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Abstract

Inverse problems arise from the need to gain information about an unknown
object of interest from given indirect measurements. Inverse problems have sev-
eral applications varying from medical imaging and industrial process monitor-
ing to ozone layer tomography and modelling of financial markets. The common
feature for inverse problems is the need to understand indirect measurements
and to overcome extreme sensitivity to noise and modelling inaccuracies. In
this course we employ probabilistic approach to inverse problems to find stable
and meaningful solutions that allow us quantify how inaccuracies in the data
or model affect the obtained estimate.

1 Bayesian approach to discrete inverse problems

1.1 Introduction

We start by considering the problem of finding u ∈ Rd that satisfies the equation

m0 = Au, (1.1)

where m0 ∈ Rk is given. We refer to m0 as observed data or measurement and u as an
unknown. The physical phenomena that relates the unknown and the measurement
is modelled by a matrix A ∈ Rk×d. In real life the perfect data given in (1.1) is
perturbed by noise and we observe measurements

m = Au+ n, (1.2)

where n ∈ Rk represents the observational noise.
We are interested in ill-posed inverse problems, where the inverse problem is more

difficult to solve than the direct problem of finding m when u is given. To explain
this we first need to introduce well-posedness as defined by Jacques Hadamard:

I Existence: There exists at least one solution.

II Uniqueness: There is at most one solution.

III Stability: The solution depends continuously on data.

The direct or forward problem is assumed to be well-posed. The inverse problems
are generally ill-posed and break at least one of the above conditions.

1. Assume that d < k and A : Rd → R(A) ( Rk, where the range of A is a
proper subset of Rk. Furthermore, we assume that A has a unique inverse
A−1 : R(A) → Rk. Because of the noise in the measurement m 6∈ R(A) so
that simply inverting A with the data given in (1.2) is not possible. Note that
usually only the statistical properties of the noise n are known so we cannot
just subtract it.
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2. Assume next that d > k and A : Rd → Rk, in which case the system is under-
determined. We then have more unknowns than equations which means that
there are several possible solutions.

3. Consider next case d = k and there exist A−1 : Rk → Rk but the condition
number κ = λ1/λk, where λ1 and λk are the biggest and smallest eigenvalues
of A, is very large. Such a matrix is said to be ill-conditioned and is almost
singular. In this case the problem is sensitive even to smallest errors in the
measurement. Hence the naive reconstruction ũ = A−1fn = u + A−1n does
not produce a meaningful solution but will be dominated by A−1n. Note that
‖A−1n‖2 ≈ ‖n‖2/λk can be arbitrarily large.

The last part illustrates one of the key perspectives of inverse problem theory; How
can we stabilise the reconstruction process while maintaining acceptable accuracy?

Next we will take a look at some examples of inverse problems to see what kind
of challenges we face when trying to solve them.

Example 1.1. The deblurring (or deconvolution) problem of recovering an input
signal u form an observed signal

m(t) =

∫ ∞
−∞

a(t− s)u(s)ds+ n(t)

occurs in many imaging, and image- and signal processing applications. Here the
function a is known as the blurring kernel.

The noiseless data is given by m0(t) =
∫∞
−∞ a(t−s)u(s)ds and its Fourier transform

is m̂0(ξ) =
∫∞
−∞ e

−iξtm0(t)dt. The convolution theorem implies

m̂0(ξ) = â(ξ)û(ξ),

and hence by inverse Fourier transform

u(t) =
1

2π

∫ ∞
−∞

eitξ
m̂0(ξ)

â(ξ)
dξ.

However, we can only observe noisy measurements and hence we have on the frequency
domain m̂(ξ) = â(ξ)û(ξ) + n̂(ξ). The estimate uest based on the convolution theorem
is given by

uest(t) = u(t) +
1

2π

∫ ∞
−∞

eitξ
n̂(ξ)

â(ξ)
dξ,

which is often not even well defined, since usually the kernel a decreases exponen-
tially (or has compact support), making the denominator small, whereas the Fourier
transform of the noise will be non-zero.
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Example 1.2. Next we study the problem of recovering the initial condition u of the
heat equation from a noisy observation m of the solution at some time T > 0. We
consider the heat equation on a torus Td, with Dirichlet boundary conditions

dv
dt
−∆v = 0 onTd × R+

v(x, t) = 0 on ∂Td × R+

v(x, T ) = m0(x) onTd

v(x, 0) = u(x) onTd

where ∆ denotes the Laplace operator and D(∆) = H1
0 (Td) ∩H2(Td). Note that the

operator −∆ is positive and self-adjoint on Hilbert space H = L2(Td).
Given a function u ∈ L2(Td) we can decompose it as a Fourier series

u(x) =
∑
n∈Zd

une
2πi〈n,x〉,

where un = 〈u, e2πi〈n,x〉〉 are the Fourier coefficients, and the identity holds for almost
every x ∈ Td. The L2 norm of u is given by the Parseval’s identity ‖u‖2

L2 =
∑
un.

Remember that the Sobolev space Hs(Td), s ∈ N, consist of all L2(Td) integrable
functions whose αth order weak derivatives exist and are L2(Td) integrable for all
|α| ≤ s. The fractional Sobolev space Hs(Td) is given by the subspace of functions
u ∈ L2(Td), such that

‖u‖2
Hs =

∑
n∈Zd

(1 + 4π2|n|2)s|un|2 <∞. (1.3)

Note that for a positive integer s, the above definition agrees with the definition given
using the weak derivatives. For s < 0, we define Hs(Td) via duality or as the closure
of L2(Td) under the norm (1.3). The resulting spaces are separable for all s ∈ R.

The eigenvectors of −∆ in Td form the orthonormal basis of L2(Td) and the
eigenvalues are given by 4π2|n|2, n ∈ Zd. We can also work on real-valued functions
where the eigenfunctions {φj}∞j=1 comprise sine and cosine functions. The eigenvalues

of −∆, when ordered on a one-dimensional lattice, then satisfy λj � j
2
d . The notation

� means that there exist constants C1, C2 > 0, such that C1j
2
d ≤ λj ≤ C2j

2
d .

The solution to the forward heat equation can be written as

v(t) =
∞∑
j=1

uje
−λjtφj.

We notice that

‖v(t)‖2
Hs �

∞∑
j=1

j
2s
d e−2λjt|uj|2 = t−s

∞∑
j=1

(λjt)
se−2λjt|uj|2 ≤ Ct−s

∞∑
j=1

|uj|2 = Ct−s‖u‖L2

which implies that v(t) ∈ Hs(Td) for all s > 0.
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We now have observation model

m = Au+ n,

where A = e∆ and n is the observational noise. The noise is not usually smooth (the
often assumed white noise is not even an L2 function) and hence measurement m is
not in the image space D(e∆) ⊂ ∩s>0H

s(Td).

A deterministic way of achieving a unique and stable solution for the problem (1.2)
is to use regularisation theory. In the classical Tikhonov regularisation a solution is
attained by solving

min
u∈Rd

(
‖Au−m‖2 + α‖Lu‖2

)
. (1.4)

The solution to the above is given by

uαn = (A>A+ αL>L)−1A>m. (1.5)

Here α acts as a tuning parameter balancing the effect of the data fidelity term
‖Au−m‖2

2 and the stabilising regularisation term ‖u‖2
2. Regularisation theory is

discussed in more detail in the course Inverse Problems in Imaging.
In this course we concentrate on Bayesian inversion. The idea of statistical inver-

sion methods is to rephrase the inverse problem as a question of statistical inference.
We consider problem

m = Au+ η, (1.6)

where the measurement, unknown and noise are now modelled as random variables.
Let Ω = Ω1 × Ω2 be our probability space. Then u : Ω1 → Rd, η : Ω2 → Rk and
m : Ω→ Rk.

This approach allows us to model the noise through its statistical properties. We
can also encode our a priori knowledge of the unknown in form of a probability
distribution that assigns higher probability to those values of u we expect to see.
Note that the above mentioned regularisation method produces a single estimate of
the unknown while the solution to (1.6) is so-called posterior distribution, which is the
conditional probability distribution of u given a measurement m. This distribution
can then be used to obtain estimates that are most likely in some sense. The great
advance of the method is, however, that it automatically delivers a quantification of
uncertainty, obtained by assessing the spread of the posterior distribution.

We recall the Bayes’ formula that states

P(u ∈ A |m ∈ B) =
P(m ∈ B |u ∈ A)P(u ∈ A)

P(m ∈ B)
,

where A and B are some measurable sets. We would like to solve an inverse problem
”approximate u when a measurement m = m(ω) is given”, that is, we would like to
condition u ∈ A with a single realisation of m. To do this we need to we start with
some modern probability theory.
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1.2 A brief introduction to probability theory

A probability space is a triplet (Ω,F ,P), where Ω is the sample space, F the σ-algebra
of events and P the probability measure. A measure is called σ-finite if Ω is a countable
union of measurable sets with finite measure. Lebesgue measure on Rd is an example
of a σ-finite measure. One intuitive way of thinking σ-algebras in probability theory
is that they describe information. The σ-algebra contains the subsets representing
the events for which we can decide, after the observation, whether they happened
or not. Hence F represents all the information we can get from an experiment in
(Ω,F ,P) while a sub-σ-algebra G ⊂ F represents partial information.

Let (X,B(X)) be a measurable space, with B(X) denoting the Borel σ-algebra
generated by the open sets. We call a measurable mapping x : Ω → X a random
variable. The random variable x induces the following probability measure on X

µ(A) = P(x−1(A)) = P(ω ∈ Ω : x(ω) ∈ A), A ∈ B(X).

The measure µ is called the probability distribution of x and we will denote x ∼ µ.
Let µ and ν be two measures on the same measure space. Then µ is absolutely

continuous with respect to (dominated by) ν if ν(A) = 0 implies that µ(A) = 0. We
denote this by µ � ν. Measures µ and ν are said to be equivalent if µ � ν and
ν � µ. If µ and ν are supported on disjoint sets they are called mutually singular.

Theorem 1.3 (Radon-Nikodym Theorem). Let µ and ν be two measures on the same
measure space (Ω,F). If µ� ν and ν is σ-finite then there exists a unique function
f ∈ L1

ν such that for any measurable set A ∈ F ,

µ(A) =

∫
A

fdν.

The unique f ∈ L1
ν in the above theorem is called the Radon-Nikodym derivative

of µ with respect to ν and is denoted by dµ
dν

. The following example shows how Radon-
Nikodym Theorem can be used to define probability density for a measure on a finite
space (Rd,B(Rd)).

Example 1.4. Let µ be a probability measure on (Rd,B(Rd)) and µ� νL, where νL
is the standard Lebesgue measure on Rd. Since νL is σ-finite we can use Theorem 1.3
and conclude that there exists such f ∈ L1(Rd) that, for any A ∈ B(Rd),

µ(A) =

∫
A

f(t)dt.

The function f is called the probability density of x ∼ µ.

The σ-algebras we use are often generated by random variables. If x : Ω → X
then σ(x) denotes the smallest σ-algebra containing preimages x−1(A) of measurable
sets A ∈ B(X). Observing the value of x corresponds of knowing, with every A ∈
B(X), whether x(ω) ∈ A. Note that σ(x) ⊂ F where, according to the information
interpretation, F represents ”full information” (all events on our probability space).
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Definition 1.5. Let G ⊂ F be a sub-σ-algebra. We call a G-measurable function
y : Ω→ X a conditional expectation of x : Ω→ X with respect to G if∫

G

xdP =

∫
G

ydP

for all G ∈ G and write E(x | G) = y.

Note that the measurability with respect to G is a stronger assumption than
measurability with respect to F since there are fewer choices for the preimages of y.
Even though the definition of E(x | G) resembles that of E(x |G) for an event G these
are very different objects. The first is a G-measurable function Ω → X while the
second is an element in X.

We can also consider conditional expectation of the form E(f(x) | G) which leads
us to conditional probability.

Definition 1.6. Let G be a sub-σ-algebra of F . The conditional probability for A ∈
B(X), given G is defined by

P(A | G) = E(1A | G).

It is tempting to try to interpret the mapA→ P(A | G)(ω) as a probability measure
for a fixed ω ∈ Ω. However P(A | G) is defined only up to P almost everywhere.

Definition 1.7. A family of probability distributions (µ(·, ω))ω∈Ω on (X,B(X)) is
called a regular conditional distribution of x, given G ⊂ F , if

µ(A, ·) = E(1A(x) | G) a.s

for every A ∈ B(X).

Theorem 1.8. Let x : Ω → X be a random variable and G ∈ F a sub-σ-algebra.
Then there exists a regular conditional distribution (µ(·, ω))ω∈Ω of x given G.

Let σ(m) ⊂ F be the σ-algebra generated by a random measurement m. We can
then use the regular conditional probability measure

πpost(A,m(ω)) = E(1A(u) |σ(m))(ω)

as a posterior measure and identify this with πpost(A,m) = πprior(A |m).
For further information see e.g.For further information see e.g. [8].

1.3 Bayes’ formula

We can now return to the problem of ”approximate u given a measurement m =
Au+ η” using a posterior distribution that is a regular conditional distribution. We
assume that u follows a prior Π with Lebesgue density π(u). The noise η is assumed
to be independent of u and distributed according to P0 with Lebesgue density ρ(η).
Then m |u can be found by simply shifting P0 by Au to measure Pu, which has
Lebesgue density ρu(m) = ρ(m− Au). It follows that (u,m) ∈ Rd × Rk is a random
variable with Lebesgue density ν(u,m) = ρ(m− Au)π(u).
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Theorem 1.9 (Bayes’ Theorem). Assume that

Z(m) =

∫
Rd
ρ(m− Au)π(u)du > 0.

