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Exercise 1 (Integral operators - submit)
For Ω = [0, 1]2 and X = L2(Ω), we consider the integral operator K : X → X with

(Ku)(y) :=

∫
Ω
k(x, y)u(x) dx,

for k ∈ L2(Ω× Ω). Show that

(a) K is linear with respect to u.,

(b) K is a bounded linear operator, i.e. ‖Ku‖X ≤ ‖K‖L(X ,X )‖u‖X . Give also an estimate for
‖K‖L(X ,X ),

(c) the adjoint K∗ is given via

(K∗v)(y) =

∫
Ω
k(y, x)v(x) dx.

Exercise 2 (Generalised inverse - submit)

(a) Let m,n ∈ N with m ≥ n ≥ 2. Compute the Moore-Penrose inverses of the following matrices:

(i) K = (1, 1, . . . , 1) ∈ R1×n

(ii) K = diag(a1, . . . , an) ∈ Rn×n with aj ∈ R for j ∈ {1, . . . , n}
(iii) K ∈ Rm×n with KTK = In

(b) Let a, b ∈ R with a < b. Compute the Moore-Penrose inverse of the operator K : L2([a, b])→
R with

Ku =

∫ b

a
u(x) dx.
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Exercise 3 (Heat equation)
The heat equation in Rn is defined as the partial differential equation

∂u

∂t
= ∆u, (1)

where ∆ denotes the Laplace operator ∆u =
∑n

k=1
∂2u
∂x2

k
. Let us consider the case for n = 2.

(a) Compute the solution u of the heat equation for the initial value u(x, 0) = f(x) with

f(x1, x2) =

m1−1∑
p=0

m2−1∑
q=0

cpq ϕpq(x1, x2), (2)

for x = (x1, x2)> ∈ Ω = [0, 1]2, coefficients cpq ∈ R and functions ϕpq ∈ C2(Ω) that are
eigenfunctions of the (negative) Laplace operator with eigenvalue λpq, i.e. −λpqϕpq = ∆ϕpq.

(b) Show that the functions ϕpq ∈ C∞(Ω) with

ϕpq(x1, x2) := vpwq cos (πqx1) cos (πpx2)

and p ∈ {0, . . . ,m1 − 1}, q ∈ {0, . . . ,m2 − 1}, are eigenfunctions of the (negative) Laplace
operator, and compute the corresponding eigenvalues λpq. Here, the weights vp and wq are
defined as

vp =


1√
m1

p = 0,√
2
m1

1 ≤ p ≤ m1 − 1,
and wq =


1√
m2

q = 0,√
2
m2

1 ≤ q ≤ m2 − 1.

(c) Use MATLAB and the results of Exercises 3(a) and (b) to compute the solution u of the
heat equation for f given as the discrete image 'trees.tif', evaluated at the points x1 =
(2i + 1)/(700), i ∈ {0, . . . , 349}, and x2 = (2j + 1)/(516), j ∈ {0, . . . , 257}. Visualise your
results for suitable choices of t.
Hint: Make use of the MATLAB commands imread('trees.tif'), dct2, and idct2.
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Exercise 4 (Inverse heat equation)
We now want to consider the inverse problem of (1). Instead of an initial value u(x, 0) we are given

the accumulated value f(x) at time t = T with T > 0, i.e. u(x, T ) = f(x).

(a) Compute the solution u of the heat equation for t ∈ [0, T ] and u(x, T ) = f(x), with f being
defined as in Exercise 3(a), equation (2).

(b) Show that for f ∈ L∞(Ω) the inverse problem of the heat equation is ill-posed in the sense of
Hadamard.

(c) Use Matlab and the results of Exercise 4(a) and 3(b) to compute the solution of the inverse
problem of the heat equation for f given as the discrete image 'moon.tif', evaluated at
the points x1 = (2i + 1)/(716), i ∈ {0, . . . , 357}, and x2 = (2j + 1)/(1074), j ∈ {0, . . . , 536}.
Visualise your results for suitable choices of t.

In addition, use these results to invert the heat equation. Generate a solution of the heat
equation for a time point T as in Exercise 3(c). Use this solution as the initial image for the
inversion at time T and compute the solution of the heat equation at time t = 0. Run the
inversion again with a tiny distortion (e.g. add Gaussian distributed noise via randn) of the
initial image.

Please turn over!
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Exercise 5 (Convolution)
Many forward problems are either modelled as convolutions or they are modelled as the composition
of several components one of which is a convolution. Therefore convolutions play an important role
in inverse problems. As in Exercise 1, let Ω = [0, 1]2 be the unit square and let X = L2(Ω). A
convolution is the special case of an integral operator K : X → X where the kernel has a simple
structure:

(Ku)(y) :=

∫
Ω
k(y − x)u(x) dx,

for k ∈ L2(Ω). It follows easily from Exercise 1 that K is linear and bounded.

(a) Although being shown in general in Exercise 1, give an explicit form of the adjoint of the
convolution.

(b) Let f = Ku. It follows from the convolution theorem that a convolution can be inverted by
means of the Fourier transform

u = (2π)−
n
2F−1

(
F(f)

F(k)

)
, (3)

where F is the Fourier transform and F−1 its inverse. Implement this formula in MATLAB to
deblur (deconvolve) the blurry tree image f generated by the script ex5b generate data.m,
which is provided online1. Note that the script also outputs F(k). Add some noise to the data
and show that the inversion formula is ill-conditioned.
Hint: Make use of the MATLAB commands fft2 and ifft2.

(c) Reformulate equation (3) so that the denominator is non-negative and give a stable approxi-
mation of this formula. Implement this formula in MATLAB and empirically show that it is
stable.
Hint: Make use of the MATLAB command conj.

1http://store.maths.cam.ac.uk/DAMTP/ll542/teaching/2018inverseproblems/ex5b_generate_data.zip
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