
6 ‖µδ‖‖Auδ − f‖+ |〈µ† − µδ, f〉| → 0,
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since ‖µδn‖Y∗ is bounded, ‖Auδn − f‖Y → 0 and µδn ⇀
∗ µ†. Combining this with (5.9), we

get that

J (u†J ) =
〈
A∗µ†, u†J

〉
.

Since A∗µ† ∈ ∂J (0) and J (u†J ) =
〈
A∗µ†, u†J

〉
, we conclude, using Proposition 4.1.31, that

A∗µ† ∈ ∂J (u†J ).

So, the source condition is necessary for the boundedness of the dual solutions µδ as
δ → 0. It turns out to be also sufficient.

Theorem 5.2.3 (Sufficient conditions, [24]). Let X and Y be Banach spaces and Y sep-
arable. Let conditions of Theorem 4.2.6 be satisfied and α = α(δ) be chosen as required
by Theorem 4.2.7. Suppose that the source condition (5.8) is satisfied at a J -minimising

solution u†J . Then µδ is bounded uniformly in δ. Moreover, µδ ⇀
∗ µ† in Y∗ as δ → 0

(perhaps, up to a subsequence), where µ† is the solution of the dual limit problem (5.7) with
minimal norm.

Proof. We omit the proof for time reasons. It can be found in [24] (for Hilbert spaces).

The next theorem shows that the source condition (5.8) implies a convergence rates in
terms of the Bregman distance.

Theorem 5.2.4. Let the source condition (5.8) be satisfied at a J -minimising solution u†J
and let uδ be a regularised solution solving (5.1). Then the following estimate holds

Dpδ,p
†

J (uδ, u
†
J ) 6

1

4α

(
δ + α‖µ†‖

)2
+ δ‖µ†‖.

where pδ = A∗µδ ∈ ∂J (uδ) with µδ as defined in (5.3) and p† = A∗µ† ∈ ∂J (u†J ) is as

defined in (5.8). Dpδ,p
†

J (uδ, u
†
J ) denotes the symmetric Bregman distance between uδ and

u†J . For the optimal choice α = δ
‖µ†‖ we get that

Dpδ,p
†

J (uδ, u
†
J ) 6 3δ‖µ†‖.

Proof. We start with the following estimate

αDpδ,p
†

J (uδ, u
†
J ) = α〈pδ − p†, uδ − u†J 〉

= α〈µδ − µ†, Auδ − f〉
= α〈µδ, Auδ − fδ〉+ α〈µδ, fδ − f〉 − α〈µ†, Auδ − fδ〉 − α〈µ†, fδ − f〉.

From (5.5) we know that

α〈µδ, Auδ − fδ〉 6 −
1

2
‖Auδ − fδ‖2Y .

and from (5.4) that α‖µδ‖ = ‖Auδ − fδ‖. Using these estimates, the Cauchy-Schwarz
inequality and the estimate ‖f − fδ‖ 6 δ, we get

αDpδ,p
†

J (uδ, u
†
J ) 6 −1

2
‖Auδ − fδ‖2 +

(
δ + α‖µ†‖

)
‖Auδ − fδ‖+ αδ‖µ†‖.
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The right-hand side is the following quadratic function of the scalar variable ‖Auδ − fδ‖

ϕ(t) := −1

2
t2 + (δ + α‖µ†‖)t+ αδ‖µ†‖, t ∈ R.

It achieves its maximum at t0 = (δ + α‖µ†‖) and this maximum value is equal to

ϕ(t0) =
(δ + α‖µ†‖)2

2
+ αδ‖µ†‖.

Substituting this into the above estimate for the Bregman distance and dividing both sides
by α, we get the desired estimate

Dpδ,p
†

J (uδ, u
†
J ) 6

(δ + α‖µ†‖)2

2α
+ δ‖µ†‖.

Differentiating the right-hand side w.r.t. α and setting the derivative to zero, we obtain the
following optimality condition for α

0 =
2α‖µ†‖(δ + α‖µ†‖)− (δ + α‖µ†‖)2

2α2
=
α2‖µ†‖2 − δ2

2α2

and

α =
δ

‖µ†‖ .

With this optimal choice of α we get the following estimate

Dpδ,p
†

J (uδ, u
†
J ) 6 3δ‖µ†‖.

Remark 5.2.5. Of course, we do not know µ† since we don’t know the J -minimising
solution u†J , but the theorem gives an optimal rate α ∼ δ for a priori parameter choice rules

and a corresponding error estimate Dpδ,p
†

J (uδ, u
†
J ) = O(δ).

Now we will look at two examples involving Total Variation to get a feeling for what
the source condition ‘means’.

Example 5.2.6 (Total Variation). Let Ω ⊂ R2 be a bounded domain with a C∞ boundary.
Let X = BV(Ω) and Y = L2(Ω) and J (·) = TV(·). Recall the ROF problem

min
u∈BV

1

2
‖Iu− fδ‖2L2 + αTV(u),

where I : BV(Ω) → L2(Ω) is the embedding operator, which is continuous since Ω ⊂ R2.
The adjoint I∗ : L2(Ω) → BV∗(Ω) continuously embeds L2 into BV∗. Clearly, I∗ is not
surjectuve and R(I∗) = L2(Ω).

From Example 4.3.6 we know that

TV(1C) = Per(C),

where 1C is the indicator function of the set C. Denoting by n∂C the unit normal, we obtain

Per(C) =

∫
∂C

1 =

∫
∂C
〈n∂C ,n∂C〉 .
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1

1

ε

ε0

C

Cε

Figure 5.1: Example of a set whose indicator function does not satisfy the source condition.

Since n∂C ∈ C∞(∂C,R2) and ‖n∂C(x)‖2 = 1 for any x, we can extend n∂C to a C∞0 (Ω,R2)
vector field ψ with supx∈Ω ‖ψ(x)‖2 6 1. Therefore, using the divergence theorem, we obtain
that ∫

∂C
〈n∂C ,n∂C〉 =

∫
∂C
〈ψ,n∂C〉 =

∫
C

divψ =

∫
Ω

1C divψ.

Combining all these equalities, we get that

TV(1C) =

∫
Ω

1C divψ = 〈divψ,1C〉.

Taking an arbitrary u ∈ BV(Ω), we note that

TV(u)− 〈divψ, u〉 = sup
ϕ ∈ C∞0 (Ω,R2)

supx∈Ω ‖ϕ(x)‖2 6 1

〈divϕ, u〉 − 〈divψ, u〉 > 0,

since ϕ = ψ is feasible. Therefore, divψ ∈ ∂ TV(0) and, since TV(1C) = 〈divψ,1C〉, we
also get that

divψ ∈ ∂ TV(1C).

Since ψ ∈ C∞0 (Ω,R2), we have divψ ∈ C∞0 (Ω) ⊂ L2(Ω) = R(I∗) and the source condition
is satisfied at u = 1C with µ† = divψ.

Example 5.2.7 (Total Variation). In the same setting as in Example 5.2.6, let C be a
domain with a nonsmooth boundary, e.g., a square C = [0, 1]2. We will show in this
example that in this case ∂ TV(1C) ∩ R(I∗) = ∅, where R(I∗) = L2(Ω) as before, i.e. the
source condition fails.

Assume that there exists p0 ∈ ∂ TV(1C) ∩ L2(Ω). Then by the results of Example 4.3.6
we have that

〈p0,1C〉 = TV(1C) = Per(C) = 4.

Since p0 is a subgradient, we get that for any u ∈ BV(Ω)

TV(u)− 〈p0, u〉 > 0.

Let us cut a triangle Cε of size ε from a corner of C as shown in Figure 5.1. Then for
u = 1C\Cε we get

TV(1C\Cε) >
〈
p0,1C\Cε

〉
= 〈p0,1C〉 − 〈p0,1Cε〉

and therefore

〈p0,1Cε〉 > TV(1C)−TV(1C\Cε) = Per(C)−Per(C \Cε) = 4−(4−2ε+
√

2ε) = (2−
√

2)ε > 0.
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By Hölder’s inequality we get that

〈p0,1Cε〉 =

∫
Cε
p0 · 1 6

(∫
Cε
|p0|2

)1/2(∫
Cε

1

)1/2

=
1√
2
ε

(∫
Cε
|p0|2

)1/2

.

Combining the last two inequalities, we get

(2−
√

2)ε 6 〈p0,1Cε〉 6
1√
2
ε

(∫
Cε
|p0|2

)1/2

and therefore ∫
Cε
|p0|2 > 2(2−

√
2)2 > 0

for all ε > 0. However, since p0 ∈ L2(Ω) by assumption, we must have∫
Cε
|p0|2 → 0 as ε→ 0.

This contradiction proves that such p0 does not exist and ∂ TV(1C) ∩R(I∗) = ∅.



Chapter 6

Bayesian probability and statistics

6.1 From inverse problems to Bayesian inverse problems

We consider an inverse problem of the form:

Find u ∈ X : A(u) + n = fn,

where X is a separable Banach space, n ∈ Y is observational noise, Y is another separable
Banach space, fn ∈ Y is data, and A : X → Y is a measurable (possibly non-linear)
operator.