Then u |m is a random variable with Lebesgue density πm(u) given by

πm(u) = π(u |m) =
1

Z(m)
ρ(m− Au)π(u).

Let us take a closer look to what the above theorem means in our inverse problems
settings.

i) π(u) is called prior density. The prior should be independent of the measure-
ment and assign higher probability to those values of u we expect to see.

ii) ρ(m− Au) is the likelihood which measures the data misfit.

iii) πm(u) is called posterior density and it gives a solution to the inverse problem
(1.6) by updating the prior with a given measurement.

iv) Z(m) is the probability of m and plays the role of normalising constant.

v) We define

Φ(u;m) = − log ρ(m− Au)

and call Φ potential.

vi) Let Πm and Π be measures on Rd with densities πm and π respectively. Then
Theorem 1.9 can be rewritten as

dΠm

dΠ
(u) =

1

Z(m)
exp(−Φ(u;m)),

Z(m) =

∫
Rd

exp(−Φ(u;m))dΠ(u).

Note that this means the posterior is absolutely continuous with respect to the
prior and the Radon-Nikodym derivative is proportional to the likelihood.

When stated as in vi) the formula has a natural generalisation to infinite dimen-
sions where there are no densities ρ and π with respect to Lebesgue measure but
where Πm has a Radon-Nikodym derivative with respect to Π.

Remark 1.10. In Example 1.4 we defined density f of a measure µ in Rd, which
is absolutely continuous with respect to Lebesgue measure νL. Strictly speaking
f(x) = dµ

dνL
(x) is a probability density function with respect to Lebesgue measure.

It is also possible to find the density of µ with respect to a Gaussian measure. Let
µ0 ∼ N (0, I) denote the standard Gaussian measure in Rd. Then

µ0(dx) =
1

(2π)d/2
exp

(
− 1

2
|x|2
)
dx.
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Thus the density of µ with respect to µ0 is

fG(x) = (2π)d/2 exp

(
1

2
|x|2
)
f(x).

We then have identities

µ(A) =

∫
A

fG(x)µ0(dx) and
dµ

dµ0

(x) = fG(x). (1.7)

Note that infinite-dimensional Gaussian measure is well-defined (we return to this
in Section 2.4) while there is no infinite dimensional Lebesgue measure. Many mea-
sures have a Radon–Nikodym derivative with respect to an infinite-dimensional Gaus-
sian measure and hence formulation (1.7) can be generalised to infinite-dimensional
settings while the Lebesgue density can not.

Example 1.11. We start by studying the case u ∈ R and m ∈ Rk, k ≥ 1. The
measurement is defined by

m = Au+ η,

where A ∈ Rk \ {0} and η ∼ N (0, δ2I). We model the unknown u by a Gaussian
measure N (0, 1). Then

πm(u) ∝ exp

(
− 1

2δ2
‖m− Au‖2 − 1

2
|u|2
)
.

The notation f ∝ g means that functions f and g coincide up to a constant, i.e.,
there is some c > 0 such that f = cg. The posterior is Gaussian and its mean and
covariance, which can be found by completing the square, are given by

θδ =
〈A,m〉

δ2 + ‖A‖2
and σ2

δ =
δ2

δ2 + ‖A‖2
.

When the noise tends to zero we see that

θ = lim
δ→0

θδ =
〈A,m0〉
‖A‖2

and σ2 = lim
δ2→0

σ2
δ = 0.

The point θ is the least-square solution for the linear equation m = Au. We see that
the prior plays no role on the limit of zero observational noise.

Next we study the case u ∈ Rd, d ≥ 2, and m ∈ R. The measurement is given by

m = 〈A, u〉+ η,

with some A ∈ Rd \ {0}. We assume that η ∼ N (0, δ2) and u ∼ N (0,Σ0). Then

πm(u) ∝ exp

(
− 1

2δ2
|m− 〈A, u〉|2 − 1

2
〈u,Σ−1

0 u〉
)
.
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We known that, as an exponential of a quadratic form, the posterior is a Gaussian
measure with mean and covariance

θδ =
mΣ0A

δ2 + 〈A,Σ0A〉
and Σδ = Σ0 −

(Σ0A)(Σ0A)∗

δ2 + 〈A,Σ0A〉
.

When the noise tends to zero we get

θ = lim
δ→0

θδ =
m0Σ0A

〈A,Σ0A〉
and Σ = lim

δ→0
Σδ = Σ0 −

(Σ0A)(Σ0A)∗

〈A,Σ0A〉
.

We note that 〈θ, A〉 = m0 and ΣA = 0. That is, when the observational noise
decreases knowledge of u in the direction of A becomes certain. However, the uncer-
tainty remains in directions not aligned with A. The magnitude of this uncertainty is
determined by interaction between the properties of the prior and forward operator
A. We see that in the underdetermined case the prior plays an important role even
when the observational noise disappears.

Definition 1.12. Let µn, n ∈ N, and µ be two probability measures on (X,B(X)).
We say that µn converges weakly to µ if, for all bounded and continuous functions f ,
it holds that

lim
n→∞

∫
X

f(x)dµn(x) =

∫
X

f(x)dµ(x).

If this is the case, we write µn ⇀ µ.

Lemma 1.13. Let µn = N (θn,Σn) and µ = N (θ,Σ) on Rd. If θn → θ and Σn → Σ,
as n→∞, then µn ⇀ µ.

Example 1.14. Let us return to the deblurring Example 1.1. In real life we only
observe the signal m at finite number of observation points on a finite interval

mi = m(ti) =

∫ 1

0

a(ti − s)u(s)ds+ n(ti), 1 ≤ i ≤ k,

where we assume a to be of the form

a(t− s) =
1√

2πσ2
exp

(
− 1

2σ2
(t− s)2

)
.

We will also discretise the unknown u on the same mesh and approximate the integral
as ∫ 1

0

a(ti − s)u(s)ds ≈
k∑
j=1

1

k
a(ti − sj)u(sj) =

k∑
j=1

aijuj,

where we have denoted sj = j−1
k−1

, uj = u(sj) and aij = 1
k
a(ti − sj).

10



We have now discrete model m = Au + n, where u,m, n ∈ Rk. To employ the
Bayesian approach we will consider the stochastic model

m = Au+ η

where m, η and u are treated as random variables. We assume that η is Gaussian
noise with variance δ2I,

η ∼ N (0, δ2I) ρ(η) ∝ exp
(
− 1

2δ2
‖η‖2

)
.

Then the likelihood density is given as

ρu(m) = ρ(m− Au) ∝ exp
(
− 1

2δ2
‖m− Au‖2

)
.

Next we have to choose a prior for the unknown. Assume that we know that
u(0) = u(1) = 0 and u is quite smooth, that is, the value of u(t) in a point is more or
less the same as its neighbour. We will then model the unknown as

uj =
1

2
(uj−1 + uj+1) +Wj

where the innovative term Wj follows Gaussian distribution N (0, γ2). The variance
γ2 determines how much the reconstructed function u departs from the smoothness
model uj = 1

2
(uj−1 + uj+1). We can then write in matrix form

Lu = W, where L =
1

2



2 −1
−1 2 −1

−1 2 −1
. . . . . . . . .

−1 2 −1
−1 2


.

Therefore the prior can be written as

π(u) ∝ exp
(
− 1

2γ2
‖Lu‖2

)
.

Using the Bayes’ formula we get the posterior distribution

πm(u) ∝ exp
(
− 1

2δ2
‖m− Au‖2 − 1

2γ2
‖Lu‖2

)
.

In the next Section we will see how to extract useful information from the posterior
distribution.
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1.4 Estimators

The dimension of the inverse problem can be large and consequently the posterior
distribution lives in a high dimensional space which makes its visualisation difficult.
However, we can calculate different point estimators and spread or region estimators.
The point estimators approximate the most probable value of the unknown given the
data and the prior. The spread estimators give a region that contain the unknown
with some high probability.

One of the most used statistical estimators is the maximum a posterior estimate
(MAP), which is the mode of the posterior distribution. That is, given the posterior
density πm(u) the MAP estimate uMAP satisfies

uMAP = arg max
u∈Rd

πm(u),

if such maximiser exists. Note that MAP estimator may not be unique.
Another widely used point estimate is the conditional mean (CM) of the unknown

u given the data m, which is defined by

uCM = E(u |m) =

∫
Rd
uπ(u |m)du,

provided that the integral converges. The main problem with CM estimation is that
solving the integral in high-dimensional space is often very difficult.

As an example of spread estimate we can consider Bayesian credible sets. A level
1− α credible set Cα, with some small α ∈ (0, 1), is defined as

Π(Cα |m) =

∫
Cα
π(u |m)du = 1− α.

Hence a credible set Cα is a region that contains a large fraction of the posterior mass.
Another way of quantifying uncertainty is to consider problemm† = Au†+η, where

u† is though to be a deterministic ’true’ unknown. We would then like to find random
sets Cα that frequently contain the ’true’ unknown u†, that is, P(u† ∈ Cα) = 1 − α.
The set Cα is called a frequentist confidence region of level 1− α.

Example 1.15. Let u ∈ R and assume that the posterior distribution is given by

πm(u) =
c

σ1

φ
( u
σ1

)
+

1− c
σ2

φ
(u− 1

σ2

)
,

where 0 < c < 1, σ1, σ2 > 0 and φ is density function of standard normal distribution
φ(u) = (2π)−1/2 exp(−u2/2). In that case

uCM = 1− c

and

uMAP =

{
0 if c/σ1 > (1− c)/σ2,
1 if c/σ1 < (1− c)/σ2.

12



Figure 1: We can not say that one point estimator is better than the other in all
applications. When CM gives a poor estimate the posterior has a larger variance.

If c = 1/2 and σ1, σ2 are small the probability that u takes values near uCM is small.
On the other hand if σ1 = cσ2 then c/σ1 > (1− c)σ2 and uMAP = 0. But if c is small
this is a bad estimate for u, since the likelihood for u to take value near 0 is less that
c.

We can also calculate the posterior variance

σ2 =

∫ ∞
−∞

(u− uCM)2πm(u)du

=

∫ ∞
−∞

u2πm(u)du− uCM

= cσ2
1 + (1− c)(σ2

2 + 1)− (1− c)2.

We notice that when the conditional mean gives poor estimate the posterior variance
is larger.

Example 1.16. Let us return to Example 1.14 where we got the posterior distribution

πm(u) ∝ exp
(
− 1

2δ2
‖m− Au‖2 − 1

2γ2
‖Lu‖2

)
.

Since the posterior distribution is also Gaussian we know that the MAP and CM
estimators coincides and we have an estimator

uδMAP = arg max
u∈Rk

π(u |m) = arg min
u∈Rk

{ 1

2δ2
‖m− Au‖2 +

1

2γ2
‖Lu‖2

}
.

Notice that uMAP is of the same form as the Tikhonov estimator introduced in (1.4).
Completing the square we can write the posterior in form

πm(u) ∝ exp
(
− 1

2

∥∥u− 1

δ2
Γ−1A>m

∥∥2

Γ

)
,

13



where we have used the weighted norm ‖ · ‖Γ = ‖Γ 1
2 · ‖ with Γ = 1

δ2A
>A + 1

γ2L
>L.

Hence we see that the MAP estimator is given by

uMAP =
1

δ2
Γ−1A>m =

(
A>A+

δ2

γ2
L>L

)−1

A>m

and the posterior covariance is Σ = Γ−1.

1.5 Prior models

Constructing a good prior density is one of the most challenging parts of solving a
Bayesian inverse problem. The main problem is transforming our qualitative infor-
mation into a quantitative form that can be coded as a prior density. The prior
probability distribution should be concentrated on those values of u we expect to see
and assigns a clearly higher probability to them than to the unexpected ones.

1.5.1 Gaussian prior

Gaussian probability densities are the most used priors in statistical inverse problems.
They are easy to construct and form a versatile class of densities. They also often
lead to explicit estimators. Due to the central limit theorem the Gaussian densities
are often good approximation to inherently non-Gaussian distributions when the ob-
servation is based on a large number of mutually independent random events. This
is also the reason why the noise is often assumed to be Gaussian.

Definition 1.17. Let θ ∈ Rd and Σ ∈ Rd×d be a symmetric positive definite matrix.
A Gaussian d-variate random variable u with mean θ and covariance Σ is a random
variable with the probability density

π(u) =
1

(2π|Σ|)d/2
exp

(
− 1

2
(u− θ)>Σ−1(u− θ)

)
,

where |Σ| = det(Σ). We then denote u ∼ N (θ,Σ).

The Gaussian distribution is completely characterised by its mean and covariance.
Notice that the expression (u− θ)>Σ−1(u− θ) can also be written in form ‖Σ−1/2u‖2

2,
since due to our assumptions on Σ the inverse square root Σ−1/2 is well-defined.

If we consider linear inverse problems and assume Gaussian prior and Gaussian
noise model the posteriori distribution is of the form c · exp(−G(u)), where G can
be rewritten as a sum of a quadratic form and constant term in order to show that
the posterior is Gaussian. This method is called completing the square. In order to
analyse the Gaussian posterior, we need some machinery from linear algebra.

