

Department of Applied Mathematics and Theoretical Physics Matthias J. Ehrhardt, Lukas F. Lang

Inverse Problems

Example sheet 1 Presentation **31 January 2018**, **2-3pm**, **MR15**.

Exercise 1 (Integral operators - submit)

For $\Omega = [0,1]^2$ and $\mathcal{X} = L^2(\Omega)$, we consider the integral operator $K : \mathcal{X} \to \mathcal{X}$ with

$$(Ku)(y) \coloneqq \int_{\Omega} k(x, y) u(x) \, dx,$$

for $k \in L^2(\Omega \times \Omega)$. Show that

- (a) K is linear with respect to u.,
- (b) K is a bounded linear operator, i.e. $||Ku||_{\mathcal{X}} \leq ||K||_{\mathcal{L}(\mathcal{X},\mathcal{X})} ||u||_{\mathcal{X}}$. Give also an estimate for $||K||_{\mathcal{L}(\mathcal{X},\mathcal{X})}$,
- (c) the adjoint K^* is given via

$$(K^*v)(y) = \int_{\Omega} k(y, x)v(x) \, dx$$

Exercise 2 (Generalised inverse - submit)

- (a) Let $m, n \in \mathbb{N}$ with $m \ge n \ge 2$. Compute the Moore-Penrose inverses of the following matrices:
 - (i) $K = (1, 1, \dots, 1) \in \mathbb{R}^{1 \times n}$
 - (ii) $K = \text{diag}(a_1, \dots, a_n) \in \mathbb{R}^{n \times n}$ with $a_j \in \mathbb{R}$ for $j \in \{1, \dots, n\}$
 - (iii) $K \in \mathbb{R}^{m \times n}$ with $K^T K = I_n$
- (b) Let $a, b \in \mathbb{R}$ with a < b. Compute the Moore-Penrose inverse of the operator $K : L^2([a, b]) \to \mathbb{R}$ with

$$Ku = \int_{a}^{b} u(x) \, dx.$$

Please turn over!

Exercise 3 (Heat equation)

The heat equation in \mathbb{R}^n is defined as the partial differential equation

$$\frac{\partial u}{\partial t} = \Delta u,\tag{1}$$

where Δ denotes the Laplace operator $\Delta u = \sum_{k=1}^{n} \frac{\partial^2 u}{\partial x_k^2}$. Let us consider the case for n = 2.

(a) Compute the solution u of the heat equation for the initial value u(x,0) = f(x) with

$$f(x_1, x_2) = \sum_{p=0}^{m_1-1} \sum_{q=0}^{m_2-1} c_{pq} \varphi_{pq}(x_1, x_2),$$
(2)

for $x = (x_1, x_2)^{\top} \in \Omega = [0, 1]^2$, coefficients $c_{pq} \in \mathbb{R}$ and functions $\varphi_{pq} \in C^2(\Omega)$ that are eigenfunctions of the (negative) Laplace operator with eigenvalue λ_{pq} , i.e. $-\lambda_{pq}\varphi_{pq} = \Delta\varphi_{pq}$.

(b) Show that the functions $\varphi_{pq} \in C^{\infty}(\Omega)$ with

$$\varphi_{pq}(x_1, x_2) \coloneqq v_p w_q \cos\left(\pi q x_1\right) \cos\left(\pi p x_2\right)$$

and $p \in \{0, \ldots, m_1 - 1\}$, $q \in \{0, \ldots, m_2 - 1\}$, are eigenfunctions of the (negative) Laplace operator, and compute the corresponding eigenvalues λ_{pq} . Here, the weights v_p and w_q are defined as

$$v_p = \begin{cases} \frac{1}{\sqrt{m_1}} & p = 0, \\ \sqrt{\frac{2}{m_1}} & 1 \le p \le m_1 - 1, \end{cases} \text{ and } w_q = \begin{cases} \frac{1}{\sqrt{m_2}} & q = 0, \\ \sqrt{\frac{2}{m_2}} & 1 \le q \le m_2 - 1 \end{cases}$$

(c) Use MATLAB and the results of Exercises 3(a) and (b) to compute the solution u of the heat equation for f given as the discrete image 'trees.tif', evaluated at the points $x_1 = (2i + 1)/(700)$, $i \in \{0, ..., 349\}$, and $x_2 = (2j + 1)/(516)$, $j \in \{0, ..., 257\}$. Visualise your results for suitable choices of t.

Hint: Make use of the MATLAB commands imread('trees.tif'), dct2, and idct2.

Please turn over!

Exercise 4 (Inverse heat equation)

We now want to consider the inverse problem of (1). Instead of an initial value u(x, 0) we are given the accumulated value f(x) at time t = T with T > 0, i.e. u(x, T) = f(x).

- (a) Compute the solution u of the heat equation for $t \in [0, T]$ and u(x, T) = f(x), with f being defined as in Exercise 3(a), equation (2).
- (b) Show that for $f \in L^{\infty}(\Omega)$ the inverse problem of the heat equation is ill-posed in the sense of Hadamard.
- (c) Use Matlab and the results of Exercise 4(a) and 3(b) to compute the solution of the inverse problem of the heat equation for f given as the discrete image 'moon.tif', evaluated at the points $x_1 = (2i + 1)/(716)$, $i \in \{0, ..., 357\}$, and $x_2 = (2j + 1)/(1074)$, $j \in \{0, ..., 536\}$. Visualise your results for suitable choices of t.

In addition, use these results to invert the heat equation. Generate a solution of the heat equation for a time point T as in Exercise 3(c). Use this solution as the initial image for the inversion at time T and compute the solution of the heat equation at time t = 0. Run the inversion again with a tiny distortion (e.g. add Gaussian distributed noise via randn) of the initial image.

Please turn over!

Exercise 5 (Convolution)

Many forward problems are either modelled as convolutions or they are modelled as the composition of several components one of which is a convolution. Therefore convolutions play an important role in inverse problems. As in Exercise 1, let $\Omega = [0,1]^2$ be the unit square and let $\mathcal{X} = L^2(\Omega)$. A convolution is the special case of an integral operator $K : \mathcal{X} \to \mathcal{X}$ where the kernel has a simple structure:

$$(Ku)(y) \coloneqq \int_{\Omega} k(y-x)u(x) \, dx,$$

for $k \in L^2(\Omega)$. It follows easily from Exercise 1 that K is linear and bounded.

- (a) Although being shown in general in Exercise 1, give an explicit form of the adjoint of the convolution.
- (b) Let f = Ku. It follows from the convolution theorem that a convolution can be inverted by means of the Fourier transform

$$u = (2\pi)^{-\frac{n}{2}} \mathcal{F}^{-1} \left(\frac{\mathcal{F}(f)}{\mathcal{F}(k)} \right), \tag{3}$$

where \mathcal{F} is the Fourier transform and \mathcal{F}^{-1} its inverse. Implement this formula in MATLAB to deblur (deconvolve) the blurry tree image f generated by the script ex5b_generate_data.m, which is provided online¹. Note that the script also outputs $\mathcal{F}(k)$. Add some noise to the data and show that the inversion formula is ill-conditioned.

Hint: Make use of the MATLAB commands fft2 and ifft2.

(c) Reformulate equation (3) so that the denominator is non-negative and give a stable approximation of this formula. Implement this formula in MATLAB and empirically show that it is stable.

Hint: Make use of the MATLAB command conj.

¹http://store.maths.cam.ac.uk/DAMTP/11542/teaching/2018inverseproblems/ex5b_generate_data.zip