So far, we have studied techniques (pseudo-inverse, regularisation) to find estimates for
the parameter u. In situation where the noise n is large or the data is non-informative,
we should not only give an estimate for u, but also comment on the uncertainty left in the
parameter. This is the problem we study in this part of the lecture.

There are multiple ways to represent certainty, knowledge, risk, or uncertainty in a
parameter, such as u ∈ X . Common models are Bayesian probability theory, fuzzy set
theory, Dempster–Shafer theory, random set theory,...

We follow Bayesian probability theory: model uncertain parameters as random variables.

Intuitions, concepts, questions, and answers:

1. Can we use randomness to model deterministic, uncertain objects?

• Not with the usual “frequentist” interpretation of probability. Here, the proba-
bility of an event is the limit of the relative frequency of the occurrence of the
event in infinitely repeated, independent experiments. If the object we study is
deterministic, the frequentist approach will only give us probabilities in {0, 1}.

• Indeed, with the “Bayesian” interpretation of probability. Here the probability
of an event is the amount of money (in £) we would give in a game to win £1 if
the event occurs. This ‘game’ does not require any inherent randomness.

2. Can we represent the learning of information about a parameter?

• Learning that an event B occurred can be represented via conditional probability.
Indeed, this learning process is given by the map P(U ∈ ·) 7→ P(U ∈ ·|B).

• In practice, we can often compute updates of this form through Bayes’ formula.
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3. Can we use Bayesian probability to argue about logical statements?

• Cox’s Theorem [17]: Bayesian probability is a sensible extension of Aristotelian
logic.

4. Is Bayesian probability theory congruent with our everyday experience?

• It probably is. See the example below.

Example 6.1.1. ‘Tossing a coin’ can be modelled as a Bernoulli experiment

P(Coin shows Head) = 0.5 = P(Coin shows Tail).

Actually, this is a mechanical process that is completely deterministic. However, it
is difficult to predict its outcome. The model is complicated and subject to many
uncertain parameters: force, speed, gravity, air flow. . . Hence, it is easier to model the
coin as a random variable.

5. How do we employ these ideas in inverse problems?

(a) We assume that noise n and parameter u are random variables N and U . The
distributions of N and U describe our knowledge concerning noise and parameter
before observing the data set. The distribution of U is called prior distribution
µ0 := P(U ∈ ·).

(b) We observe the data set fn, indeed, we observe the occurrence of the event

{fn = A(U) +N}.

(c) We employ Bayes’ theorem to ‘update’ the prior by incorporating the observa-
tional data

µ0 = P(U ∈ ·) 7→ P(U ∈ ·|fn = A(U) +N) =: µpost.

As µpost now explains our knowledge after seeing the data, we call it posterior
distribution.

6.2 Reminder: measure, probability, and integration

During this course, we will make extensive use of measure-theoretic probability theory.
Thus, we will briefly remind ourselves of some definitions, examples, and results from mea-
sure and probability theory that we will require throughout this lecture. In case the reader
would like to get a more thorough reminder, we refer them to [6], [10], [25]. We commence
with σ-algebras.

Definition 6.2.1 (σ-algebra). Let Ω be a non-empty set, let 2Ω := {A : A ⊆ Ω} be the
power set of Ω, and let F ⊆ 2Ω satisfy (i)-(iii):

(i) Ω ∈ F ,

(ii) for any F ∈ F , we have also F c := Ω\F ∈ F , and

(iii) for any countable family (Fn : n ∈ N) ∈ FN, we have also
⋃
n∈N Fn ∈ F .
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Then, F is called σ-algebra on Ω and (Ω,F) is called measurable space.

There are several ways to construct σ-algebras. They can for instance be induced by
systems of sets or functions.

Definition 6.2.2 (Induced σ-algebra). 1. Let Ω be non-empty and E ⊆ 2Ω. We define
the σ-algebra induced by E on Ω by

σΩ(E) :=
⋂
F′⊃E

F ′ is σ-algebra on Ω

F ′.

2. Let Ω be non-empty, let (Ω′,F ′) be a measurable space, and let g : Ω → Ω′ be a
function. We define the σ-algebra induced by g on Ω by

σΩ(g) := {{g ∈ F ′} : F ′ ∈ F ′},

where
{g ∈ F ′} := g−1(F ′) := {ω ∈ Ω : g(ω) ∈ F ′}

is the pre-image of F ′ under g.

Example 6.2.1. Let Ω be a non-empty set.

1. 2Ω is the largest σ-algebra on Ω. {∅,Ω} is the smallest σ-algebra.

2. Let Ω be a topological space with open sets O ⊆ 2Ω. The σ-algebra σΩ(O) =: BΩ is
called Borel-σ-algebra on Ω.

A σ-algebra is the natural space to define a (probability) measure on.

Definition 6.2.3 (Measure and probability measure). Let (Ω,F) be a measurable space
and let µ : F → [0,∞] be a function, satisfying (i),(ii):

(i) µ(∅) = 0,

(ii) for any countable family (Fm : m ∈ N) ∈ FN of mutually disjoint sets, i.e. Fn∩Fm = ∅
(n 6= m). Then, we have µ

(⋃
m∈N Fm

)
=
∑

m∈N µ(Fm).

Then, µ is called measure on (Ω,F) and (Ω,F , µ) is called measure space. If a measure µ
additionally satisfies (iii):

(iii) µ(Ω) = 1,

the measure µ is called probability measure and (Ω,F , µ) is called probability space. Finally,
a measure µ is called σ-finite, if

(iv) there is a countable family (Fm : m ∈ N) ∈ FN, with
⋃
m∈N Fm = Ω and µ(Fm) < ∞

(m ∈ N).

Example 6.2.2. Let (Ω,F) be some measurable space.

• # : F → [0,∞] defined by

#(F ) :=

{
∞, if F is infinite

|F |, otherwise.
(F ∈ F)

is a measure and called counting measure,
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• Let ω ∈ Ω. Then, δ(· − ω) : F → [0,∞] defined by

δ(F − ω) :=

{
1, if F 3 ω
0, otherwise

(F ∈ F)

is called Dirac measure concentrated in ω. The Dirac measure is a probability mea-
sure.

• Let k ∈ N, Ω := Rk, and λk : BRk → [0,∞] be the unique measure that satisfies

λk

(
k∏
i=1

[ai, bi)

)
=

k∏
i=1

(bi − ai),

if ai 6 bi (i = 1, ..., k). Then λk is called k-dimensional Lebesgue measure.

Exercise 6.2.4. 1. Show that the Dirac and counting measure are measures.

2. Show that Dirac and Lebesgue measure are σ-finite.

3. When is the counting measure σ-finite?

We already learned the concept of using a function to construct a σ-algebra. In the
following, we would like to use functions to represent uncertainties (‘random variables’) and
use measures to integrate functions. Here, we require the concept of ‘measurability’.

Definition 6.2.5. Let (Ω,F) and (Ω′,F ′) be two measurable spaces and let g : Ω → Ω′ be
a function.

1. g is called measurable, if {g ∈ F ′} ∈ F , for any F ′ ∈ F ′. In this case, we sometimes
write g : (Ω,F)→ (Ω′,F ′).

2. Let g be measurable and µ be a measure on (Ω,F). Then, we define the push-forward
measure µ(g ∈ ·). If in addition, µ is a probability measure, g is called random variable
and µ(g ∈ ·) is called (probability) distribution of g.

This rather abstract definition of measurability does not appear to be very instructive
in practice. A useful result is the following proposition

Proposition 6.2.6. Let Ω be a topological space and g : Ω→ R be continuous, i.e. for any
open F ′ ⊆ R, the preimage {g ∈ F ′} ⊆ Ω is open as well. Then, g : (Ω,BΩ) → (R,BR) is
measurable.

Proof. Page 36 in [6].

Push-forward measures and probability distributions are well-defined measures and
probability measures, respectively.

Proposition 6.2.7. Let (Ω,F , µ) be a measure space, (Ω′,F ′) be a measurable spaces, and
let g : (Ω,F)→ (Ω′,F ′) be a measurable function. Then, the pushforward measure µ(g ∈ ·)
is a measure on (Ω′,F ′). Moreover, if µ is a probability measure, then so is µ(g ∈ ·).

Proof. Exercise.
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Measurability is the basic concept needed to be able to integrate a function with respect
to a measure. We start with simple functions.

Definition 6.2.8. Let (Ω,F , µ) be a measure space. A function g : Ω→ R is called simple,
if there exists an m ∈ N and (Fi : i = 1, ...,m) ∈ Fm, such that

g =

m∑
i=1

bi1Fi ,

for some b ∈ Rm. Consider the following two assumptions:

(i) b ∈ [0,∞)m or b ∈ (−∞, 0]m,

(ii) for any i ∈ {1, ...,m}, with µ(Fi) =∞, we have bi = 0.