Definition 1.18. Let

Σ =

[
Σ11 Σ12

Σ21 Σ22

]
∈ Rd×d

14



be a positive definite symmetric matrix, where Σ11 ∈ Rn×n, Σ22 ∈ R(d−n)×(d−n), n < d
and Σ21 = Σ>12. We define the Schur complements Σ̃jj of Σjj, j = 1, 2, as

Σ̃11 = Σ22 − Σ21Σ−1
11 Σ12 and Σ̃22 = Σ11 − Σ12Σ−1

22 Σ21.

The positive definiteness of Σ implies that Σjj, j = 1, 2, are also positive definite
and hence the Schur complements are well defined. The following matrix inversion
lemma is useful when calculating the conditional covariance.

Lemma 1.19. Let Σ be a matrix satisfying the assumptions of Definition 1.18. Then
the Schur complements Σ̃jj are invertible matrices and

Σ−1 =

[
Σ̃−1

22 −Σ̃−1
22 Σ12Σ−1

22

−Σ̃−1
11 Σ21Σ−1

11 Σ̃−1
11

]
.

Let u ∼ N (θu,Σu) and η ∼ N (0,Ση) with u and η independent. The distribution
of m = Au+ η is Gaussian with θm = E(m) = Aθu and

Σm = E
(
(m− θm)(m− θm)>

)
= AΣuA

> + Ση.

We can also calculate

E
(
(u− θu)(m− θm)>

)
= ΣuA

>

The joint distribution of u and m then has a covariance

Cov

[
u
m

]
=

[
Σu ΣuA

>

AΣu AΣuA
> + Ση

]
Hence the joint probability density of u and m is given by

ν(u,m) ∝ exp

(
− 1

2

[
u− θu
m− θm

]> [
Σu ΣuA

>

AΣu AΣuA
> + Ση

]−1 [
u− θu
m− θm

])
.

Theorem 1.20. Assume that u : Ω→ Rd and η : Ω→ Rk are mutually independent
Gaussian random variables

u ∼ N (θu,Σu), η ∼ N (0,Ση),

where Σu ∈ Rd×d and Ση ∈ Rk×k are positive definite. The noisy measurement m
is given by m = Au + η, where A ∈ Rk×d is a known matrix. Then the posterior
probability density of u given the measurement m is

π(u |m) ∝ exp
(
− 1

2
(u− u)>Σ−1(u− u)

)
,

where

u = θu + ΣuA
>(AΣuA

> + Ση)
−1(m− Aθu)

and

Σ = Σu − ΣuA
>(AΣuA

> + Ση)
−1AΣu.

15



Proof. By shifting the coordinate origin to [θu, θm] we may assume that θu = θm =
0. By Bayes’ formula we have π(u |m) ∝ ν(u,m) and hence we will consider the
joint density as a function of u. We denote the components of Cov([u m]>) by Σij,

i, j = 1, 2. Then, by Lemma 1.19 and the fact that Σ−1
22 Σ21Σ̃−1

22 = Σ̃−1
11 Σ21Σ−1

11 (the
covariance is symmetric), we have

ν(u,m) ∝ exp
(
− 1

2
(u>Σ̃−1

22 u− 2u>Σ̃−1
22 Σ12Σ−1

22 m+m>Σ̃−1
11 m)

)
= exp

(
− 1

2
(u− Σ12Σ−1

22 m)>Σ̃−1
22 (u− Σ12Σ−1

22 m) + c
)
,

where

c = m>(Σ̃−1
11 − Σ−1

22 Σ21Σ̃−1
22 Σ12Σ−1

22 )m

is a constant independent of u and can hence be factored out of the density.

Note that the posterior covariance is independent of the prior mean θ (and mean
of the noise even if that would be non-zero). We have a more compact expression for
the posterior mean and variance

Lemma 1.21. Assume that u, η,m are as in Theorem 1.20. We then have

πm(u) ∝ exp
(
− 1

2
(u− u)>Σ−1(u− u)

)
,

where

Σ = (A>Σ−1
η A+ Σ−1

u )−1

and

u = Σ(A>Σ−1
η m+ Σ−1

u θu).

Proof left as an exercise.
Consider next a problem where the unknown is a two-dimensional pixel image. Let

u ∈ Rd be the pixel image (which we have arranged as a vector), where a component
uj represents the intensity of the jth pixel. Since we consider images it is natural to
add a positivity constraint to our prior. Gaussian white noise density with positivity
constraint is

π(u) ∝ µ+(u) exp

(
− 1

2α2
‖u‖2

2

)
where µ+(u) = 1 if uj > 0 for all j, and µ+(u) = 0 otherwise. We assume that
each component is independent of the others and hence the random draws can be
performed componentwise. The one-dimensional distribution function can be defined
as

Φ(t) =
1

α

√
2

π

∫ t

0

exp

(
− 1

2α2
s2

)
ds = erf

(
t

α
√

2

)
,
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where erf stands for the error function

erf(t) =
2√
π

∫ t

0

exp(−s2)ds.

The mutually independent components uj are then drawn by

uj = Φ−1(tj) = erf−1

(
tj

α
√

2

)
,

where tjs are drawn randomly from the uniform distribution U([0, 1]). The proof that
this really produces draws from the prior is left as an exercise.

1.5.2 Impulse Prior

We assume again that the unknown is a two-dimensional pixel image. We have prior
information is that the image contains small and well localised objects (for example a
tumour in X-ray image). We can then use impulse prior model. These priors favour
images with low average amplitude with few outliers. One example of such a prior is
`1 prior. Let u ∈ Rd represent the pixel image, where a component uj represents the
intensity of the jth pixel. The `1 prior is defined as

π(u) =
(α

2

)d
exp(−α‖u‖1),

where α > 0 and ‖ · ‖1 is the `1-norm. We can enhance the impulse noise effect
by taking a smaller power of the components of u, that is, using

∑
|uj|p, p ∈ (0, 1)

instead of the `1-norm.
Another density that produces few distinctly different pixels with a low-amplitude

background is the Cauchy density, which is defined as

π(u) =
(α
π

)d d∏
j=1

1

1 + α2u2
j

.

Let us take a closer look at the `1 prior and to what kind of draws it produces.
Since we consider images we add a positivity constraint to our prior and write

π(u) = αdµ+(u) exp(−α‖u‖1),

where µ+(u) = 1 if uj > 0 for all j, and µ+(u) = 0 otherwise. The one-dimensional
distribution function can be defined as

Φ(t) = α

∫ t

0

e−αsds = 1− e−αt.

The mutually independent components uj are then drawn by

uj = Φ−1(tj) = − 1

α
log(1− tj),
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where tjs are drawn randomly from the uniform distribution U([0, 1]). As mentioned
before the proof that this really produces draws from the prior is left as an exercise.

Similarly when we draw independent components from the Cauchy distribution
with positivity constraint we use the distribution function

Φ(t) =
2α

π

∫ t

0

1

1 + α2s2
ds =

2

π
arctanαt

meaning that the inverse cumulative distribution is

Φ−1(t) =
1

α
tan
(πt

2

)
.

1.5.3 Discontinuities

Assume next that we want to estimate one-dimensional signal f : [0, 1]→ R, f(0) = 0,
from indirect observations. Our prior knowledge is that the signal is usually relatively
stable but can have large jumps every now and then. We may also have information
on the size of the jumps or the rate of occurrence of the discontinuities. One possible
prior is the finite difference approximation of the derivative of f with assumption that
the derivative follows an impulse noise probability distribution. Let us discretise the
interval [0, 1] by points tj = j/N and write uj = f(tj). Consider the density

π(u) =
(α
π

)N N∏
j=1

1

1 + α2(uj − uj−1)2
.

To draw from the above distribution let us define new random variables

xj = uj − uj−1, 1 ≤ j ≤ N.

The probability distribution of these variables is

π(x) =
(α
π

)N N∏
j=1

1

1 + α2x2
j

,

that is, they are independent of each other and can hence be drawn from the one-
dimensional Cauchy density. Note that u = [u1, · · · , uN ]> ∈ RN satisfies u = Bx,
where B ∈ RN×N is a lower triangular matrix such that Bij = 1 for i ≥ j. The idea
of the above prior can be generalised to higher dimensions which brings us to total
variation prior.

We start by defining the concept of total variation for functions. Let f : D → R
be a function in L1(D), D ⊂ Rd. We define the total variation of f , denoted by
TV(f), as

TV(f) = sup
g

{∫
D

f∇ · g dx | g = (g1, · · · , gd) ∈ C1
0(D,Rd), ‖g‖L∞ ≤ 1

}
.

The test function space C1
0(D,Rd) consist of continuously differentiable vector-valued

functions on D that vanish at the boundary. A function is said to have bounded
variation if TV(f) < ∞. To understand the definition let us consider the following
simple example
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Example 1.22. Let D ⊂ R2 be an open set and B ⊂ D be a set bounded by a smooth
curve ∂B = S, which does not intersect with the boundary of D. Let f : D → R be
the characteristic function of B. Let g ∈ C1

0(D,R2) be an arbitrary test function. By
the divergence theorem we obtain∫

D

f∇ · g dx =

∫
B

∇ · g dx =

∫
∂B

n · g dS,

where n is the exterior unit normal vector of ∂B. This integral attains its maximum,
under the constraint ‖g‖L∞ ≤ 1, if we set n · g = 1 identically. Hence

TV(f) = length(∂B).

Notice that the weak derivative of f is the Dirac delta of the boundary curve,
which cannot be be presented by an integrable function. Therefore, the space of
functions with bounded variation differs from the corresponding Sobolev space.

We will next consider two dimensional problem and define a discrete analogue
for TV. Let D ∈ R2 be bounded and divided in d pixels. We define two pixels as
neighbours if they share a common edge. The total variation of the discrete image
u = [u1, · · · , ud]> is then defined

TV(u) =
d∑
j=1

Vj(u), Vj(u) =
1

2

∑
i∈Nj

|ui − uj|,

where Nj is the neighbourhood of pixel uj (j 6∈ Nj). The discrete total variation
density is then given by

π(u) ∝ exp(−αTV(u)).

The total variation density is concentrated on images that are ’blocky’ consisting of
blocks with short boundaries and small variation within each block.

The total variation prior is an example of a structural prior. Different structural
priors, depending on different neighbourhood systems, can be derived from the theory
of Markov random fields. For more prior choices and examples see e.g. [7, Section
3.3]

1.6 Sampling methods

An important part of Bayesian inversion techniques is to develop methods for ex-
ploring the posterior probability densities. We will next discus a random sampling
methods known as the Markov chain Monte Carlo (MCMC) techniques. We saw pre-
viously in Section 1.4 that finding a MAP estimate leads to an optimisation problem,
whereas the conditional mean requires integration over the space Rd where the pos-
terior density is defined. Since the dimension of the problem can be large instead of
calculating the full integral we want to sample from the posterior and then use these
sample points to approximate the integral.
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Let µ denote a probability measure on Rd and let f be a measurable function
integrable over Rd with respect to µ, that is, f ∈ L1

µ. We want to estimate the
integral of f with respect to the measure µ. In numerical quadrature methods one
defines a set of support points xj ∈ Rd, 1 ≤ j ≤ N and the corresponding weights wj
to get an approximation ∫

Rd
f(x)dµ(x) ≈

N∑
j=1

wjf(xj).

The above method is designed for computing one-dimensional integrals. To com-
pute integrals in multiple dimensions, we could phrase the integral as repeated one-
dimensional integrals by applying Fubini’s theorem. However, this approach requires
the function evaluations to grow exponentially as the number of dimensions increases
which makes it infeasible in high dimensions.

In Monte Carlo integration the support points xj are generated randomly by
drawing from some probability density (ideally determined by µ) and the weights are
then determined from the distribution µ. Assume that x ∼ µ. If we had a random
generator such that repeated realisations of x could be produced we could generate a
set of points distributed according to µ. We could then approximate the integral of
f by the so called ergodic average,∫

Rd
f(x)dµ(x) = E

(
f(x)

)
≈ 1

N

N∑
j=1

f(xj),

where {x1, · · · , xN} ⊂ Rd is a representative collection of samples distributed accord-
ing to µ.

The MCMC methods are systematic way of generating sample collection so that
the above approximation holds. We start with some basic tools from probability
theory

Definition 1.23. A mapping P : Rd×B(Rd)→ [0, 1] is called a probability transition
kernel if

1. for each B ∈ B(Rd) the mapping Rd → [0, 1], x 7→ P (x,B) is a measurable
function;

2. for each x ∈ Rd the mapping B(Rd) → [0, 1], B 7→ P (x,B) is a probability
distribution.

A discrete time stochastic process is an ordered set {xj}∞j=1 of random variables
xj ∈ Rd. A time homogeneous Markov chain with the transition kernel P is a stochas-
tic process {xj}∞j=1 with the properties

µxj+1
(Bj+1 |x1, · · · , xj) = µxj+1

(Bj+1 |xj) = P (xj, Bj+1).

The first equality means that the probability xj+1 ∈ Bj+1 depends on the past only
through the previous state xj. The second equality states that time is homogeneous
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in the sense that the dependence of consecutive moments does not vary in time since
the kernel P does not depend on time j.

We define the transition kernel that propagates k steps forward as

P k(xj, Bj+k) = µxj+k(Bj+k |xj) =

∫
Rd
P (xj+k−1, Bj+k)P

k−1(xj, dxj+k−1), k ≥ 2,

where P 1(xj, Bj+1) = P (xj, Bj+1). if µxj denotes the probability distribution of xj
the distribution of xj+1 is given by

µxj+1
(Bj+1) = µxjP (Bj+1) =

∫
Rd
P (xj, Bj+1)dµxj(xj).

