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Exercise 1 (Integral operators - submit)
For Q = [0,1]? and X = L?(2), we consider the integral operator K : X — X with
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for k € L?(Q x Q). Show that
(a) K is linear with respect to u.,

(b) K is a bounded linear operator, i.e. |Kullx < [[K|/zxx)llullx. Give also an estimate for
HK||C(X,X)7

(c) the adjoint K* is given via
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Exercise 2 (Generalised inverse - submit)

(a) Let m,n € N with m > n > 2. Compute the Moore-Penrose inverses of the following matrices:
(i) K =(1,1,...,1) e Rx"
(ii) K =diag(ai,...,an) € R"*" with a; e R for j € {1,...,n}
(iii) K € R™" with KTK = I,

(b) Let a,b € R with a < b. Compute the Moore-Penrose inverse of the operator K : L?([a, b]) —
R with

Ku = /abu(ac) da.

Please turn over!



Exercise 3 (Heat equation)
The heat equation in R™ is defined as the partial differential equation
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where A denotes the Laplace operator Au = >}, %. Let us consider the case for n = 2.
k

(a)

Compute the solution u of the heat equation for the initial value u(z,0) = f(z) with

mi—1mo—1

f(@1,22) = Z Z Cpq(ppq(xlax2)> (2)

p=0 q=0

for x = (1,22)" € Q = [0,1]2, coefficients c,, € R and functions ¢,, € C%(Q) that are
eigenfunctions of the (negative) Laplace operator with eigenvalue A,q, i.e. —Apg0pg = Appq.

Show that the functions ¢,, € C*°(2) with
Opq(T1, T2) = vpwy cos (mqxy) cos (Tpr2)
and p € {0,...,m; — 1}, ¢ € {0,...,mg — 1}, are eigenfunctions of the (negative) Laplace

operator, and compute the corresponding eigenvalues \,,. Here, the weights v, and w, are
defined as

_ 1 _
N 0, vz 4 0,
vp = 5 and wy = 5
o l<p<mi—1, ms 1SgS<mz—1

Use MATLAB and the results of Exercises 3(a) and (b) to compute the solution u of the
heat equation for f given as the discrete image 'trees.tif', evaluated at the points z; =
(2 +1)/(700), i € {0,...,349}, and =2 = (25 + 1)/(516), j € {0,...,257}. Visualise your
results for suitable choices of ¢.

Hint: Make use of the MATLAB commands imread ('trees.tif'), dct2, and idct2.

Please turn over!



Exercise 4 (Inverse heat equation)
We now want to consider the inverse problem of (1). Instead of an initial value u(z, 0) we are given
the accumulated value f(x) at time t =T with 7' > 0, i.e. u(z,T) = f(x).

(a)

(b)

()

Compute the solution u of the heat equation for ¢ € [0,7] and u(z,T) = f(x), with f being
defined as in Exercise 3(a), equation (2).

Show that for f € L>°(Q) the inverse problem of the heat equation is ill-posed in the sense of
Hadamard.

Use Matlab and the results of Exercise 4(a) and 3(b) to compute the solution of the inverse
problem of the heat equation for f given as the discrete image 'moon.tif', evaluated at
the points x1 = (2 + 1)/(716), i € {0,...,357}, and zo = (25 + 1)/(1074), 5 € {0,...,536}.
Visualise your results for suitable choices of t.

In addition, use these results to invert the heat equation. Generate a solution of the heat
equation for a time point T as in Exercise 3(c). Use this solution as the initial image for the
inversion at time 7" and compute the solution of the heat equation at time ¢ = 0. Run the
inversion again with a tiny distortion (e.g. add Gaussian distributed noise via randn) of the
initial image.

Please turn over!



Exercise 5 (Convolution)

Many forward problems are either modelled as convolutions or they are modelled as the composition
of several components one of which is a convolution. Therefore convolutions play an important role
in inverse problems. As in Exercise 1, let Q = [0,1]? be the unit square and let X = L*(Q). A
convolution is the special case of an integral operator K : X — X where the kernel has a simple
structure:

(Ku)(y) = / k(y — 2)u(z) dz,

Q

for k € L?(Q2). It follows easily from Exercise 1 that K is linear and bounded.

(a)

(b)

Although being shown in general in Exercise 1, give an explicit form of the adjoint of the
convolution.

Let f = Ku. It follows from the convolution theorem that a convolution can be inverted by

means of the Fourier transform
o (F(f)
= (2 L QA
u=(2m) 2 F ( (k)>’ (3)

where F is the Fourier transform and F~! its inverse. Implement this formula in MATLAB to
deblur (deconvolve) the blurry tree image f generated by the script ex5b_generate data.m,
which is provided online!. Note that the script also outputs F(k). Add some noise to the data
and show that the inversion formula is ill-conditioned.

Hint: Make use of the MATLAB commands fft2 and ifft2.

Reformulate equation (3) so that the denominator is non-negative and give a stable approxi-
mation of this formula. Implement this formula in MATLAB and empirically show that it is
stable.

Hint: Make use of the MATLAB command con3i.

"http://store.maths.cam.ac.uk/DAMTP/11542/teaching/2018inverseproblems/ex5b_generate_data.zip
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