If either (i) or (ii) holds, we define the (Lebesgue) integral of g with respect to µ by∫
Ω
gdµ :=

∫
Ω
g(ω)dµ(ω) :=

∫
Ω
g(ω)µ(dω) :=

m∑
i=1;bi 6=0

biµ(Fi).

If the expression on the right-hand side is finite, we call g (Lebesgue) integrable.

Exercise 6.2.9. A simple function g : Ω→ R is measurable from (Ω,F) to (R,BR).

To define the integral for more general functions g, we will approximate the function by
simple functions. This gives us the following definition for the integral.

Definition 6.2.10 (Lebesgue integral). Let (Ω,F , µ) be a measure space and let g : (Ω,F)→
(R,BR) be measurable and non-negative. Then, we define the (Lebesgue) integral of g by∫

Ω
gdµ := sup

{∫
Ω
h(ω)dµ(ω) : 0 6 h 6 g, h is simple

}
If the supremum is finite, we call g (Lebesgue) integrable.

In the following proposition, we discuss the fundamental properties of the Lebesgue
integral: linearity, monotonicity, and monotonic convergence.

Proposition 6.2.11. Let (Ω,F , µ) be a measure space and let g, h, g1, g2, . . . : (Ω,F) →
(R,BR) be measurable, non-negative functions. Then:

1. If g 6 h pointwise, then
∫

Ω gdµ 6
∫

Ω hdµ.

2. If (gm : m ∈ N) is pointwise increasing and limm→∞ gm = g pointwise, then the
sequence

(∫
Ω gmdµ : m ∈ N

)
is increasing and limm→∞

∫
Ω gmdµ =

∫
Ω gdµ.

3. For some α, β ∈ [0,∞], we have∫
Ω
αg + βhdµ = α

∫
Ω
gdµ+ β

∫
Ω
hdµ.

(We use the convention “0 · ∞ = 0”)

Proof. Lemma 4.6 in [25].
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Measurable functions g taking values in R can be integrated by subtracting the integral
of their negative part max{0,−g} from the integral of their positive part max{0, g}, if one
of them is integrable.

Integrals of non-negative measurable functions give a natural way to define measures.

Proposition and definition 6.2.12. Let (Ω,F , µ) be a measure space and let g : (Ω,F)→
(R,BR) be measurable and non-negative. Then, the map ν : F → [0,∞], defined by

F 7→
∫

Ω
g · 1Fdµ =:

∫
F
gdµ

is a measure. ν is called measure with (µ-)density (function) g. If ν is a probability measure,
g is called (µ-)probability density (function).

Proof. Exercise.

Definition 6.2.13. Let (Ω,F , µ) := (R,BR, λ1). Moreover, let m ∈ R and σ > 0, and let
g : Ω→ R be the measurable function

g(ω) :=
1√
2πσ

exp

(
−(ω −m)2

2σ2

)
.

Then, the measure ν with λ1-density g is called Gaussian distribution on R with mean m
and variance σ2. We denote n(·;m,σ2) := g and N(m,σ2) := ν. Moreover, we define the
degenerate Gaussian distribution by N(m, 0) := δ(· −m).

A rather surprising result about measures and densities is the Radon–Nikodym Theorem.
It is fundamental for the general definition of conditional expectations and also for the
general form of Bayes’ theorem. Before stating the Radon–Nikodym Theorem, we define
two more important notions regarding measures.

Definition 6.2.14. Let (Ω,F) be a measurable space and µ, ν be two measure on that space.

1. We define ν to be absolutely continuous with respect to µ, if for all F ∈ F , with
µ(F ) = 0, we also have ν(F ) = 0. In this case, we write ν � µ.

2. Let A(ω) be a statement for all ω ∈ Ω. We say that A holds µ-almost everywhere
(µ-a.e.), if there is a set N ∈ F such that µ(N) = 0 and A(ω) is true for ω ∈ X\N .
If µ is a probability measure, we sometimes say µ-almost surely (µ-a.s.) instead of
µ-almost everywhere.

Theorem 6.2.15 (Radon-Nikodym). Let (Ω,F) be a measurable space and let µ, ν be σ-
finite measures on (Ω,F). Then, the following two statements are equivalent:

(i) ν � µ

(ii) There is a measurable function g : (Ω,F)→ (R,BR), with

ν(F ) =

∫
F
gdµ (F ∈ F).

Moreover, the function g is µ-a.e. unique, called Radon–Nikodym derivative, and denoted

by dν
dµ := g.

Proof. (ii)⇒ (i): exercise. (i)⇒ (ii): more complicated, see, e.g., Corollary 7.34 in [25].

Exercise 6.2.16. Give an example for measures ν, µ on (R,BR), with ν � µ and µ not
σ-finite, such that no Radon-Nikodym derivative exists.
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6.3 Conditional probability

For the remainder of the lecture, we always consider (Ω,F ,P) as underlying probability
space for any random variable. We typically omit its precise construction, but assume that
Ω is a Polish space (separable and completely metrisable) and F := BΩ. We denote integrals
with respect to P sometimes by

E[ϕ] :=

∫
Ω
ϕdP,

for some ϕ : (Ω,F)→ (R,BR), for which this integral is well-defined.

Example 6.3.1. Let U : (Ω,F) → ({1, . . . , 6}, 2{1,...,6}) be a random variable modelling
the roll of a die, hence

P(U = u) =

{
1/6, if u ∈ {1, ..., 6},
0, otherwise.

This probability measure models our knowledge concerning the outcome of the experiment.
Now we consider an extended model. After the die is rolled and before its realisation is
revealed, we are told whether the realisation is even or odd. Given this information, we can
adjust our knowledge concerning the random variable U :

P(U = u|U is even) =
P(U = u and U is even)

P(U is even)
,

respectively

P(U = u|U is odd) =
P(U = u and U is odd)

P(U is odd)
.

In the example above, we used the elementary definition of conditional probabilities:

P(F |F ′) =
P(F ∩ F ′)
P(F ′)

(F, F ′ ∈ F ,P(F ′) > 0).

This definition can only be used, if the event with respect to which the conditional proba-
bility is defined has a positive probability (here: {U is even}, {U is odd}).

This however is typically not the case in a Bayesian inverse problem since the probability
measure of the noise is continuous. Hence, we need a more general definition of conditional
probabilities. We start with conditional expectations.

Theorem 6.3.2. Let U : (Ω,F)→ (R,BR) and Y : (Ω,F)→ (Y,BY) be random variables
and let U be integrable. Then, there exists a measurable function h : (Y,BY) → (R,BR),
such that ∫

F
h(y)P(Y ∈ dy) =

∫
{Y ∈F}

UdP (F ∈ BY). (6.1)

Moreover, h is P(Y ∈ ·)-a.s. unique.

Proof. We assume without loss of generality that U > 0. (If U is real-valued, study
max{U, 0} and max{−U, 0} separately.) Note that the map

F 7→
∫
{Y ∈F}

UdP =: µ(F )
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defines a (σ-)finite measure. We now show that µ� P(Y ∈ ·): let F0 ∈ BY be chosen such
that P(Y ∈ F0) = 0. Then, ∫

{Y ∈F0}
UdP =

∫
Ω

1{Y ∈F0}UdP = 0.

By the Radon–Nikodym Theorem, there exists a P(Y ∈ ·)-a.s. unique function h := dµ
dP(Y ∈·) ,

satisfying (6.1).

Definition 6.3.3. h(y) in Theorem 6.3.2 is called conditional expectation of U given Y = y.
We write h(y) =: E[U |Y = y], for P(Y ∈ ·)-almost every y ∈ Y.

Now we can define the conditional probability of some event F by considering the
indicator random variable U = 1F . Since X ,Y are Polish spaces, one can even find a
P(Y ∈ ·)-a.s. unique Markov kernel (y, F ) 7→ E[1F |Y = y].

Definition 6.3.4. Let (Ω,F), (Ω′,F ′) be measurable spaces. A map M : Ω×F ′ → [0, 1] is
called Markov kernel from (Ω,F) to (Ω′,F ′), if

(i) M(ω, ·) is a probability measure for all ω ∈ Ω,

(ii) M(·, F ′) : (Ω,F)→ ([0, 1],B[0, 1]) is measurable for all F ′ ∈ F ′.

Theorem 6.3.5. Let U : (Ω,F)→ (X ,BX ) and Y : (Ω,F)→ (Y,BY) be random variables.
Then, there exist a Markov kernel M from (Y,BY) to (X ,BX ), with∫

F
M(y, F ′)P(Y ∈ dy) = P({Y ∈ F} ∩ {U ∈ F ′}) (F ∈ BY, F ′ ∈ BX ).

Moreover, M is P(Y ∈ ·)-a.s. unique.

Proof. Non-trivial, but possible if Ω is Polish; see [26].

Definition 6.3.6. M in Theorem 6.3.5 is called (regular) conditional probability distribu-
tion of U given Y = y. We write M(y, F ) := P(U ∈ F |Y = y), for F ∈ BX , y ∈ Y.