We will next introduce few concepts concerning the transition kernels

1. The measure µ is an invariant measure of P (xj, Bj+1) if

µP = µ.

This means that the distribution of the random variable xj before the time step
j → j + 1 is the same as the variable xj+1 after the step.

2. The transition kernel P is irreducible (with respect to a given measure µ) if
for each x ∈ Rd and B ∈ B(Rd), with µ(B) > 0, there exists an integer k
such that P k(x,B) > 0. This means that regardless of the starting point the
Markov chain generated by P visits any set of positive measure with positive
probability.

3. Let P be irreducible kernel. We say that P is periodic if, for some integer
m ≥ 2, there is a set of disjoint non-empty sets {E1, · · · , Em} ⊂ Rd such that
P (x,Ej+1( mod m)) = 1 for all j = 1, · · · ,m and all x ∈ Ej. This means that a
periodic P generates a Markov chain that remains in a periodic loop for ever.
We say that P is an aperiodic kernel if it is not periodic.

The following theorem is of crucial importance for MCMC methods.

Theorem 1.24. Let µ be a probability measure on Rd and {xj} a time homogeneous
Markov chain with transition kernel P . Assume further that µ is an invariant measure
of the transition kernel, and that P is irreducible and aperiodic. Then for all x ∈ Rd,

lim
N→∞

PN(x,B) = µ(B), for all B ∈ B(Rd),

and for f ∈ L1
µ(Rd)

lim
N→∞

1

N

N∑
j=1

f(xj) =

∫
Rd
f(x)dµ(x)

almost certainly.
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1.6.1 Metropolis-Hastings

Let Π denote the target probability distribution in Rd. We assume that Π is absolutely
continuous with respect to Lebesgue measure and has density π(x). We want to
determine a transition kernel P (x,B) so that Π is its invariant measure.

Let P denote any transition kernel. If we start from a point x ∈ Rd the kernel
either proposes to move to another point y ∈ Rd or to stay in x. Hence we can split
the kernel in two parts,

P (x,B) =

∫
B

K(x, y)dy + r(x)χB(x),

where χB is the characteristic function of B ∈ B(Rd). Loosely speaking K(x, y) ≥ 0
describes the probability for moving and r(x) ≥ 0 the probability for staying put.

The condition P (x,Rd) = 1 implies that

r(x) = 1−
∫
Rd
K(x, y)dy. (1.8)

We assume that the K satisfies the detailed balance condition

π(y)K(y, x) = π(x)K(x, y), (1.9)

for all x, y ∈ Rd. This guarantees that Π is an invariant measure of P since using
(1.8) we can then write

ΠP (B) =

∫
Rd

(∫
B

K(x, y)dy + r(x)χB(x)

)
π(x)dx

=

∫
B

(∫
Rd
π(x)K(x, y)dx+ r(y)π(y)

)
dy

=

∫
B

π(y)dy

Our goal now is to construct a transition kernel that K that satisfies the detailed
balance equation 1.9. Let q : Rd × Rd → R+ be a given functional with property∫
q(x, y)dy = 1. The function q is called the proposal distribution and it defines a

transition kernel

Q(x,A) =

∫
A

q(x, y)dy.

If q satisfies the detailed balance condition we can simply choose K(x, y) = q(x, y)
and r(x) = 0. Otherwise we have to correct the kernel and define

K(x, y) = α(x, y)q(x, y), (1.10)

where α is a correction term.
Assume that instead of the detailed balance condition we have

π(y)q(y, x) < π(x)q(x, y),
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for some x, y ∈ Rd. Our aim is to choose α so that

π(y)α(y, x)q(y, x) = π(x)α(x, y)q(x, y).

We can achieve this by setting

α(y, x) = 1 and α(x, y) =
π(y)q(y, x)

π(x)q(x, y)
< 1.

We then see that the kernel K defined in (1.10) satisfies the detailed balance condition
(1.9) if we define

α(x, y) = min

(
1,
π(y)q(y, x)

π(x)q(x, y)

)
.

This transition kernel is called the Metropolis-Hastings kernel.
We can implement the method derived above using an algorithm that is carried

out through the following steps;

1. Pick initial value x1 ∈ Rd and set j = 1.

2. Draw y ∈ Rd from the proposal kernel q(xj, y) and calculate the acceptance
ratio

α(xj, y) = min

(
1,
π(y)q(y, xj)

π(xj)q(xj, y)

)
.

3. Draw t ∈ [0, 1] from uniform probability density.

4. If t ≤ α(xj, y), set xj+1 = y, otherwise xj+1 = xj. Increase j → j + 1 and go to
step 2. until j = J , the desired sample size.

Note that if the candidate generating the kernel is symmetric q(x, y) = q(y, x) for
all x, y ∈ Rd then the acceptance ration simplifies to

α(x, y) = min

(
1,
π(y)

π(x)

)
.

This means that we accept immediately moves towards higher probability and some-
times also moves that take us to lower probability.

Example 1.25. Consider a two-dimensional density

π(x) ∝ exp

(
− 10(x2

1 − x2)2 −
(
x2 −

1

4

)4
)
.

In what follows, we assume to have random number generators for W ∼ N (0, 1) and
t ∼ U([0, 1]) at our disposal (in Matlab the command randn and rand respectively).

We construct Metropolis–Hastings sequence using the random walk proposal dis-
tribution. We define

q(x, y) = exp
(
− 1

2γ2
‖x− y‖2

)
.

This means that we assume that the scaled random step from x to y is distributed as
white noise W = (y − x)/γ ∼ N (0, I). Using the above proposal distribution we get
the following updating algorithm;
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Algorithm 1: Simple Metropolis–Hastings update scheme

Pick initial value x1. Set x = x1;
for j = 2 : J do

Calculate π(x);
Draw W ∼ N (0, I), set y = x+ γW ;
Calculate π(y);
Calculate α(x, y) = min(1, π(y)/π(x));
Draw t ∼ U([0, 1]);
if t < α(x, y) then

Accept: Set x = y, xj = x;
else

Reject: Set xj = x
end if

end if

end for

1.6.2 Single component Gibbs sampler

Gibbs sampling is used to sample multivariate distributions. The proposal kernel is
defined using the density π to sample each component xi of the vector x = (x1, · · · , xd)
from the distribution of that component conditioned on all other components sampled
so far.

If x is a d-variate random variable with the probability density π the probability
density of the ith component xi conditioned on all xj, for which i 6= j, is given by

π(xi |x−i) = Ciπ(x)

where x−i = (x1, · · · , xi−1, xi+1, · · · , xd) and Ci is a normalisation constant. We can
then define a transition kernel K as

K(x, y) =
d∏
i=1

π(yi | y1, · · · , yi−1, xi+1, · · · , xd)

and set r(x) = 0. This kernel does not usually satisfy the detailed balance condi-
tion but it satisfies a weaker but sufficient balance condition

∫
Rd π(y)K(y, x)dx =∫

Rd π(x)K(x, y)dx.
The steps needed for implementing the algorithm can be summarised as follows;

1. Pick an initial value x1 ∈ Rd and set j = 1.

2. Set x = xj. For 1 ≤ i ≤ d, draw yi ∈ R from the one-dimensional distribution
π(yi | y1, · · · , yi−1, xi+1, · · · , xd).

3. Set xj+1 = y. Increase j → j + 1 and repeat from step 2. until j reaches the
desired sample size J .
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Example 1.26. We want to sample from the two-dimensional distribution

π(x) = N (0,Σ), Σ =

[
1 ρ
ρ 1

]
, ρ > 0.

In order to sample from this distribution using Gibbs sampler, we need to calculate
the conditional distributions for directions x1, x2. We see that

π(xj1 |x
(j−1)
2 ) = N (ρx

(j−1)
2 ,

√
1− ρ2) and π(xj2 |x

j
1) = N (ρxj1,

√
1− ρ2).

We can write the algorithm as follows;

Algorithm 2: Simple Gibbs sampler update scheme

Pick initial value x1. Set x = x1;
for j = 2 : J do

Draw x1 ∼ N (ρx2

√
1− ρ2);

Draw x2 ∼ N (ρx1,
√

1− ρ2);
Set xj = x

end for

1.7 Hierarchical models

The prior densities we use depend on some parameters, such as variance or mean.
So far we have assumed that these parameters are known. However, we often do not
know how to choose them. If a parameter is not know, it can be estimated as a part of
the statistical inference problem based on the data. This leads to hierarchical models
that include hypermodels for the parameters defining the prior density.

Assume that the prior distribution depends on a parameter α, which is assumed
to be unknown. We then write the prior as a conditional density

π(u |α).

We model the unknown α with a hyperprior πh(α) and write the joint distribution of
u and α as

π(u, α) = π(u |α)πh(α).

Assuming we have a likelihood model π(m |u) for the measurement m, we get the
posterior density for u and α given m using the Bayes’ formula

π(u, α |m) ∝ π(m |u, α)π(u, α) = π(m |u, α)π(u |α)πh(α).

The hyperprior density πh may depend on some hyperparameter α0. The main
reason for the use of a hyperprior model is that the construction of the posterior is
assumed to be more robust with respect to fixing a value for the hyperparameter α0

than fixing a value for α. Sometimes we might want to treat also α0 as a random
variable with a respective probability density. We can then write π(α |α0) which leads
to nested hypermodels.
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Example 1.27. We return to the deblurring example 1.14, where we assumed prior
π(u) ∝ exp

(
−‖Lu‖2/2θ), with L being the second order finite difference matrix and

θ = γ2 was assumed to be known.
We will next assume that we do not know the value of θ. The prior for u given θ

is

π(u | θ) = Cθ exp
(
− 1

2θ
‖Lu‖2

)
.

The integral of a density is 1 and hence, with the change of variables u =
√
θz,

du = θd/2dz, we see that

1 = Cθ

∫
Rd

exp
(
− 1

2θ
‖Lu‖2

)
du = θd/2Cθ

∫
Rd

exp
(
− 1

2
‖Lz‖2

)
dz.

The last integral does not depend on θ so we deduce that Cθ ∝ θ−d/2 and write

π(u | θ) ∝ exp
(
− 1

2θ
‖Lu‖2 − d

2
log(θ)

)
.

Since θ is not known we will treat it as a random variable. Any information
concerning θ is then coded in the prior probability density πh. The inverse problem
is to approximate pair of unknowns (u, θ). If we only know that θ > 0 we can use the
improper prior density

πh(θ) = π+(θ) =

{
0 if θ < 0,
1 if θ ≥ 0.

Note that π+ is an improper density, since it is not integrable. In practice, we can
assume an upper bound that we hope will never play a role. The posterior density is
then given as

πm(u, θ) = π+(θ) exp

(
− 1

2δ2
‖m− Au‖2 − 1

2θ
‖Lu‖2 − d

2
log(θ)

)
.

To find the MAP estimator we can use sequential optimisation, where we update
the value for u using the value for θ from previous step and then use this value of u
to update θ;

1. Initialise θ = θ0, set k = 1.

2. Update u,

uk = arg max
u∈Rd
{πm(u | θk−1)} = arg min

u∈Rd

{
1

2δ2
‖m− Au‖2 +

1

2θ
‖Lu‖2

}
.

3. Update θ,

θk = arg max
θ≥0
{πm(θ |uk)} = arg min

θ≥0

{
1

2θ
‖Lu‖2 +

d

2
log(θ)

}
.
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4. Increase k by one and repeat from 2. until convergence.

We calculated the update for u in Example 1.16. For θ we notice that the derivative
is zero in the minimum of the function, that is,

− 1

θ2
‖Lu‖2 +

d

θ
= 0 ⇒ θ =

‖Lu‖2

d
.

Assume next that we know that the signal varies slowly except for unknown num-
ber of jumps of unknown size and location. The jumps should be sudden, suggesting
that the variances should be mutually independent. This means that instead of as-
suming Wj ∼ N (0, θ) we should assume Wj ∼ N (0, θj). Then

π(u | θ) ∝ exp

(
− 1

2
‖D−1/2

θ Lu‖2 − 1

2

d∑
j=1

log(θj)

)
,

where Dθ = diag(θ). Only a few variances can be significantly large, while most of
them should be small, suggesting a hyperprior that allows rare outliers.

One option is to use Gamma distribution as a prior for θj

θj ∼ Gamma(α, θ0), πh(θj) ∝
d∏
j=1

θα−1
j exp

(
− θj
θ0

)
.

Then, if F (u, θ |m) = − log(π(u, θ |m)), we see that

F (u, θ |m) ∝ 1

2δ2
‖Au−m‖2 +

1

2
‖D−1/2

θ Lu‖2 +
1

θ0

d∑
j=1

θj −
(
α− 3

2

) d∑
j=1

log(θj).

We then get the following update step for u

uk = arg min
u∈Rd

(
1

2δ2
‖Au−m‖2 +

1

2
‖D−1/2

θk−1 Lu‖2

)
.

To update θ we notice that θkj satisfies

∂

∂θj
F (uk, θ) = −1

2

(
(Luk)j
θj

)2

+
1

θ0

−
(
α− 3

2

) 1

θj
= 0,

which has explicit solution

θkj = θ0

(
a+

√
(Luk)2

j

2θ0

+ a2

)
, a =

1

2

(
α− 3

2

)
.
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2 Bayes’ theorem on separable Banach spaces

In this section we prove a version of Bayes’ theorem that can be used when the
likelihood and prior are measures on separable Banach spaces. Note that there is no
equivalent to Lebesgue measure in infinite dimensions (as it could not be σ-additive),
and so we cannot define a measure by prescribing the form of its density. In our
setting the posterior will always be absolutely continuous with respect to the prior.
It is possible to construct examples even in purely Gaussian setting where this is not
true. Hence working under this assumption is not strictly necessary but it is quite
natural. Absolute continuity ensures that almost sure properties of the prior will be
inherited by the posterior. To change such properties by data the data would have to
contain infinite amount of information, which is unnatural in most applications. We
follow the program laid out in [4] and [9].

Let X and Y denote measurable spaces and let ν and µ be probability measures
on X × Y . We assume that ν � µ. Using Theorem 1.3 we know that there exist a
µ-measurable function φ : X × Y → R with φ ∈ L1

µ such that

dν

dµ
(x, y) = φ(x, y).

Theorem 2.1. Assume that the conditional random variable x | y exists under µ with
probability distribution denoted by µy(dx). Then the conditional random variable x | y
under ν exists with probability distribution denoted by νy(dx). Furthermore νy � µy

and if z(y) =
∫
X
φ(x, y)dµy(x) > 0 we can write

dνy

dµy
(x) =

1

z(y)
φ(x, y).

We will proceed to use the above theorem to construct the conditional distribution
of the unknown u given data m from their joint probability distribution. We will need
the following lemma to establish the measurability of the likelihood.

Lemma 2.2. Let X be a Borel measurable topological space and assume that g ∈
C(X;R), and that µ(X) = 1 for some probability measure µ on X. Then g is a µ
measurable function.

2.1 Bayes’ theorem for inverse problems

Let X, Ỹ and Y be separable Banach spaces, equipped with the Borel σ-algebra,
and let A : X → Ỹ ⊂ Y be a measurable linear mapping. We are interested in
approximating u from a measurement

m = Au+ η,

where η ∈ Y denotes noise. We assume (u,m) ∈ X × Y to be a random variable and
want to compute u |m. The random variable (u,m) is specified as follows:

• Prior: u ∼ Π measure on X.
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• Noise: η ∼ P0 measure on Y and η⊥u.

The random variable m |u is then distributed according to measure Pu, the trans-
lation of P0 by Au. In the following we assume that Pu � P0 for Π-a.s. Thus there
exists a potential Φ : X × Y → R

dPu
dP0

(m) = exp(−Φ(u;m)).

The mapping Φ(u; ·) : Y → R is measurable for a fixed u and EP0 exp(−Φ(u;m)) = 1.
For a given realisation m of the data the function −Φ(·;m) is called the log likelihood.

We define Q0 to be the product measure

Q0(du, dm) = Π(du)P0(dm).

We assume that Φ(·, ·) is Q0 measurable. Then the random variable (u,m) ∈ X × Y
is distributed according to measure Q(du, dm) = Π(du)Pu(dm) and Q� Q0 with

dQ

dQ0

(u,m) = exp(−Φ(u;m)).

We have the following infinite dimensional version of Theorem 1.9.

Theorem 2.3 (Bayes’ Theorem). Assume that Φ : X×Y → R is Q0 measurable and
that

Z(m) =

∫
X

exp(−Φ(u;m))dΠ(u) > 0

for P0-a.s. Then the conditional distribution of u |m exists under Q and is denoted
by Πm. Furthermore Πm � Π and

dΠm

dΠ
(u) =

1

Z(m)
exp(−Φ(u;m)),

for m Q-a.s.

Proof. The positivity of Z(m) holds Q0 almost surely, and hence by the absolutely
continuity of Q with respect to Q0, it also holds Q almost surely. We can then use
Theorem 2.1. Note that since µ = Q0(du, dm) has a product form the conditional
distribution of u |m under Q0 is simply Π.

2.2 Well-posedness

In inverse problems small changes in data can cause large changes in the solution
and hence some form of regularisation is needed to stabilise the problems. We will
next show that Bayesian approach can be used to combat the ill-posedness of inverse
problems so that small changes in the data will lead to small changes in the posterior
measure.
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In order to measure the changes in the posterior measure Πm caused by the changes
in the data we need a metric in measures. Let µ and µ′ be probability measures on
separable Banach space X and assume that they are both absolutely continuous with
respect some reference measure ν defined in the same measure space (we can take for
example ν = 1/2(µ+ µ′)).

Definition 2.4. We define the total variation distance between µ and µ′ as

dTV (µ, µ′) =
1

2

∫ ∣∣∣∣dµdν − dµ′

dν

∣∣∣∣ dν
If µ′ � µ we can simplify the above and write

dTV (µ, µ′) =
1

2

∫ ∣∣∣∣1− dµ′

dµ

∣∣∣∣ dµ.
Definition 2.5. We define the Hellinger distance between µ and µ′ as

dHell(µ, µ
′) =

√
1

2

∫ (√
dµ

dν
−
√
dµ′

dν

)2

dν

If µ′ � µ we can simplify the above and write

dHell(µ, µ
′) =

√√√√1

2

(
1−

√
dµ′

dµ

)2

dµ.

Note that we have

0 ≤ dTV (µ, µ′) ≤ 1 and 0 ≤ dHell(µ, µ
′) ≤ 1

Hellinger and total variation distances generate the same topology and we have
the following inequalities.

Lemma 2.6. The total variation and Hellinger metrics are related by the inequalities

1√
2
dTV (µ, µ′) ≤ dHell(µ, µ

′) ≤
√
dTV (µ, µ′).

Let X and Y be separable Banach spaces, equipped with the Borel σ-algebra, and
let Π be a measure on X. We want to study the posterior distribution defined in the
previous section. To make sense of it we need the following assumption.

Assumption 2.7. Let X ′ ⊂ X and assume that Φ ∈ C(X ′ × Y ;R). Assume further
that there are functions Mi : R+ × R+ → R+, i = 1, 2, which are monotonic non-
decreasing separately in each argument, and with M2 strictly positive, such that for
all u ∈ X ′ and m,m′ ∈ BY (0, r),

−Φ(u;m) ≤M1(r, ‖u‖X),

|Φ(u;m)− Φ(u;m′)| ≤M2(r, ‖u‖X)‖m−m′‖.
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Theorem 2.8. Let Assumption 2.7 hold. Assume that Π(X ′) = 1 and that Π(X ′ ∩
A) > 0 for some bounded set A ⊂ X. We also assume that

exp(M1(r, ‖u‖X)) ∈ L1
Π(X;R), (2.1)

for every fixed r > 0. Then Z(m) =
∫
X

exp(−Φ(u;m))dΠ(u) is positive and finite for
every m ∈ Y and the posterior probability measure Πm given by Theorem 2.3 is well
defined.

Proof. The boundedness of Z(m) follows directly from the lower bound on Φ in
Assumption 2.7 together with the integrability condition assumed in the theorem.

If u ∼ Π then u ∈ X ′ a.s. and we can write

Z(m) =

∫
X′

exp(−Φ(u;m))dΠ(u).

We also note that, since A′ = A ∩ X ′ is bounded by assumption, supu∈A′ ‖u‖X =
R1 <∞. Since Φ : X ′ × Y → R is continuous it is finite at every point in A′ × {m}.
Thus we see that

sup
(u,m)∈A′×BY (0,r)

Φ(u;m) = R2 <∞.

Hence

Z(m) ≥
∫
A′

exp(−R2)dΠ(u) = exp(−R2)Π(A′) > 0.

The above theorem shows that the measure Πm is well-defined and normalisable.
We did not need to check normalisability in Theorem 2.3 because Πm was defined
as a regular conditional probability via Theorem 2.1 which makes it automatically
normalisable.

Theorem 2.9. Let Assumption 2.7 hold. Assume that Π(X ′) = 1 and that Π(A ∩
X ′) > 0 for some bounded set A in X. We assume also that

exp(M1(r, ‖u‖X))
(

1 +M2(r, ‖u‖X)2
)
∈ L1

Π(X;R),

for every fixed r > 0. Then there exists c = c(r) > 0 such that

dHell(Π
m,Πm′) ≤ c‖m−m′‖Y ,

for all m,m′ ∈ BY (0, r).

Proof. Let Z(m) and Z(m′) denote the normalisation constants for Πm and Πm′ so
that

Z(m) =

∫
X′

exp(−Φ(u;m))dΠ(u) > 0 and

Z(m′) =

∫
X′

exp(−Φ(u;m′))dΠ(u) > 0
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by Theorem 2.8. Using the local Lipschitz property of the exponential and the as-
sumed Lipschitz continuity of Φ(u; ·) together with fact that M2(r, ‖u‖X) ≤ 1 +
M2(r, ‖u‖X)2 we get

|Z(m)− Z(m′)| ≤
∫
X′
| exp(−Φ(u;m))− exp(−Φ(u;m′))|dΠ(u)

≤
∫
X′

exp(M1(r, ‖u‖X))|Φ(u;m)− Φ(u;m′)|dΠ(u)

≤
(∫

X′
exp(M1(r, ‖u‖X))M2(r, ‖u‖X)dΠ(u)

)
‖m−m′‖Y

≤
(∫

X′
exp(M1(r, ‖u‖X))

(
1 +M2(r, ‖u‖X)

)
dΠ(u)

)
‖m−m′‖Y

≤ c‖m−m′‖Y .

We use c = c(r) to denote a constant independent of u and the value may change
from occurrence to occurrence.

Using the definition of Hellinger distance and the fact that (ab − cd)2 ≤ 2a2(b −
d)2 + 2(a− c)2d2 we get(
dHell(Π

m,Πm′)
)2

=

∫
X

(
Z(m)−

1
2 exp

(
− 1

2
Φ(u;m)

)
− Z(m′)−

1
2 exp

(
− 1

2
Φ(u;m′)

))2

dΠ(u)

≤ I1 + I2,

where

I1 =
1

Z(m)

∫
X′

(
exp

(
− 1

2
Φ(u;m)

)
− exp

(
− 1

2
Φ(u;m′)

))2

dΠ(u) and

I2 = (Z(m)−
1
2 − Z(m′)−

1
2 )2

∫
X′

exp
(
− Φ(u;m′)

)
dΠ(u).

Using the Assumption 2.7 and the fact that Z(m) > 0 we can use similar Lipschitz
calculation as before and write

I1 ≤
1

4Z(m)

∫
X′

exp
(
M1(r, ‖u‖X)

)
|Φ(u;m)− Φ(u;m′)|2dΠ(u)

≤ ‖m−m
′‖2
Y

4Z(m)

∫
X′

exp
(
M1(r, ‖u‖X)

)
M2(r, ‖u‖X)2dΠ(u)

≤ c‖m−m′‖2
Y .

We note that Assumption 2.7 with (2.1) implies∫
X′

exp
(
− Φ(u;m′)

)
dΠ(u) ≤

∫
X′

exp
(
M1(r, ‖u‖X)

)
dΠ(u) <∞.

Hence

I2 ≤
c
(
Z(m)− Z(m′)

)2

min
(
Z(m)3, Z(m′)3

) ≤ c‖m−m′‖2
Y ,

which completes the proof.
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Hellinger distance has the desirable property of giving bounds for expectations.

Lemma 2.10. Let µ and µ′ be two probability measures on a separable Banach space
X. Assume that f : X → E, where (E, ‖·‖) is a separable Banach space, is measurable
and has second moments with respect to both µ and µ′. Then

‖Eµf − Eµ′f‖ ≤ 2
√

Eµ‖f‖2 + Eµ′‖f‖2 dHell(µ, µ
′)

The proof of the above lemma is left as an exercise.
Using Lemma 2.10 we see that, for m,m′ ∈ BY (0, r),

|EΠmf(u)− EΠm
′

f(u)| ≤ cf,r‖m−m′‖Y

If Π is Gaussian we can use the following Fernique theorem to establish the inte-
grability conditions in the above theorems.

Theorem 2.11 (Fernique). Let Π be a Gaussian probability measure on a separable
Banach space X. Then there exists α > 0 such that∫

X

exp(α‖u‖2
X)dΠ(u) <∞.

2.3 Approximation of the potential

In this section we will examine the continuity properties of the posterior measure with
respect to approximation of the potential Φ. The data m is assumed to be fixed in
this section so we will write Z(m) = Z and Φ(u;m) = Φ(u). Let X be a separable
Banach space and Π a measure on X. Assume that Πm and Πm

N are both absolutely
continuous with respect to Π and given by

dΠm

dΠ
(u) =

1

Z
exp(−Φ(u)), Z =

∫
X

exp(−Φ(u))dΠ(u) and

dΠm
N

dΠ
(u) =

1

ZN
exp(−ΦN(u)), ZN =

∫
X

exp(−ΦN(u))dΠ(u).

(2.2)

The measure ΠN can arise e.g. when approximating the forward map A in (1.6). It
is important to know whether closeness of the forward map and its approximation
imply closeness of the posterior measure.

Assumption 2.12. Let X ′ ⊂ X and assume that Φ ∈ C(X ′;R). Assume further
that there exists functions Mi : R+ → R+, i = 1, 2 that are independent of N ,
non-decreasing and M2 being strictly positive, such that for all u ∈ X ′,

Φ(u) ≥ −M1(‖u‖X), ΦN(u) ≥ −M1(‖u‖X) and

|Φ(u)− ΦN(u)| ≤M2(‖u‖X)ψ(N)

where ψ(N)→ 0 as N →∞.
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The following theorems are similar to the ones in the previous section but they
estimate changes in the posterior caused by changes in the potential Φ rather than
data m.

Theorem 2.13. Let Assumption 2.12 hold. Assume that Π(X ′) = 1 and that Π(A∩
X ′) > 0 for some bounded set A in X. We also assume that

exp(M1(‖u‖X)) ∈ L1
Π(X;R).