Example 6.3.7 (Example 6.3.1 rev.). In Example 6.3.1, we compute the conditional proba-
bility distribution of a die U : (Ω,F)→ ({1, . . . , 6}, 2{1,...,6}), given the information whether
the outcome will be even or odd. Define a random variable Y : (Ω,F)→ ({0, 1}, 2{0,1})

ω 7→
{

0, if U(ω) is even

1, otherwise.

We can write

P(U = u|U is even) =: P(U = u|Y = 0), P(U = u|U is odd) =: P(U = u|Y = 1).

Indeed, one can show that these functions are conditional expectation/probability measures
in the sense of definition 6.3.3. Let F ∈ 2{0,1}. We need to show that∫

F
P(U = u|Y = y)P(Y ∈ dy) = P({U = u} ∩ {Y ∈ F}).
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Let F := {0}. Then, we have∫
{Y=0}

1{U=u}dP =
1

6
(1{2}(u) + 1{4}(u) + 1{6}(u))

=
1

2︸︷︷︸
=P(Y=0)

· 1
3

(1{2}(u) + 1{4}(u) + 1{6}(u))︸ ︷︷ ︸
=P(U=u|Y=0)

=

∫
{0}

P(U = u|Y = y)P(Y ∈ dy)

Analogously, one can show condition (6.1) for F = ∅, {1}, {0, 1}.
In Theorem 6.3.5, we discuss that conditional probabilities are Markov kernels. Also

the converse is true: given a Markov kernel, we can construct random variables such that
the Markov kernel represents a conditional probability measure.

Proposition 6.3.8. Let M : Ω′×F ′′ → [0, 1] be a Markov kernel from (Ω′,F ′) to (Ω′′,F ′′).
Then, there is an underlying probability space (Ω,F ,P) and random variables X ′ : Ω→ Ω′

and X ′′ : Ω→ Ω′′ such that:

M(ω′, F ′′) = P(X ′′ ∈ F ′′|X ′ = ω′) (F ′′ ∈ F ′′ and P(X ′ ∈ ·)-almost all ω′ ∈ Ω′).

Proof. Define (Ω,F) := (Ω′×Ω′′,F ′⊗F ′′). Let µ′ be some probability measure on (Ω′,F ′).
Moreover, let P be the measure satisfying

P(F ′ × F ′′) =

∫
F ′
M(ω′, F ′′)dµ′(ω′) (F ′ ∈ F ′, F ′′ ∈ F ′′).

Let X ′ : Ω → Ω′ (resp. X ′′ : Ω → Ω′′) be the canonical projection on the first (resp.
second) coordinate. Then X ′ ∼ µ′ and X ′′ ∼M(X ′, ·). Let F ′ ∈ F ′ and F ′′ ∈ F ′′. Then it
holds

P({X ′ ∈ F ′} ∩ {X ′′ ∈ F ′′}) =

∫
{X′∈F ′,X′′∈F ′′}

dP =

∫∫
{X′∈F ′,X′′∈F ′′}

M(ω′,dω′′)µ′(dω′)

(∗)
=

∫
F ′

∫
F ′′
M(ω′, dω′′)µ′(dω′) =

∫
F ′
M(F ′′, ω′)P(X ′ ∈ dω′),

where (*) is implied by Tonelli’s Theorem. Hence, M(F ′′, ω′) = P(X ′′ ∈ F ′′|X ′ = ω′) is
indeed a conditional probability distribution.

As Markov kernels are consistent with conditional probabilities, we sometimes write
M(·|∗) := M(∗, ·).

Applying the concept of conditional expectations in general situations is not straight-
forward. However, probability measures are often given in terms of probability density
functions. Given joint and marginal probability density functions, one can define the con-
ditional probability in terms of a probability density function.

Lemma 6.3.9. Let U, Y be random variables with joint probability distribution P((U, Y ) ∈ ·)
that is absolutely continuous with respect to a σ-finite measure ν on (X × Y,BX ⊗ BY).
Assume that ν = νU ⊗ νY for σ-finite measure spaces (X ,BX , νU ), (Y,BY, νY ). We write

gU,Y := dP((U,Y )∈·)
dν for the joint probability density function. Then,

P(U ∈ ·)� νU , P(Y ∈ ·)� νY ,
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with probability density functions

gU :=

∫
Y
gU,Y dνY =

dP(U ∈ ·)
dνU

(νU -a.e.),

gY :=

∫
X
gU,Y dνU =

dP(Y ∈ ·)
dνY

(νY -a.e.).

Proof. Let A ∈ BX . We have

P(U ∈ A) = P(U ∈ A, Y ∈ Y) =

∫
A×Y

gU,Y dν =

∫
A

∫
Y
gU,Y dνY︸ ︷︷ ︸
=:gU

dνU ,

by the Theorem of Tonelli. Hence, P(U ∈ ·)� νU . The statement about Y can be proven
analoguously.

Theorem 6.3.10. Under the assumptions of Lemma 6.3.9, we have P(U ∈ ·|Y = y)� νU
with νU -density:

gU |Y=y(u) :=

{
gU,Y (u,y)
gY (y) , if gY (y) > 0,

0, otherwise
(u ∈ X , νU -a.e.; y ∈ Y,P(Y ∈ ·)-a.e.),

and equivalently P(Y ∈ ·|U = u)� νY with νY -density:

gY |U=u(y) :=

{
gU,Y (u,y)
gU (u) , if gU (u) > 0,

0, otherwise
(y ∈ Y, νY -a.e.;u ∈ X ,P(U ∈ ·)-a.e.).

Proof. Let A ∈ BX , F ∈ BY. By Definition 6.3.6, P(U ∈ A|Y = y) fulfills (6.1):

P(U ∈ A, Y ∈ F ) =

∫
F
P(U ∈ A|Y = y)P(Y ∈ dy)

=

∫
F
P(U ∈ A|Y = y)gY (y)dνY (y)

=

∫
F∩{gY >0}

P(U ∈ A|Y = y)gY (y)dνY (y),

as P(gY (Y ) = 0) = P(Y ∈ {gY = 0}) =
∫
Y 1{gY =0}P(Y ∈ dy) =

∫
{gY =0} gY dνY = 0. Note

that we can write

P(U ∈ A, Y ∈ F ) =

∫
F∩{gY >0}

∫
A
gU,Y (u, y)dνU (u)dνY (y).

This and the statement above imply

P(U ∈ A|Y = y)gY (y) =

∫
A
gU,Y (u, y)dνU (u) (P(Y ∈ ·)-a.s.).

Hence, we have

P(U ∈ A|Y = y) =

∫
A

gU,Y (u, y)

gY (y)
dνU (u) (P(Y ∈ ·)-a.s.).

This proves our statement about P(U ∈ ·|Y = y) the reverse statement can be shown
analoguously.
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Definition 6.3.11. Let gU , gY , gU,Y , gU |Y=y, gY |U=u be the probability density functions in
Theorem 6.3.10. We define

• gU (resp. gY ) to be the marginal probability density of U (resp. Y ),

• gU,Y to be the joint probability density of U and Y ,

• gU |Y=y to be the conditional density of U given Y = y, and

• gY |U=u to be the conditional density of Y given U = u.

6.4 Bayesian statistics

We are now ready to, first, fit our inverse problem into a statistical framework and, second,
determine the posterior measure

6.4.1 Statistical models

Definition 6.4.1. Let X ,Y be separable Banach spaces. We refer to X as parameter space
and to Y as data space. Let P := {M(·|u) : u ∈ X}, where M is a Markov kernel from
(X ,BX ) to (Y,BY). The tuple (Y,P) is called statistical model. The statistical model
is called parametric, if X is a subset of a Euclidean vector space, and non-parametric,
otherwise.

After defining statistical models, we should comment on their purpose.

Remark 6.4.2. Let u∗ ∈ X be some parameter, let Y ∼M(·|u∗), and let y be a realisation
of Y . Statistical methods aim to find u∗ ∈ X based on the realisation y. The probability
measure M(·|u∗) is called data-generating distribution.

Now, we give an example for a parametric statistical model.

Example 6.4.3. We are given five independent realisations y = (0.2,−0.32, 0.8, 1.2,−0.4),
of a one dimensional Gaussian random variable with variance σ2 = 1. We do not know the
mean of the random variable. Given y, we want to identify the mean. The statistical model
associated with this task is given by:

(Y,P) :=
(
R5,

{
N(u, 1)⊗5 : u ∈ R

})
.

We can sometimes represent a statistical model in terms of a conditional density, the
so-called likelihood.

Definition 6.4.4. Let (Y,P) be a statistical model and let L : (X ×Y,BX ⊗BY)→ (R,BR)
such that

P :=

{
BY 3 F 7→

∫
F
L(y|u)dµ(y) : u ∈ X

}
,

for some measure µ on (Y,BY). We refer to L as (data) likelihood.