Then Z and ZN defined in 2.2 are positive and finite, and the probability measures
Πm and Πm

N are well defined. Furthermore, for sufficiently large N , ZN is bounded
below by a positive constant independent of N .

Proof. The finiteness of Z and ZN follows from the lower bounds on Φ and ΦN given in
Assumption 2.12 combined with the integrability condition assumed in the theorem.
Since u ∼ Π satisfies u ∈ X ′ a.s. we have

Z =

∫
X′

exp(−Φ(u))dΠ(u)

Note that A′ = A ∩ X ′ is bounded in X and hence supu∈A′ ‖u‖X = R1 < ∞. Since
Φ : X ′ → R is continuous it is finite in every point of A′. Using the Assumption 2.12
for large enough N we can write

sup
u∈A′
|Φ(u)− ΦN(u)| ≤ R2 <∞.

This implies

sup
u∈A′

Φ(u) = 2R2 <∞ and sup
u∈A′

ΦN(u) = 2R2 <∞.

Hence

Z ≥
∫
A′

exp(−2R2)dΠ(u) = exp(−2R2)Π(A′) > 0.

We get the same lower bound for ZN and note that it is independent of N as required.

Theorem 2.14. Let Assumption 2.12 hold. Assume that Π(X ′) = 1 and that Π(A∩
X ′) > 0 for some bounded set A in X. We assume furthermore that

exp(M1(‖u‖X))
(

1 +M2(‖u‖X)2
)
∈ L1

Π(X;R).

Then there exists c > 0 such that

dHell(Π
m,Πm

N) ≤ cψ(N)

for all sufficiently large N .
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Proof. Let N be sufficiently large so that by Theorem 2.14 Z > 0 and ZN > 0
with positive lower bounds independent of N . Using the local Lipschitz property of
exponential, Assumption 2.12 and the fact that M2(‖u‖X) ≤ 1 + M2(‖u‖X)2 we can
write

|Z − ZN | ≤
∫
X′
| exp(−Φ(u))− exp(−ΦN(u))|dΠ(u)

≤
∫
X′

exp(M1(‖u‖X))|Φ(u)− ΦN(u)|dΠ(u)

≤ ψ(N)

∫
X′

exp(M1(‖u‖X))M2(‖u‖X)dΠ(u)

≤ ψ(N)

∫
X′

exp(M1(‖u‖X))(1 +M2(‖u‖X)2)dΠ(u)

≤ Cψ(N),

where C is a constant that does not depend on u or N . As in the proof of Theorem
2.9 we can write (

dHell(Π
m,Πm

N)
)2

= I1 + I2,

where

I1 =
1

Z

∫
X′

(
exp

(
− 1

2
Φ(u)

)
− exp

(
− 1

2
ΦN(u)

))2

dΠ(u) and

I2 =
(
Z−

1
2 − Z−

1
2

N

)2
∫
X′

exp
(
ΦN(u)

)
dΠ(u).

Using similar arguments as above we see that

I1 ≤
1

4Z

∫
exp(M1(‖u‖X))|Φ(u)− ΦN(u)|2dΠ(u)

≤ ψ(N)2

Z

∫
exp(M1(‖u‖X))M2(‖u‖X)2dΠ(u)

≤ Cψ(N)2.

We also notice that∫
X′

exp
(
ΦN(u)

)
dΠ(u) ≤

∫
X′

exp
(
M1(‖u‖X)

)
dΠ(u) <∞

and the upper bound is independent of N . Hence

I2 ≤
c
(
Z − ZN

)2

min
(
Z3, Z3

N

) ≤ Cψ(N)2,

which concludes the proof.
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2.4 Infinite dimensional Gaussian measure

We start by introducing infinite dimensional Gaussian random variables and some of
their key properties. For more details see e.g. [6, Section 3] or [3, Section 2], and if
you feel brave [2].

Let X be a separable Banach space and denote by X∗ its dual space of linear
functionals on X. We define the characteristic function of a probability distribution
µ on a separable Banach Space X as

ϕµ(ψ) = E exp(iψ(x)),

for ψ ∈ X∗.

Theorem 2.15. If µ and ν are two probability measures on a separable Banach space
X and if ϕµ(ψ) = ϕν(ψ), for all ψ ∈ X∗, then µ = ν.

A function θ ∈ X is called the mean of µ if ψ(θ) =
∫
X
ψ(x)dµ(x) for all ψ ∈ X∗.

A linear operator Σ : X∗ → X is called the covariance operator if ψ(Σφ) =
∫
X
ψ(x−

θ)φ(x − θ)dµ(x) for all ψ, φ ∈ X∗. If we assume that X = H is a Hilbert space
then θ = E(x) and the covariance operator is characterised by identity E

(
〈φ, (x −

θ)〉〈ψ, (x− θ)〉
)

= 〈Σφ, ψ〉.
A measure µ on (X,B(X)) is Gaussian if, for any ψ ∈ X∗, ψ(x) ∼ N (θψ, σ

2
ψ) for

some θψ ∈ R and σψ ∈ R. We allow σψ = 0, so that the measure may be a Dirac
mass at θψ. Note that it is expected that θψ = ψ(θ) and σ2

ψ = ψ(Σψ) for all ψ ∈ X∗.

Theorem 2.16. A Gaussian measure µ on (X,B(X)) has a mean θ and covariance
operator Σ. The characteristic function of the measure is

ϕµ(ψ) = exp

(
iψ(θ)− 1

2
ψ(Σψ)

)
.

Using the above Theorem and Theorem 2.15 we see that the mean and covariance
completely characterise the Gaussian measure and hence we can simply writeN (θ,Σ).

Definition 2.17. Let {φi}∞i=1 denote an orthonormal basis for a separable Hilbert
space H. A linear operator A : H → H is trace-class if

Tr(A) =
∞∑
i=1

〈Aφi, φi〉 <∞.

The sum is independent of the choice of basis. The operator A is Hilbert–Schmidt if

Tr(A∗A) =
∞∑
i=1

‖Aφi‖2
H <∞.

We can construct random draws from a Gaussian measure on a Hilbert space H
using Karhunen–Loève expansion.
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Theorem 2.18. Let Σ be a self-adjoint, positive semi-definite, trace class operator in
a Hilbert space H, and let θ ∈ H. Let {φk, γk} be an orthonormal set of eigenvectors
and eigenvalues for Σ ordered so that γ1 ≥ γ2 ≥ · · · . Take {ξk}∞k=1 to be an i.i.d.
sequence with ξ1 ∼ N (0, 1). Then the random variable x ∈ H given by the Karhunen–
Loève expansion

x = θ +
∞∑
k=1

√
γkξkφk (2.3)

is distributed according to µ = N (θ,Σ).

The proof is left as an exercise.

Example 2.19. A random variable η is said to be white Gaussian noise on L2(Td)
if E(η) = 0 and E

(
〈η, φ〉〈η, ψ〉

)
= 〈φ, ψ〉, in which case we denote η ∼ N (0, I). Note

that I : L2(Td) → L2(Td) is not a trace class operator in L2(Td), and hence white

noise does not take values in L2(Td). Let e~̀ ∈ L2(Td), ~̀ = (`1, `2, . . . , `d) ∈ Zd be
an orthonormal basis of L2(Td) consisting of eigenfunctions of Laplacian, numbered

so that −∆e~̀ = |~̀|2e~̀. Such functions e~̀(x) can be chosen to be normalised prod-
ucts of the sine and cosine functions sin(`jxj) and cos(`jxj) that form the standard
Fourier basis of L2(Td). The Fourier coefficients of η with respect to this basis are
independent, normally distributed R-valued random variables with variance one, that
is, 〈η, e~̀〉 ∼ N(0, 1). Then

E‖η‖2
L2(Td) =

∑
~̀∈Zd

E|〈η, e~̀〉|2 =
∑
~̀∈Zd

1 =∞.

This implies that realisations of η are in L2(Td) with probability zero. However, when
s > d/2

E‖η‖2
H−s(Td) =

∑
~̀∈Zd

(1 + |~̀|2)−sE|〈η, e~̀〉|2 <∞ (2.4)

and hence η takes values in H−s(Td) a.s. For more details about Sobolev spaces see
Appendix A.

The above result can be generalised to show that if x ∼ N (0,Σ) and the eigenval-

ues of Σ satisfy γj � j−
2s
d (e.g. Σ = (I −∆)−s) then, for t < s− d/2, we have x ∈ H t

a.s. We can also generalise the results for more general domains than the torus or Rd

(or a closed manifold) using Hilbert scales. These spaces do not, in general, coincide
with Sobolev spaces, because of the effect of the boundary conditions.

The covariance operator Σ : H → H of a Gaussian on H is a compact operator
and its inverse is densely defined unbounded operator on H. We call this inverse
precision operator. Bot the covariance and the precision operator are self-adjoint on
appropriate domains and the fractional powers of them can be defined via spectral
theorem.

Given a Gaussian measure µ on a separable Banach space X, we define the
Cameron–Martin space Vµ ⊂ X of µ to be the intersection of all linear spaces of
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full measure. The main importance of the Cameron-Martin space is that it charac-
terises exactly the directions in X in which a centred Gaussian measure can be shifted
to obtain an equivalent Gaussian measure. When dim(X) = ∞ the measure of the
Cameron–Martin space is zero, that is, µ(Vµ) = 0. Compare this to the case of finite
dimensional Lebesgue measure which is invariant under translations in any direction.
This is a striking illustration of the fact that measures in infinite-dimensional spaces
have a strong tendency of being mutually singular.

Lemma 2.20. For a Gaussian measure on Hilbert space (H, 〈·, ·〉) the Cameron–

Martin space Vµ consists of the image of H under Σ
1
2 and the Cameron–Martin norm

is given by ‖h‖2
µ = ‖Σ− 1

2h‖2
H.

Theorem 2.21. Let µ = N (0,Σ) be a Gaussian measure on a separable Banach space
X. The Cameron–Martin space Vµ of µ can be endowed with Hilbert space structure
and Vµ is compactly embedded in all separable spaces X ′ such that µ(X ′) = 1.

Theorem 2.22 (Special case of the Cameron-Martin theorem). Let µ = N (0,Σ) be
a Gaussian measure on a separable Banach space X. Denote by µh the translation of
µ by h, µh = µ(· − h). If h ∈ Vµ then µh is absolutely continuous with respect to µ
and

dµh
dµ

(x) = exp

(
− 1

2
‖h‖2

Vµ + 〈h, x〉Vµ
)

x ∈ X, µ-a.s. If h 6∈ Vµ, then µ and µh are mutually singular.

Example 2.23. Consider two Gaussian measures µi, i = 1, 2, on H = L2((0, 1))
both with precision operator (the densely defined inverse covariance operator Σ−1 =
L) L = −d2/dx2, the domain of L being H1

0 ((0, 1)) ∩ H2((0, 1)). We assume that
µ1 ∼ N (θ,Σ) and µ2 ∼ N (0,Σ). Then Vµ = Im(Σ1/2) = H1

0 ((0, 1)). Hence the
measures are equivalent if and only if θ ∈ Vµ. If this is satisfied then the Radon–
Nikodym derivative between the two measures is given by

dµ1

dµ2

(x) = exp
(
〈θ, x〉H1

0
− 1

2
‖θ‖2

H1
0

)
.

Example 2.24. Let us return to the Example 1.2 where we wanted to recover the
initial condition u of the heat equation from a noisy observation m of the solution at
some time T > 0. We have the observation model

m = Au+ η,

where A = e∆ : L2(Td)→ L2(Td).
We place a Gaussian prior Π = N (θ,Σ) on u, with Σ = (I − ∆)−α, for some

α > d
2
. Then Π(Hs) = 1 for all s < α − d

2
and especially Π(X) = Π(L2) = 1. For

the noise we assume that η ∼ P0 = N (0, δ2I), that is, η is white Gaussian noise with
noise amplitude δ. This measure satisfies P0(Hs) = 1 for s < −d

2
and we can choose
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Y = Hs′ for some s′ < −d
2
, m ∈ Y a.s. The Cameron–Martin space of white Gaussian

noise is L2.
We then have Au ∈ VP0 and m |u ∼ Pu = N (Au, δ2I), where Pu � P0, with

dPu
dP0

(m) = exp(−Φ(u;m))

and

Φ(u;m) =
1

2
‖Au‖2

L2 − 〈m,Au〉L2 .

In the following we repeatedly use the fact that ∆γeκ∆, κ > 0, is a bounded linear
operator from Ha to Hb for any a, b, γ ∈ R. Note that ν0(L2 × Hs′) = 1, where we
have denoted ν0(du, dm) = Π(du)P0(dm). Using the boundedness of ∆γeκ∆ we can
show that

Φ : L2 ×Hs′ → R

is bounded, and hence by Lemma 2.2 ν0-measurable.
We can then use Theorem 2.3 to conclude that the posterior is given by Πm, where

dΠm

dΠ
(u) =

1

Z
exp(−Φ(u;m))

Z =

∫
L2

exp(−Φ(u;m))dΠ(u),

provided that Z = Z(m) > 0 P0-a.s. As stated before m ∈ Hs for any s < −d
2
P0-a.s.

and hence m = ∆−
s′
2 w with some w ∈ L2 and s′ < −d

2
. We can then write

Φ(u;m) =
1

2
‖Au‖2

L2 − 〈e
1
2

∆∆−
s′
2 w, e

1
2

∆u〉L2 .

Using the above formulation together with the boundedness of ∆γeκ∆, κ > 0, we get

Φ(u;m) ≤ C(‖w‖2
L2 + ‖u‖2

L2),

where ‖w‖L2 <∞ P0-a.s. Thus

Z ≥
∫
‖u‖L2≤1

exp
(
− C(‖w‖2

L2 + 1)
)
dΠ(u)

and since all balls have positive Gaussian measure on a separable Banach spaces we
see that Z > 0.
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2.5 MAP estimators and Tikhonov regularisation

In this section we assume that the prior Π is Gaussian. We show that MAP estimators
(point of maximal probability) coincide with the minimisers of Tikhonov regularised
least squares functions with regularisation term being given by the Cameron-Martin
norm of the Gaussian prior.

The classical deterministic way to solve inverse problem is to try to minimise the
potential Φ with some regularisation. If we had finite data and Gaussian observational
noise η ∼ N(0,Γ) we can write

Φ(u;m) =
1

2

∥∥Γ−1/2(m− Au)
∥∥2
.

Thus Φ is covariance weighted data misfit least square function.
We assume that Π is a Gaussian probability measure on a separable Banach space

(X, ‖ ·‖X) and Π(X) = 1. We denote the Cameron-Martin space of Π by (VΠ, ‖ ·‖VΠ
).

In this section we want to show that maximising Πm is equivalent to minimising

I(u) =

{
Φ(u;m) + 1

2
‖u‖2

VΠ
if u ∈ VΠ, and

∞ else.
(2.5)

The realisation m of the data does not play role in this section and we will write
Φ(u;m) = Φ(u).

We note that the properties of Φ we assume below are typically determined by the
forward operator, which maps the unknown function u to the data m. Probability
theory does not play a direct role in verifying these properties of Φ. Probability
becomes relevant when choosing the prior measure Π so that it charges the Banach
space X, on which the desired properties of Φ hold, with full measure.

Assumption 2.25. The function Φ : X → R satisfies the following conditions:

1) For every ε > 0 there is an R = R(ε) ∈ R, such that for all u ∈ X,

Φ(u) ≥ R− ε‖u‖2
X .

2) Φ is locally bounded above, that is, for every r > 0 there exists K = K(r) > 0
such that, for all u ∈ X with ‖u‖X < r, we have

Φ(u) ≤ K.

3) Φ is locally Lipschitz continuous i.e. for every r > 0 there exists L = L(r) > 0
such that, for all u1, u2 ∈ X with ‖u1‖X , ‖u2‖X < r, we have

|Φ(u1)− Φ(u2)| ≤ L‖u1 − u2‖X .

In finite dimensions there is an obvious notion of most likely points for measures
which have a continuous density with respect to Lebesgue measure: the points at
which the Lebesgue density is maximised. Unfortunately we can not translate this
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idea to infinite dimensions. To fix this we will restate the idea in a way that will work
also in infinite dimensional settings. Fix a small radius δ > 0 and identify centres of
balls of radius δ which have maximal probability. Letting δ → 0 then recovers the
maximums when there is continuous Lebesgue density. We will use this small ball
approach in infinite dimensional settings.

Let z ∈ VΠ and Bδ(z) ⊂ X be the open ball centred at z ∈ X with radius δ in X.
Let

Jmδ (z) = Πm(Bδ(z))

be the mass of the ball Bδ(z) under the posterior measure Πm. Similarly we define

Jδ(z) = Π(Bδ(z))

to be the mass of the ball Bδ(z) under the Gaussian prior. We note that all balls in
a separable Banach space have positive Gaussian measure. Thus Jδ(z) is finite and
positive for any z ∈ VΠ. By the above assumptions on Φ and the Fernique Theorem
2.11 the same is true for Jmδ (z). We will next prove that the probability is maximised
where I is minimised.

Theorem 2.26. Let Assumption 2.25 hold and assume that Π(X) = 1. Then, for
any z1, z2 ∈ VΠ,

lim
δ→0

Jmδ (z1)

Jmδ (z2)
= exp

(
I(z1)− I(z1)

)
,

where the function I is defined by (2.5).

Before moving to prove the above theorem we state a result about the small ball
probabilities under Gaussian measure

Theorem 2.27. Let z ∈ VΠ and Bδ(z) ⊂ X be the open ball centred at z ∈ X with
radius δ in X. The ratio of small ball probabilities under Gaussian measure Π satisfies

lim
δ→0

Π(Bδ(z1))

Π(Bδ(z2))
= exp

(
1

2
‖z2‖2

VΠ
− 1

2
‖z1‖2

VΠ

)
.

Proof of theorem 2.26. The ratio is finite and positive since Jmδ (z) is finite and posi-
tive far any z ∈ VΠ. The estimate given in Theorem 2.27 transfers the question about
probability into statement concerning the Cameron-Martin norm of Π. Note that if
u ∼ Π then its realisation is in VΠ only with probability zero and hence ‖u‖VΠ

= ∞
almost surely.

We can write

Jmδ (z1)

Jmδ (z2)
=

∫
Bδ(z1)

exp(−Φ(u))dΠ(u)∫
Bδ(z2)

exp(−Φ(v))dΠ(v)

=

∫
Bδ(z1)

exp(−Φ(u) + Φ(z1)) exp(−Φ(z1))dΠ(u)∫
Bδ(z2)

exp(−Φ(v) + Φ(z2)) exp(−Φ(z2))dΠ(v)
.
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By Assumption 2.25 there exists L = L(r) such that

−L‖u1 − u2‖X ≤ Φ(u1)− Φ(u2) ≤ L‖u1 − u2‖X

for all u1, u2 ∈ X with max{‖u1‖X , ‖u2‖X} < r. We can then write

Jmδ (z1)

Jmδ (z2)
≤ e2δL

∫
Bδ(z1)

exp(−Φ(z1))dΠ(u)∫
Bδ(z2)

exp(−Φ(z2))dΠ(v)

≤ e2δLe−Φ(z1)+Φ(z2) Π(Bδ(z1))

Π(Bδ(z2))
,

Using Theorem 2.27 we get

Jmδ (z1)

Jmδ (z2)
≤ r1(δ)e2δLe−I(z1)+I(z2)

where r1(δ)→ 1 as δ → 0. Thus

lim sup
δ→0

Jmδ (z1)

Jmδ (z2)
≤ e−I(z1)+I(z2).

We can deduce in the same way that

Jmδ (z1)

Jmδ (z2)
≥ r2(δ)e−2δLe−I(z1)+I(z2)

with r2(δ)→ 1 as δ → 0 and furthermore

lim inf
δ→0

Jmδ (z1)

Jmδ (z2)
≥ e−I(z1)+I(z2),

which concludes the proof.

We will next show that the minimisation problem for I is well-defined when As-
sumption 2.25 holds.

Definition 2.28. Let E be a Hilbert space. The function I : E → R is weakly lower
semicontinuous if

lim inf
j→∞

I(uj) ≥ I(u)

whenever uj ⇀ u in E. The function I : E → R is weakly continuous if

lim
j→∞

I(uj) = I(u)

whenever uj ⇀ u in E.

Lemma 2.29. Let (E, 〈·, ·〉E) be a Hilbert space with induced norm ‖ · ‖E. Then the
quadratic form J(u) = 1

2
‖u‖E is weakly lower semicontinuous.
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Proof. We can write

J(uj)− J(u) =
1

2
‖uj‖2

E −
1

2
‖u‖2

E

=
1

2
〈uj − u, uj + u〉E

=
1

2
〈uj − u, 2u〉E +

1

2
‖uj − u‖2

E

≥ 1

2
〈uj − u, 2u〉E → 0,

when uj ⇀ u in E.

Theorem 2.30. Suppose that Assumption 2.25 holds and let E be a Hilbert space
compactly embedded in X. Then there exists u ∈ E such that

I(u) = I := inf{I(u) ∈ E}.

Furthermore if {uj} is a minimising sequence satisfying I(uj)→ I(u) then there exists
a subsequence {uj′} that converges strongly to u in E.

Proof. Compactness of E ⊂ X implies that ‖u‖X ≤ C‖u‖E. Hence by Assumption
2.25 1) it follows that for any ε > 0 there is R(ε) ∈ R such that

I(u) ≥
(1

2
− εC

)
‖u‖2

E +R(ε).

We can choose ε small enough so that

I(u) ≥ 1

4
‖u‖2

E +R (2.6)

for all u ∈ E with some R ∈ R.
Let uj be minimising sequence satisfying I(uj)→ I(u) as j →∞. For any δ > 0

there is N = N(δ), such that for all j ≥ N

I ≤ I(uj) ≤ I + δ. (2.7)

We can then use (2.6) to conclude that {uj} is bounded in E. We assumed that E is
a Hilbert space so there exists u ∈ E such that uj ⇀ u in E. Since E is compactly
embedded in X we can deduce that uj → u strongly in X. By the Assumption 2.25
3) the potential Φ is Lipschitz continuous and hence Φ(uj)→ Φ(u). Thus Φ is weakly
continuous on E. Using Lemma 2.29 we see that I(u) = J(u) + Φ(u) is weakly lower
semicontinuous on E. Using (2.7) we can then conclude that, for any δ > 0,

I ≤ I(u) ≤ I + δ.

Since δ can be chosen arbitrarily small the first result follows.
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Next we study a subsequence of uj. For large enough n, ` we can write

1

4
‖un − u`‖2

E =
1

2
‖un‖2

E +
1

2
‖u`‖2

E −
1

4
‖un + u`‖2

E

= I(un) + I(u`)− 2I
(1

2
(un + u`)

)
− Φ(un)− Φ(u`) + 2Φ

(1

2
(un + u`)

)
≤ 2(I + δ)− 2I − Φ(un)− Φ(u`) + 2Φ

(1

2
(un + u`)

)
≤ 2δ − Φ(un)− Φ(u`) + 2Φ

(1

2
(un + u`)

)
.

The subsequences un, u` and 1
2
(un + u`) converge strongly to u ∈ X. Since Φ is

continuous we see that for large enough n, `

1

4
‖un − u`‖2

E ≤ 3δ.

We have shown that the subsequence is Cauchy in E which completes the proof.

Note that by Theorem 2.21 the Cameron–Martin space VΠ is a Hilbert space that
is compactly embedded in X and hence we can find a minimiser in VΠ.

3 Behaviour of the posterior distribution

3.1 Posterior consistency

We return to the discrete setting to study the posterior distribution in more detail. We
assume Gaussian noise and prior and analyse how the posterior distribution behaves
when the noise tends to zero.

Assumption 3.1. We assume that

• u ∼ N (0,Σu), where Σu is symmetric and positive definite, and u ⊥ η.

• η = δη0, with η0 ∼ N (0,Γ0),where Γ0 is symmetric and positive definite.

• A ∈ Rk×k is invertible.

• m† = Au† + δ2η†0, with a fixed u†, η† ∈ Rk.

Theorem 3.2. Let Assumption 3.1 hold. Then, for any sequence C(δ) → ∞ as
δ → 0,

Πm†
(
‖u− u†‖2 > C(δ)δ2

)
→ 0.

Note that we can set C(δ) = ε
δ2 to obtain

Πm†
(
‖u− u†‖ > ε

)
→ 0,

as the noise tends to zero. Hence Theorem 3.2 implies that u converges to u† in
probability.
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Proof. Since u ∼ N (0,Σu) and η ∼ N (0, δ2Γ0) we know that the posterior is also
Gaussian and u |m† ∼ N (θ,Σ), where θ = (A>Γ−1

0 A + δ2Σ−1
u )−1A>Γ−1

0 m† and Σ =
δ2(A>Γ−1

0 A + δ2Σ−1
u )−1. Denote by v the centred Gaussian random variable v =

u |m − θ ∼ N (0,Σ). Let E denote the expectation with respect to the posterior
distribution when we are given a measurement m†. We can then write

E(‖u− u†‖2) = E(‖θ − u† + v‖2)

= E(‖θ − u†‖2) + E(‖v‖2)

= ‖θ − u†‖2 + Tr(Σ).

We start by approximating the first term on the right hand side. Let {λ2
j , ϕj},

j = 1, · · · , k, be the eigenvalues and orthogonal eigenvectors of Σu, ordered so that
λ1 ≥ λ2 · · · ≥ λk ≥ 0. We will use the finite dimensional version of Karhunen–Loève
expansion and write the k-dimensional random variable x ∼ N (0,Σu) in form

k∑
j=1

λjξjϕj,

where {ξj}kj=1 is a collection of independent N (0, 1) random variables.
From the definition of the posterior mean we see that

(A>Γ−1
0 A+ δ2Σ−1

u )θ = A>Γ−1
0 m†

= A>Γ−1
0 (Au† + δη†0).

Subtracting (A>Γ−1
0 A + δ2Σ−1

u )u† from both sides and denoting e = θ − u† we can
write

(A>Γ−1
0 A+ δ2Σ−1

u )e = δA>Γ−1
0 η†0 − δ2Σ−1

u u†.

Taking the inner product of both sides with e we obtain

〈e, A>Γ−1
0 Ae〉+ δ2〈e,Σ−1

u e〉 = δ〈e, A>Γ−1
0 η†0〉 − δ2〈e,Σ−1

u u†〉,

which simplifies to

‖Ae‖2
Γ0

+ δ2‖e‖2
Σu = δ〈e, A>Γ−1

0 η†0〉 − δ2〈e,Σ−1
u u†〉.