Note that the likelihood is a conditional density L = gY |U=u, for some random variable
U . It informs us about the likelihood of observing a data set given that we assume it was
sampled from M(·|u).
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Example 6.4.5. Let A : (X ,BX ) → (Y,BY) be a measurable operator. Moreover, let
µnoise be a probability measure on (Y,BY). We consider the inverse problem of identifying
u ∈ X, where

A(u) +N = fn

with N ∼ µnoise. We can now represent this inverse problem by a statistical model:

(Y,P) := (Y, {µnoise(· − A(u)) : u ∈ X}).

The data set fn is a realisation of the data-generating distribution µnoise(· − A(u∗)), where
u∗ is the true parameter.

Let n ∈ N, Y := Rn, Γ ∈ Rn×n be positive definite, and µnoise := N(0,Γ). Then, we can
represent the statistical model by a likelihood:

L(y|u) := (2π)−k/2det(Γ)−1/2 exp

(
−1

2
‖Γ−1/2(y −A(u))‖2

)
,

where u ∈ X and y ∈ Y.

6.4.2 Bayes’ formula

In Bayesian statistics, we model the unknown parameter u as a random variable U ∼ µ0

that is distributed according to a prior measure. µ0 reflects our knowledge concerning the
parameter u before seeing the data. Moreover, we are given a statistical model (Y,P)
and the according Likelihood L, which is a conditional density fY |U=u. We aim to invert
P(Y ∈ ·|U = ·) to P(U ∈ ·|Y = ·). The conditional measure P(U ∈ ·|Y = ·) is the updated
prior P(U ∈ ·) := µ0. This updating/inversion process uses on Bayes’ formula.

Theorem 6.4.6 (Bayes). Let U, Y be random variables as in Theorem 6.3.10. Then,

gU |Y=y(u) =
gY |U=u(y)gU (u)

gY (y)
, (6.2)

for u ∈ X , νU -a.e. and y ∈ Y, P(Y ∈ ·)-a.e. with gY (y) > 0.

Proof. We need to show that gY |U=ugU = gU,Y , νU ⊗ P(Y ∈ ·)-a.e.. Let u ∈ X with
gU (u) > 0. By definition,

gY |U=u(y)gU (u) =
gU,Y (u, y)gU (u)

gU (u)
= gU,Y (u, y) ((u, y) ∈ {gU > 0} × Y, νU ⊗ P(Y ∈ ·)-a.e.).

Conversely, let u ∈ X , with gU (u) = 0. This implies that

0 =

∫
Y
g(u, y)dνY (y).

Then, gU,Y (u, ·) = 0, νY -a.e. and, thus, also P(Y ∈ ·)-a.s.. Hence, gU,Y = 0 = gY |U=ugU .

Definition 6.4.7. • Z(y) := gY (y) is called (model) evidence or marginal likelihood1,

• L(y|u) := gY |U=u(y) is called (data) likelihood,

1Z(y) is derived from German: Zustandssumme (‘sum of states’)
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• µ0 := P(U ∈ ·) is called prior (measure),

• µpost := P(U ∈ ·|Y = y) is called posterior (measure), and

In Theorem 6.4.6, we require that µ0 has a probability density function gU with respect
to a measure νU . In practice, νU is often a Lebesgue measure or the counting measure. In
some cases, neither of those two is well-defined or a sensible choice, e.g., when dimX =∞.
However, we can always assume that νU := µ0. In this case, we obtain the formulation of
Stuart [35]:

dµpost

dµ0
(u) =

L(y|u)

Z(y)
(u ∈ X , µ0-a.s.).

Remark 6.4.8. When defining Z(y) :=
∫
L(y|u)dµ0, it is not necessary for L(y|u) to be

correctly normalised. Indeed, we can set L(y|u) := c · gY |U=u(y), for some constant c > 0.
The factor c cancels with the same factor in Z(y). However, then we have Z(y) 6= fY (y)
and call Z(y) normalising constant.
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Chapter 7

Bayesian inverse problems and
well-posedness

In this chapter, we will define Bayesian inverse problems and study their well-posedness.
Well-posedness requires existence and uniqueness of the posterior measure, as well as its
stability with respect to marginal perturbations in the data.

7.1 Bayesian inverse problems

A posterior measure is a conditional probability distribution and as such only for almost
every data set uniquely defined. In the following, we will always pick one representing
Markov kernel out of the set of kernels satisfying the equation in Theorem 6.3.5. We do so,
by fixing the definition of the likelihood to a specific measurable function X × Y → R and
defining the posterior to satisfy Bayes’ formula with this likelihood.

We first introduce some further notation.

Definition 7.1.1. Let (Ω′,F ′) be some measurable space. We define the space of probabil-
ity measures on (Ω′,F ′) by Prob(Ω′,F ′) := {µ : µ is a probability measure on (Ω′,F ′)}.
Moreover, for some σ-finite measure ν on (Ω′,F ′), we define Prob(Ω′,F ′, ν) := {µ ∈
Prob(Ω,F ′) : µ� ν}.

Definition 7.1.2. Let µ0 ∈ Prob(X ,BX ) and L : (X × Y,BX ⊗ BY) → (R,BR) be a
measureable function. We define the Bayesian inverse problem (BIP) with prior µ0 and
likelihood L, to be the problem of finding µpost ∈ Prob(X ,BX ) with

dµpost

dµ0
(u) =

L(fn|u)∫
X L(fn|u)dµ0(u)

(u ∈ X ;µ0-a.s.)

for any data set fn ∈ Y.

We discussed previously how to construct a likelihood in the ‘classical’ inverse problem
setting

find u ∈ X : A(u) + n = fn.

We now allow for much more general likelihood functions; this includes non-additive noise,
Poissonian models,...
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Definition 7.1.3. Consider a (BIP) with prior µ0 and likelihood L. Let P ⊆ Prob(X ,BX )
be a space of probability measures and d : P 2 → [0,∞) be a metric on P . A Bayesian
inverse problem is (P, d)-well-posed, if

(i) for all fn ∈ Y, the probability measure µpost ∈ P exists, (existence)

(ii) for all fn ∈ Y, the probability measure µpost ∈ P is unique, and (uniqueness)

(iii) the map Y 3 fn 7→ µpost ∈ P is continuous. (stability)

Existence and uniqueness of the posterior in P ∈ {Prob(X ,BX ),Prob(X ,BX , µ0)} is
automatic, if

∫
X L(fn|u)dµ0(u) ∈ (0,∞). This is, for instance, the case in the following

lemma.

Lemma 7.1.4. Consider a (BIP) with prior µ0 and likelihood L. Let L > 0 (µ0-a.s.) and
L(fn|·) ∈ L1(X ,BX , µ0) for any fn ∈ Y. Then, the posterior µpost ∈ Prob(X ,BX , µ0)
exists and is unique.

Proof. We need to show that
∫
X L(fn|u)dµ0(u) ∈ (0,∞). Upper bound: trivial, since

L(fn|·) ∈ L1(X ,BX , µ0). Lower bound: exercise.

Before we can actually speak about stability, we need to discuss metrics on spaces of
probability measures.

7.2 Metrics on spaces of probability measures

We consider metrics on subspaces of Prob(X ,BX ) to be able to show stability of the poste-
rior measure with respect to perturbations in the data. We consider two different concept:
total variation and weak convergence.

Definition 7.2.1. (i) Let (Ω′,F ′) be a measurable space. We define the total variation
(TV) distance on Prob(Ω′,F ′) by

dTV : Prob(Ω′,F ′)2 → [0,∞), (µ, ν) 7→ sup
F ′∈F ′

|µ(F ′)− ν(F ′)|

(ii) Let Ω′ be a topological space and (Ω′,F ′) := (Ω′,BΩ′). Let (µn)n∈N ∈ Prob(Ω′,F ′)N
and µ ∈ Prob(Ω′,F ′). We say µn → µ weakly, as n→∞, if

lim
n→∞

∫
Ω′
gdµn =

∫
Ω′
gdµ,

for any g : (Ω′,BΩ′)→ (R,BR) that is continuous and bounded.

Remark 7.2.2. Weak convergence of measures on Prob(X ,BX ) can be represented by
the (Lévy)-Prokhorov metric dLP. See [29] for details. Hence, when referring to the
topology induced by weak convergence, we will usually speak about the metric space
(Prob(X ,BX ), dLP), but not actually employ the (Lévy)-Prokhorov metric.

We end this section with two more results about the total variation distance and weak
convergence. First, we show that if a sequence of measures converges in the total variation
distance, it converges weakly as well.



7.3. STABILITY 81

Lemma 7.2.3. Let Ω′ be a topological space and (Ω′,F ′) := (Ω′,BΩ′). Let (µn)n∈N ∈
Prob(Ω′,F ′)N and µ ∈ Prob(Ω′,F ′). Then

lim
n→∞

dTV(µn, µ) = 0 =⇒ µn → µ, weakly as n→∞.

The converse statement (“⇐”) is in general not true.

Proof. Exercise.

Second, we give a representation of the total variation distance of two measures having
a density with respect to a third measure.

Lemma 7.2.4. Let µ, ν ∈ Prob(Ω,F) and ρ be a σ-finite measure with µ, ν � ρ. Then,

dTV(µ, ν) = 1
2

∫
Ω

∣∣∣dµdρ − dν
dρ

∣∣∣dρ.
Proof. Exercise.

Note that this result is independent of the measure ρ. As a trivial dominating measure,
one can always choose ρ := µ+ ν.

7.3 Stability

We now give a set of assumptions under which we can prove (P, d)-well-posedness, as defined
in Definition 7.1.3, where (P, d) refers to the space of probability measure on X with µ0-
density and either total variation distance or weak convergence.

Assumption 7.3.1. Given a (BIP) with prior µ0 and likelihood L. Let the following
assumptions hold for u ∈ X µ0-a.s. and fn ∈ Y.

(A1) L(·|u) is a strictly positive probability density function,

(A2) L(fn|·) ∈ L1(X ,BX , µ0),

(A3) some h ∈ L1(X ,BX , µ0) exists, such that L(f ′n|·) 6 h for all f ′n ∈ Y, and

(A4) L(·|u) is continuous.

We now briefly comment on the assumptions. (A1) and (A2) were already required in
Lemma 7.1.4. In (A3) we now not only ask for boundedness of the integral of the likelihood,
but for its uniform boundedness by an integrable function g. This is for instance the case, if
the likelihood is bounded by a constant (as µ0 is a probability measure). In (A4) we ask for
continuity in the data. (Continuity in the parameter is not required!) In inverse problems,
this is true for a large number of noise distributions.

Before proving well-posedness under Assumptions (A1)-(A4) we cite a fundamental
measure-theoretic result which is needed for the proof.

Theorem 7.3.2 (Dominated Convergence Theorem (DCT; Lebesgue)). Let (Ω′,F ′, µ′) be
a measure space. Let g, (gm)m∈N, h be measurable functions (Ω′,F ′) → (R,BR) and h ∈
L1(Ω′,F ′, µ′). Moreover, let |gm| 6 h (µ′-a.e.) and gm → g, µ′-a.e. as m → ∞. Then,
g, gm ∈ L1(Ω′,F ′, µ′) and

lim
m→∞

∫
Ω′
gmdµ′ =

∫
Ω′
gdµ′.
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Proof. Can be proved using monotonic convergence theorem (Proposition 6.2.11.2). See,
e.g., Theorem 1.6.9 [6] for a proof using Fatou’s Lemma.

Remark 7.3.3. The DCT describes a case in which we are allowed to “exchange integral
and limit”. The statement reads

lim
m→∞

∫
Ω′
gmdµ′ =

∫
Ω′

lim
n→∞

gmdµ′.

Equivalently, we could say it describes cases in which the integral as a functional of the
integrand is continuous.

Theorem 7.3.4 (Well-posedness). Given a (BIP) with prior µ0 and likelihood L that sat-
isfies Assumptions (A1)–(A4). Moreover, let P = Prob(X ,BX , µ0) and d ∈ {dTV, dLP}.
Then, the (BIP) is (P, d)-well-posed.

Proof. 1. Note that (A1), (A2) already imply existence and uniqueness by Lemma 7.1.4. In
the remainder of the proof, we focus on showing continuity in the total variation distance.
Continuity in weak convergence is then implied by Lemma 7.2.3. Indeed, we show that for

all fn ∈ Y and all (f
(m)
n )m∈N ∈ YN, with limm→∞ f

(m)
n = fn, we have∫

X

∣∣∣∣∣L(fn|u)

Z(fn)
− L(f

(m)
n |u)

Z(f
(m)
n )

∣∣∣∣∣dµ0(u)→ 0 (m→∞).

where Z(fn) :=
∫
X L(fn|u)dµ0(u). By Lemma 7.2.4, this implies continuity of the posterior

measure in the total variation distance.
2. We first show that Y 3 fn 7→ L(fn|·) ∈ L1(X ,BX , µ0) is continuous. Let fn ∈ Y and

(f
(m)
n )m∈N ∈ YN, with limm→∞ f

(m)
n = fn. Note that

lim
m→∞

∫
X

∣∣∣L(f (m)
n |u)− L(fn|u)

∣∣∣dµ0(u) =

∫
X

lim
m→∞

∣∣∣L(f (m)
n |u)− L(fn|u)

∣∣∣ dµ0(u),

due to the DCT since the integrand is bounded below by 0 and above by 2h ∈ L1(X ,BX , µ0).
Due to the continuity of L(·|u) (required in (A4)), we have then

lim
m→∞

∫
X

∣∣∣L(f (m)
n |u)− L(fn|u)

∣∣∣dµ0(u) = 0.

With the same argument, we can show that fn 7→ Zn(fn) is continuous.
3. The rest of the proof is similar to showing continuity of the quotient of two continuous

functions. Let fn ∈ Y and (f
(m)
n )m∈N ∈ YN, with limm→∞ f

(m)
n = fn. Then∫

X

∣∣∣∣∣L(fn|u)

Z(fn)
− L(f

(m)
n |u)

Z(f
(m)
n )

∣∣∣∣∣dµ0(u)

6 Z(fn)−1

∫
X

∣∣∣L(f (m)
n |u)− L(fn|u)

∣∣∣ dµ0(u)︸ ︷︷ ︸
→0 (m→∞)

+

∫
X
L(f (m)

n |u)dµ0(u) |Z(fn)−1 − Z(f (m)
n )−1|︸ ︷︷ ︸

→0 (m→∞)

and the terms that do not converge to 0 are bounded.

To illustrate the generality of this result, we now study again the inverse problem from
Example 6.4.5.
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Corollary 7.3.5. Let k ∈ N and (Y,BY) := (Rk,BRk) and Γ ∈ Rk×k be symmetric,
positive definite. Moreover, let A : (X ,BX ) → (Y,BY) be some function. Consider the
(BIP) with some prior µ0 ∈ Prob(X ,BX ) and likelihood

L(fn|u) := (2π)−k/2det(Γ)−1/2 exp

(
−1

2
‖Γ−1/2(fn −A(u))‖2

)
(u ∈ X , fn ∈ Y)

Then, the (BIP) is (P, d)-well-posed, with P = Prob(X ,BX , µ0) and d ∈ {dTV, dLP}.

Proof. Follows trivially from Theorem 7.3.4.
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Chapter 8

Function space priors and Monte
Carlo

In this last chapter, we would like to discuss two rather practical topics:

• In inverse problems, we often consider infinite-dimensional parameter spaces. While
we have discussed the well-posedness of Bayesian inverse problems in infinite dimen-
sional setting, it is not clear yet how, e.g., a prior probability measure on such a space
can be defined. We will discuss Gaussian prior measures on function spaces, so-called
Gaussian random fields. For a more thorough introduction, we refer to the book by
Bogachev [11].

• In practical situations, we need to approximate the posterior (or integrals with respect
to it) numerically. We will discuss Monte Carlo techniques that are suitable for
Bayesian inverse problems. Again, for a more thorough discussion of certain aspects,
we refer to Agapiou et al. [3], Cotter et al. [16], and Robert and Casella [30].

8.1 Gaussian measures

We have defined Gaussian measures on (R,BR) in Definition 6.2.13. We now extend this
definition to measurable spaces like (X ,BX ), where X is a separable Banach space. In this
section, we assume that all Banach and Hilbert spaces are with respect to R.

Definition 8.1.1. Let µ be a probability measure on Prob(X ,BX ) and let U ∼ µ. We call
µ Gaussian, if for all ` ∈ X∗, there exist m ∈ R, σ > 0, such that

P(〈`, U〉 ∈ ·) = N(m,σ2).

Moreover, we define the mean of µ by aµ ∈ X ∗∗, given by

aµ(`) =

∫
X
〈`, u〉dµ(u) (` ∈ X ∗)

and the covariance operator of µ by Rµ : X ∗ → X ∗∗, where

Rµ(`)(`′) =

∫
X

(〈`, u〉 − aµ(`))
(
〈`′, u〉 − aµ(`′)

)
dµ(u) (`, `′ ∈ X ∗).

If X is a function space, we call U Gaussian random field.
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This definition does not immediately lead to a construction of a Gaussian measure on
a general separable Banach space. There are two cases, in which we have techniques to
construct a Gaussian measure on X ; those are Rk and separable Hilbert spaces. In finite
dimensions, one can define a Gaussian measure in terms of a probability density function
with respect to the product of a Lebesgue measure and a Dirac measure. On a separable
Hilbert space, we can construct a series expansion, the so-called Karhunen-Loève expansion.

Definition 8.1.2. Let X be a separable Hilbert space and C : X → X be a compact, self
adjoint linear operator. Moreover, let (λi, ϕi)i∈N ∈ (R× X )N be the eigenpairs of C sorted
decreasingly with respect to the absolute value of the eigenvalue and (ϕi)i∈N is orthonormal.
Then, we can represent

Cx =
∞∑
i=1

λi〈x, ϕi〉Xϕi (x ∈ X ),

see also Theorem 2.2.4. C is a trace class operator, if (λi)i∈N ∈ `1.