Since the matrix A was assumed to be invertible ‖A ·‖Γ0 defines a norm in Rk. All
norms in Rk are equivalent and hence there exists α = α(A,Γ0) such that ‖Ae‖2

Γ0
≥

α‖e‖2. Since δ2‖e‖2
Σu
≥ 0 the left hand side is larger or equal to α‖e‖2. To deal with

the right hand side we denote

K = K(A,Γ0,Σu, u
†, η†) = 2 max(‖A>Γ−1

0 η†0‖, ‖Σ−1
u u†‖).

Note that for a fixed realisation m† the above K is a constant. Using Cauchy-Schwartz
inequality we see that for δ < 1

δ〈e, A>Γ−1
0 η†0〉 − δ2〈e,Σ−1

u u†〉 ≤ δ‖e‖‖A>Γ−1
0 η†0‖+ δ2‖e‖‖Σ−1

u u†‖

≤ δ

2
‖e‖K +

δ2

2
‖e‖K

≤ δ‖e‖K.
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Combining the above we get

α‖e‖2 ≤ δK‖e‖,

which implies

‖e‖ ≤ δK

α
.

Next we move to approximate E‖v‖2 = Tr(Σ). Let us denote b = Σ−1a. Since
Σ = δ2(A>Γ−1

0 A+ δ2Σ−1
u )−1 we can write

δ2b = (A>Γ−1
0 A+ δ2Σ−1

u )a.

Taking the inner product of both sides with a we obtain

δ2〈a, b〉 = ‖Aa‖Γ0 + δ2‖a‖Σu .

As before the right hand side is bounded below by α‖a‖2 and the left hand side is
bounded above by δ2‖a‖‖b‖. Thus we get

‖a‖
‖b‖
≤ δ2

α

We finally see that

‖Σ‖ = sup
b∈Rk

‖Σb‖
‖b‖

= sup
b∈Rk

‖a‖
‖b‖
≤ δ2

α
.

Note that since Σ is a symmetric positive-definite matrix its eigenvalues are all
positive real numbers that can be ordered γ2

1 ≥ γ2
2 · · · ≥ γ2

k ≥ 0, and γ2
1 = ‖Σ‖ ≤ δ2

α
.

Hence we can conclude

Tr(Σ) =
k∑
j=1

γ2
j ≤

kδ2

α

We now see that, for δ < 1, we have

E(‖u− u†‖2) = ‖e‖2 + Tr(Σ) ≤ Lδ2,

where L = K2+αk
α2 is a constant. Using the Markov inequality we conclude that, for

any C(δ)→∞ as δ → 0,

Πm
(
‖u− u†‖2 > C(δ)δ2

)
≤ E‖u− u†‖2

C(δ)δ2
≤ Lδ2

C(δ)δ2
→ 0

as δ → 0.
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3.2 Uncertainty quantification

In the previous sections we studied the problem of approximating an unknown u
from a measurement m = Au + η. The solution to this Bayesian inverse problem is
a posterior distribution. This distribution can be used to achieve a point estimator,
however, the strength of Bayesian approach is that we can use posterior distribution
to quantify how certain we are of the solution. We call a subset C ⊂ X, such that

Π(u ∈ C |m) = 1− α,

a 1 − α level credible set for u. This approach seems attractive since attaining such
credible sets is usually computationally cheap. In most applications we can not cal-
culate the CM estimator explicitly but sampling from the posterior is possible. These
samples can then be used to approximate the CM estimator, and furthermore to find
sets with high posterior probability.

Another closely related statistical way of tackling inverse problems is the so called
frequentist approach where we assume that the data is generated from a deterministic
’true’ unknown u†, that is we have m† = Au† + η. We are then interested in how
frequently the true unknown falls in some subsets. That is, a frequentist 1 − α
confidence region is defined as a subset C† = C(m†) ∈ X, such that

P(u† ∈ C†) = 1− α.

The objective meaning of the frequentist confidence regions is well understood but
they are difficult to achieve when the parameter space is large as in most inverse
problems. That is why we would like to know if the Bayesian credible sets have
correct frequentist coverage.

We will study the measurement model

m† = Au† + η,

where u† ∈ Rd and m, η ∈ Rk. If η ∼ P0 = N (0, I) then m† ∼ Pu† = N (Au†, I).
Next we define Fisher information matrix which measures how much information

the measurement m† carries of the unknown u†.

Definition 3.3. Fisher information matrix is defined as

I(u) = −E
(

∂2

∂ui∂uj
log ρ(m− Au)

)k
i,j=1

.

With our assumption m† ∼ N (Au†, I) the Fisher information matrix is given by
I(u†) = A∗A.

We are interested in comparing the Bayesian and frequentist solutions. We will
model the unknown u using a prior Π. To compare the Bayesian credible sets and the
frequentist confidence regions we will need the following Bernstein–von Mises theorem
which states that, on the small noise limit, the posterior distribution behaves like a
normal distribution centred at an efficient estimator, such as the maximum likelihood
estimator (MLE) ûδ. We note that, as δ → 0, 1

δ
(ûδ − u†)→ N (0, I(u†))
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Theorem 3.4 (Bernstein–von Mises). Let m†δ ∼ Pu† = N (Au†, δ2I). We assume that
u ∼ Π, where the prior has continuous density π at u† with π(u†) > 0. Denote the
associated posterior Πm

δ = Π(· |m†δ). Let µδ be distribution N
(
ûδ, δ

2I(u†)−1
)
. Then

‖Πm
δ − µδ‖TV =

∫
X

|Πm
δ (u)− µδ(u)|du→ 0 a.s.

as δ → 0.

The above result states that the two distributions Πm
δ and µδ look increasingly

alike when δ → 0. This implies that for any subset A, we have Πm
δ (A)− µδ(A)→ 0,

almost surely. As a consequence we have that, for any 1 − α level Bayesian credible
set Cδ, µδ(Cδ)→ 1−α. This is helpful in showing that the credible sets are frequentist
confidence regions of level 1− α.

The BvM theorem can be stated in more general non-Gaussian settings assuming
that the likelihood ρ†u(m) fulfils the usual regularity assumptions. For more details
see e.g. the course notes of Principles of Statistics.

Next we want to show that credible sets of the form

Cδ =
{
u : |ûδ − u| ≤ δRδ

}
,

with Rδ chosen so that Πm
δ (Cδ) = Π(Cδ |m†δ) = 1− α, are also frequentist confidence

regions, i.e. for m† ∼ Pu† we have that P(u† ∈ Cδ) = 1 − α, when δ → 0. We will
start by shoving that if Rδ converges almost surely to its frequentist equivalent, the
probability converge to 1 − α. After that we show that Rδ indeed converges to this
limit.

Definition 3.5. Define the function F , for all t ≥ 0, as

F (t) = P(|Z| ≤ t) =

∫ t

−t
f(x)dx,

where Z ∼ N (0, I(u†)−1). Then F : [0,∞)→ [0, 1) is an increasing, continuous one-
to-one mapping and its well-defined functional inverse is also continuous and denoted
by F−1.

Lemma 3.6. Under the above assumptions we have that Rδ → F 1(1 − α) a.s., as
δ → 0.

Proof. Using the change of variables x = 1
δ
(u− ûδ) we see that

F (Rδ) =

∫ Rδ

−Rδ
f(x)dx =

∫ ûδ+δRδ

ûδ−δRδ
µδ(u)du = µδ(Cδ)

Hence, as δ → 0, we have F (Rδ) = µδ(Cδ)− Πm
δ (Cδ) + Πm

δ (Cδ)→ 1− α a.s., since by
the Bernstein–von Mises theorem, the first difference converges to 0 a.s. We conclude
the proof by applying the continuous mapping theorem with F−1.
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Theorem 3.7. Let α ∈ (0, 1). Then under the above assumptions we have that
Pu†(u

† ∈ Cδ)→ 1− α.

Proof. Given that F−1(1− α) > 0 we have that

F−1(1− α)

Rδ

1

δ
(ûδ − u†)→d N (0, I(u†)−1).

Hence we can write

Pu†(u
† ∈ Cδ) = Pu†

(
|ûδ − u†| ≤ δRδ

)
= Pu†

(
F−1(1− α)

Rδ

1

δ
|ûδ − u†| ≤ F−1(1− α)

)
→ P

(
|Z| ≤ F−1(1− α)

)
= F

(
F−1(1− α)

)
= 1− α,

which concludes the proof.

Note that we can replace the MLE ûδ by the CM estimator ūδ in the above
calculations.

Theorem 3.7 implies that on the small noise limit (or equivalently on the large data
sample limit n → ∞) the Bayesian credible sets have correct frequentist coverage.
We note that the same is not true in infinite dimensional setting.

A Sobolev spaces

Sobolev spaces constitute one of the most relevant functional settings for the treat-
ment of PDEs and boundary value problems. This appendix gives a short introduc-
tion to the topic. Sobolev spaces are covered properly on course Analysis of Partial
Differential Equations. For more a more detailed treatment of Sobolev spaces and
applications to PDEs see [5]. For a comprehensive study of Sobolev spaces see e.g.
[1].

We start by introducing the notion of a weak derivatives that generalises the
classical partial derivatives.

Definition A.1 (Test functions). Let O ∈ Rd. We set

C∞0 (O) = {φ ∈ C∞(O) : supp(φ) ∈ V ⊂ O},

the smooth functions with compact support. This space is often referred as the space
of test functions and denoted by D(O).

If u ∈ C1(R) then we can define ∂u
∂x

by∫
∂u

∂x
(x)φ(x)dx = −

∫
u(x)

∂φ

∂x
(x)dx,

for all φ ∈ D(R). We notice that the right hand side is well-defined for all u ∈ L1
loc(R).
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Definition A.2. Let α = α1, · · · , αd be a multi-index, αi ∈ N, and |α| = α1+· · ·+αd.
A function u ∈ L1

loc(O) has a weak derivative v = Dαu ∈ L1
loc(O) if∫

O
v(x)φ(x)dx = (−1)|α|

∫
O
u(x)Dαφ(x)dx,

For all test functions φ ∈ D(O). Above Dαφ = ∂α1

∂x
α1
1
· · · ∂αd

∂x
αd
d

φ. Note that when

the weak derivative Dαu exists, it is defined only up to a set of measure zero. So
any point-wise statements to be made about Dαu is understood to only hold almost
surely. Most of classical differential calculus can be reproduced for weak derivatives
(e.g. the product rule, the chain rule).

Definition A.3. The Sobolev space Hs(O), s ∈ N, is defined as the set of all functions
u ∈ L2(O) with weak derivatives Dαu ∈ L2(O) up to the order |α| ≤ s.

The above definition can be generalised for functions u ∈ Lp(O), 1 ≤ p ≤ ∞, and
the resulting Sobolev spaces are usually denoted by W s,p(O). In this course we only
consider L2(O) Sobolev spaces. The Sobolev spaces Hs(O) are Banach spaces with
the norm

‖u‖Hs =

(∑
|α|≤s

‖Dαu‖2
L2(O)dx

) 1
2

(A.1)

The Sobolev spaces are separable Hilbert spaces with inner product

〈u, v〉Hs =
∑
|α|≤s

〈Dαu,Dαv〉L2 =
∑
|α|≤s

∫
O
Dαu(x)Dαv(x)dx,

for all u, v ∈ Hs(O).

Definition A.4. The spaces Hs
0(O) are the closure of C∞0 (O) under the Sobolev norm

(A.1).

The spaces Hs
0(O) is a closed subspace of Hs(O). IfO = Rd then Hs

0(O) = Hs(O).
We can define H1

0 (O) also through Trace Theorem (see [5, Section 5.5]) which states
that there is a continuous linear mapping tr : H1(O) → L2(∂O) called the trace
operator. In this sense, we say that functions from H1(O) have traces (boundary
values) in L2(∂O) and

H1
0 (O) = {u ∈ H1(O) : u = 0 in ∂O}.

As defined above, Sobolev spaces concern integer numbers of derivatives. However,
the concept can be extended to fractional derivatives using Fourier transform.

Definition A.5. Assume 0 ≤ s < ∞ and u ∈ L2(Rd). Then u ∈ Hs(Rd) if (1 +
|ξ|s)û ∈ L2(Rd). The Sobolev norm is given by

‖u‖Hs = ‖(1 + | · |s)û‖L2 ,
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where û = F(u) is the Fourier transform. Note that for a positive integer s, the
above definition agrees with the definition given by the weak derivatives. For s < 0,
we define Hs(Rd) via duality. The resulting spaces are separable for all s ∈ R. If
O ⊂ Rd then H−1(O) is the dual space of H1

0 (O).
In these notes we often consider u ∈ L2(Td), Td being the d-dimensional unit

torus, found by identifying opposite faces of the unit cube [0, 1]d. In this periodic
case the Sobolev norm of the space H(Td) can be written as

‖u‖Hs =
∑
`∈Zd

(1 + |`|s)2û(`)2.

We define the Laplace operator ∆ = ∇ · ∇ as ∆u =
∑d

i=1
∂iu
∂x2
i

and note that the

eigenvalues of (I − ∆) with domain H2(Td) are simply 1 + 4π2|`|2, for ` ∈ Zd. The
fractional powers of (I + ∆) are defined as follows

(I −∆)γu =
∑
`∈Zd

(1 + |`|2γ)û(`)φ`,

where φk are the eigenvectors of −∆ in Td, that form the orthonormal basis of L2(Td).
We see that on the torus Hs = D((I + ∆)

s
2 ) and we have ‖u‖Hs = ‖(I + ∆)

s
2u‖L2 .

We also note that that (1−∆)−r : H t(Td)→ H t+r(Td) for all t, r ∈ R.
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