Proposition 8.1.3. Let X be a separable Hilbert space and C : X → X be a linear oper-
ator that is self-adjoint, non-negative, and trace class. We denote the eigenpairs of C by
(λi, ϕi)i∈N ∈ (R×X )N; the eigenvalues are sorted decreasingly and (ϕi)i∈N is orthonormal.
Finally, let m ∈ X and ξ ∼ N(0, 12)⊗N. Then,

U := m+
∞∑
i=1

√
λiξiϕi

is distributed according to a Gaussian measure with mean m and covariance operator C.

Proof. Let k ∈ N and Uk := m+
∑k

i=1

√
λiξiϕi. Moreover, let x ∈ X and xi := 〈x, ϕi〉X for

i ∈ N. We first study the distribution of 〈x, U〉X .

〈x, Uk〉X =

〈
x,m+

k∑
i=1

√
λiξiϕi

〉
X

= 〈x,m〉X +

〈
x,

k∑
i=1

√
λiξiϕi

〉
X

= 〈x,m〉X +
k∑
i=1

√
λi 〈x, ϕi〉X ξi

= 〈x,m〉X +

k∑
i=1

√
λixiξi︸ ︷︷ ︸

∼N(0,λix2i )

converges weakly to the Gaussian distribution N
(
〈x,m〉X ,

∑∞
i=1 λix

2
i

)
(k →∞), if the sum∑∞

i=1 λix
2
i is finite. (This can be shown with the Fourier transform of Gaussian measures,

as the (ξi)i∈N are mutually independent). By assumption, we have (λi)i∈N ∈ `1 and also
(x2
i )i∈N ∈ `1, since

∑∞
i=1 x

2
i = ‖x‖2X <∞. Hence, also

∑∞
i=1 λix

2
i <∞.

Next, we show that U takes values in X with probability one, i.e. P(‖U‖X < ∞) = 1.
By Parseval’s identity, we have

‖U‖X =

∞∑
i=1

|〈U,ϕi〉X |2 =

∞∑
i=1

λiξ
2
i
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which is almost surely finite by Theorem 1.1.4 of [11], as (λi)i∈N ∈ `1.
Now, we look at mean and covariance of U . We have

aµ(x) =

∫
X
〈x, U〉dP = 〈x,m〉X +

∫
RN

∞∑
i=1

√
λixiξidN(0, 1)⊗N(ξ)

= 〈x,m〉X +
∞∑
i=1

√
λixi

∫
RN
ξidN(0, 1)⊗N(ξ)︸ ︷︷ ︸

=0

= 〈x,m〉X ,
where we used the Fubini-Tonelli theorem to switch infinite sum and integral: Note that

∞∑
i=1

∫
RN
x|
√
λixiξi|dN(0, 1)⊗N(ξ) =

∞∑
i=1

√
2

π
6

√
2

π
‖
√
λi‖2‖|xi|‖2

by Cauchy-Schwarz. Moreover, the upper bound on the RHS is finite, since (xi)i∈N, (λi)i∈N ∈
`2. Hence, aµ = m. Furthermore, we have for x′ ∈ X :

Rµ(x)(x′) =

∫
X

(〈u, x〉X − aµ(x))
(
〈u, x′〉X − aµ(x′)

)
dµ(u)

=

∫
RN

〈
x,

∞∑
i=1

√
λiξiϕi

〉
X

〈 ∞∑
j=1

√
λjξjϕj , x

′

〉
X

dN(0, 1)⊗N(ξ)

=

∫
RN

∞∑
i=1

∞∑
j=1

√
λi
√
λj 〈x, ϕi〉X ξiξj

〈
ϕj , x

′〉
X dN(0, 1)⊗N(ξ)

=
∞∑
i=1

∞∑
j=1

√
λi
√
λj 〈x, ϕi〉X

∫
RN
ξiξjdN(0, 1)⊗N(ξ)︸ ︷︷ ︸

=1{j}(i)

〈
ϕj , x

′〉
X

=

∞∑
i=1

λi 〈x, ϕi〉X
〈
ϕi, x

′〉
X = 〈x,Cx′〉X ,

where we could remove the sum over j above due to mutual independence of the ξi, ξj with
i 6= j. We exchanged sums and integral again using the Fubini-Tonelli theorem:

∞∑
i=1

∞∑
j=1

∫
RN
|
√
λi
√
λj 〈x, ϕi〉X ξiξj

〈
ϕj , x

′〉
X |dN(0, 1)⊗N(ξ)

=

∞∑
i=1

∞∑
j=1

|
√
λi
√
λj 〈x, ϕi〉X

〈
ϕj , x

′〉
X | ·

2

π

=
∞∑
i=1

|
√
λi 〈x, ϕi〉X |

∞∑
j=1

|
√
λj
〈
ϕj , x

′〉
X | ·

2

π
,

which is again finite, as (xi)i∈N, (x
′
i)i∈N, (λi)i∈N ∈ `2.

Definition 8.1.4. The expansion

m+
∞∑
i=1

√
λiξiϕi
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in Proposition 8.1.3 is called Karhunen–Loève expansion (KLE). In the same proposition,
we denote µ =: N(m,C).

We can understand the KLE as the function space version of a principal component
analysis. Indeed, random fields are often discretised by representing them as a KLE and
truncating the expansion. We now study two examples of Gaussian random fields in L2.

Example 8.1.5 (Gaussian random fields in 2 dimensions). LetD = [0, 1]2, X := L2(D,BD,λ2),
` > 0, and σ2 > 0. We define the exponential covariance function

cexp(x, y) := σ2 exp

(
−‖x− y‖2

`

)
(x, y ∈ D)

and the Gaussian covariance function

cN(x, y) := σ2 exp

(
−‖x− y‖

2
2

2`2

)
(x, y ∈ D).

The parameter ` is called correlation length, σ2 is called pointwise variance. We can now
define the associated covariance operators for c ∈ {cexp, cN}, by

C : X → X , ϕ 7→
∫
D
ϕ(x)c(x, ·)dλ2(x).

Well-definedness of these covariance operators can be shown with Mercer’s Theorem. In
Figure 8.1, we show discretised samples of Gaussian random fields with both covariance func-
tions and ` ∈ {0.05, 0.1, 1}. The random fields have been discretised by a 1002-dimensional
piecewise-constant finite element approximation of the eigenpairs of the respective covari-
ance operator.

8.2 Monte Carlo techniques

8.2.1 Standard Monte Carlo

Monte Carlo techniques aim at approximating integrals of the form

g :=

∫
X
gdµ,

where µ is a probability distribution on (X ,BX ) and g : (X ,BX ) → (R,BR) is an inte-
grable function. Standard Monte Carlo approaches this problem by generating independent
samples U1, U2, ... ∼ µ and computing the estimator

ĝM :=
1

M

M∑
m=1

g(Um),

for some M ∈ N. Alternatively, we can understand Monte Carlo as a technique allowing us
to approximate the probability measure µ by the probability measure

µ̂M :=
1

M

M∑
m=1

δ(· − Um).



8.2. MONTE CARLO TECHNIQUES 89

0 0.2 0.4 0.6 0.8

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8

0

0.2

0.4

0.6

0.8

Figure 8.1: Each row represents four samples from the Gaussian random field with mean
m = 0 and the following covariance operators (from top to bottom): exponential with
` = 0.05, exponential with ` = 0.1, exponential with ` = 1, Gaussian with ` = 0.05,
Gaussian with ` = 0.1, and Gaussian with ` = 1.
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The Monte Carlo estimator can be analysed using the (strong) law of large numbers. We
know that

ĝM → g (M →∞,P-a.s.).

If in addition Varµ(g) :=
∫
g2dµ−

(∫
gdµ

)2
<∞, we obtain the following convergence rate√

E
[
(ĝM − g)2

]
=

√
Varµ(g)√
M

.

When thinking about standard algorithms for numerical quadrature (Gauss quadrature,
Simpson’s rule,...) the rate O(M−1/2) appears to be quite slow. A composite Simpson’s
rule, e.g., for a very smooth function over X := [0, 1] has an absolute error of O(M−4).
Its advantage over classical methods is that the rate is independent of the smoothness of
the function and the dimension of its domain. Hence, Monte Carlo methods are especially
useful in problems that are non-smooth and/or high-dimensional.

Unfortunately, standard Monte Carlo techniques are usually unsuitable for the approx-
imation of posterior measures in Bayesian inverse problems: we are not able to sample
independently from the posterior measure. Ideas:

• sample dependently from µpost (→ Markov chain Monte Carlo; this lecture) or

• sample independently from a different measure and correct by choosing unequal
weights

ĝM :=

M∑
m=1

wmg(Um),

with wm 6= 1/M , m = 1, . . . ,M (→ Importance Sampling; exercise sheet 4)

Markov chain Monte Carlo

In Markov chain Monte Carlo (MCMC), we generate a Markov chain (Um)m∈N that is
stationary with respect to the posterior measure µpost and Harris recurrent. In this case,
we also have a law of large numbers

1

M

M∑
m=1

g(Um)→
∫
X
gdµpost (M →∞,P-a.s.),

for some integrable g : (X ,BX ) → (R,BR); see [30, Theorem 6.63]. We give a comparison
of Monte Carlo and Markov chain Monte Carlo in Figure 8.2.

In the figure, we see that sampling a Markov chain can be less efficient than independent
sampling – making MCMC not appearing very natural just yet. However, it is often easier
to generate such a Markov chain than to sample independently from the posterior. In the
following, we will first recap some definitions concerning Markov chains. Then, we will
introduce the Metropolis–Hastings algorithm and show that is is stationary with respect to
our measure of interest; say the posterior measure. We will not discuss ergodicity/Harris
recurrence in this short introduction, but refer to the work by Robert and Casella [30].

Definition 8.2.1. Let (Un)∞n=1 be a sequence of X -valued random variables - so-called
states. (Un)∞n=1 is called Markov chain, if for any n ∈ N:

P(Un+1 ∈ ·|U1 = u1, U2 = u2, ..., Un−1 = un−1, Un = un) = P(Un+1 ∈ ·|Un = un) (8.1)
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Figure 8.2: Comparison of Monte Carlo and Markov chain Monte Carlo samples. In the top
row, we show 3000 independent samples of N(0, 12) and a kernel density estimate of these
samples along with the true density. In the bottom row, we show 3000 samples generated
with the Random Walk Metropolis algorithm targeting N(0, 12). The proposal kernel is
N(·, 0.52). The samples in the bottom row are clearly dependent.

for any u1, ..., un−1 ∈ X . A Markov chain is called time-homogeneous, if

P(U2 ∈ ·|U1 = u) = P(Uk+2 ∈ ·|Uk+1 = u) (u ∈ X , k ∈ N). (8.2)

and otherwise time-inhomogeneous. A time-homogeneous Markov chain can be fully repre-
sented by a Markov kernel K : BX × X → [0, 1]:

K(B|u) = P(Un+1 ∈ B|Un = u) (B ∈ BX , u ∈ X , n ∈ N).

Let µ ∈ Prob(X ,BX ) be a probability measure. We denote the composition of µ and K by

µK(B) :=

∫
X
K(B|u)dµ(u) (B ∈ BX ).

The measure µ is stationary w.r.t. K, if µK = µ. Finally, we say, the Markov kernel K
satisfies detailed balance w.r.t. µ′ ∈ Prob(X ,BX ), if∫

B
K(A|u)dµ′(u) =

∫
A
K(B|u)dµ′(u) (A,B ∈ BX ).

The detailed balance condition implies that the measure with respect to which it was
shown is the stationary measure:

Lemma 8.2.2. Let K : BX × X → [0, 1] be a Markov kernel that satisfies detailed balance
with respect to µ ∈ Prob(X ,BX ). Then, K is stationary w.r.t. µ.
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Proof. Exercise.

We now define the Metropolis–Hastings Markov Kernel, discuss it, and show that it is
stationary with respect to the target measure.

Definition 8.2.3 (Hastings 1970 [22]). Let µ ∈ Prob(X ,BX ) and ν be a σ-finite measure
with µ� ν. Moreover let g : (X ,BX )→ (R,BR) be a positive function with

g = c · dµ

dν
,

for some c ∈ (0,∞). Moreover, let Q : X × BX → [0, 1] be a Markov kernel, given by a
positive function q : (X × X ,BX ⊗ BX )→ (R,BR), with

Q(A|u) :=

∫
A
q(u′|u)dν(u′) (A ∈ BX , u ∈ X ).

The Metropolis–Hastings Markov kernel is given by

KMH(A|u) := δ(A−u)

∫
X

(1−α(u, u′′))Q(du′′|u)+

∫
A
α(u, u′)Q(du′|u) (u ∈ X , A ∈ BX ),

where

α(u, u′) = min

{
1,
g(u′)q(u|u′)
g(u)q(u′|u)

}
.

Interpreting this Markov kernel is rather difficult. Algorithmically, we can represent the
Metropolis–Hastings MCMC method

1. Start with some initial value U1 ∈ X (say a.s. constant); set m← 1;

2. Sample U∗ ∼ Q(·|Um); (‘proposal step’)

3. With probability α(Um, U
∗) set Um+1 ← U∗,

otherwise Um+1 ← Um+1; (‘acceptance step’)

4. Increment m← m+ 1 and go to 2.

When looking at KMH, we see the proposal step in the Markov kernel Q and the acceptance
step in the (1− α) and the α.

Another remarkable observation is that we need to know the density g only up to a
normalising constant. This is especially useful, when sampling from a posterior measure:
we usually have only access to prior density and likelihood. Model evidence/normalising
constant are not necessary.

Proposition 8.2.4. KMH satisfies detailed balance w.r.t. µ.

Proof. Let A,B ∈ BX .∫
B
KMH(A|u)dµ(u)

=

∫
B
δ(A− u)

∫
X

(1− α(u, u′′))Q(du′′|u) +

∫
A
α(u, u′)Q(du′|u)dµ(u).
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We discuss the two parts of this sum one after another. We first have∫
B
δ(A− u)

∫
X

(1− α(u, u′′))Q(du′′|u)dµ(u)

=

∫
X

1A∩B(u)

∫
X

(1− α(u, u′′))Q(du′′|u)g(u)dν(u)

=

∫
A
δ(B − u)

∫
X

(1− α(u, u′′))Q(du′′|u)dµ(u).

Secondly, ∫
B

∫
A
α(u, u′)Q(du′|u)dµ(u)

=

∫
B

∫
A

min

{
1,
g(u′)q(u|u′)
g(u)q(u′|u)

}
q(u′|u)dν(u′)

g(u)

c
dν(u)

=

∫
B

∫
A

min
{
g(u)q(u′|u), g(u′)q(u|u′)

}
dν(u′)

1

c
dν(u)

=

∫
A

∫
B

min

{
1,
g(u)q(u′|u)

g(u′)q(u|u′)

}
g(u′)

c
q(u|u′)dν(u)dν(u′)

=

∫
A

∫
B
α(u′, u)Q(du|u′)dµ(u′).

Combining these two results gives us detailed balance.

We finish by giving typical examples for proposal kernels Q used in Metropolis–Hastings
MCMC.

Example 8.2.5 (Independence Sampler). Let ρ ∈ Prob(X ,BX ). The Metropolis-Hastings
algorithm with proposal kernel

Q(·|u) = ρ (u ∈ X )

is called independence sampler. The acceptance probability is given by

α(u, u′) = min

{
1,
g(u′)q(u)

g(u)q(u′)

}
,

where q = dρ/dν.
In a Bayesian inverse problem with prior µ0 ∈ Prob(X ,BX ) and likelihood L(fn|·), we

can choose ρ := ν := µ0. In this case, the acceptance probability simplifies to

α(u, u′) = min

{
1,
L(fn|u′)
L(fn|u)

}
.

Please note that the independence sampler proposes moves independently of the current
position. This does not imply that the generated samples are independent. The acceptance
step couples the samples.

Example 8.2.6 (Random Walk; Metropolis et al. 1953 [27]). Let ρ ∈ Prob(X ,BX ) have
a symmetric density q′ = dρ/dν, i.e. q′ = q′(−·). The Metropolis-Hastings algorithm with
proposal kernel

Q(·|u) = ρ(· − u) (u ∈ X )
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is called Random Walk Metropolis sampler. The acceptance probability is given by

α(u, u′) = min

{
1,
g(u′)

g(u)

}
.

Note that the acceptance probability is independent of the proposal distribution; indeed, it
cancels: q(u|u′) = q′(u− u′) = q′(u′ − u) = q(u′|u).

Example 8.2.7 (Preconditioned Crank–Nicolson MCMC; Cotter et al. 2013 [16]). Let X
be a separable Hilbert space and let µ0 = N(0, C) ∈ Prob(X ,BX ) for some suitable operator
C : X → X . We consider the (BIP) with prior µ0 and likelihood L(fn|·). Let β ∈ (0, 1) The
Metropolis-Hastings algorithm with proposal kernel

Q(·|u) := N(
√

1− β2u, β2C)

is called preconditioned Crank–Nicolson algorithm (pCN-MCMC). The acceptance proba-
bility is given by

α(u, u′) = min

{
1,
L(fn|u′)
L(fn|u)

}
.

This method is particularly useful in high- and infinite dimension, where the random walk
algorithm cannot be applied. Proving that α is the correct acceptance probability is rather
simple in finite dimensions, not quite as easy in infinite dimensions.

The method is referred to as pCN MCMC as the proposal can be derived as a Crank–
Nicolson discretisation of some S(P)DE.
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