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Exercise 1 (Right-shift operator - submit)
The right-shift operator K : `2 → `2, {uj}j∈N 7→ {fj}j∈N, is given by

fj = (Ku)j :=

{
0 j = 1,

uj−1 j ≥ 2.

a) Compute the range R(K) and the kernel N (K) of K.

b) Prove or falsify: “The Moore-Penrose inverse of K continuous.” Argue only with the definition
of the operator and your results of a).

c) Compute the Moore-Penrose inverse of K. State the domain and the range of K†.

Exercise 2 (Inverse problem of differentiation - submit)
We consider the problem of differentiation, formulated as the inverse problem of finding u from
Ku = f with the integral operator K : L2([0, 1])→ L2([0, 1]) defined as

(Ku)(y) :=

∫ y

0
u(x) dx .

a) Let f be given by

f(x) :=

{
0 x < 1

2 ,

1 x > 1
2 .

Show that f ∈ R(K).

b) Let f be given as in a). Show that f ∈ R(K) \ R(K).
Hint: Consider the Picard criterion.

c) Prove or falsify: “The Moore-Penrose inverse of K continuous.”

Please turn over!



Exercise 3 (Differential quotient operator)
As in exercise 2, we consider the inverse problem of differentiation. As an approximation to K† we
are interested in studying the following differential quotient operator Rα : L2([0, 1]) → L2([0, 1])
with

(Rαf)(x) :=
1

α


f(x+ α)− f(x) x ∈

[
0, 1−α

2

[
f(x+ α

2 )− f(x− α
2 ) x ∈

[
1−α

2 , 1+α
2

[
f(x)− f(x− α) x ∈

[
1+α

2 , 1
]

for α ∈]0, 1/2[. Further, let H2([0, 1]) denote the Hilbert space

H2([0, 1]) =
{
f ∈ L2([0, 1]) | f ′′, f ′ ∈ L2([0, 1])

}
.

We consider the case of a noisy measurement, i.e. we observe f δ ∈ L2([0, 1]) for which

‖f − f δ‖L2([0,1]) ≤ δ

holds true, for the exact data f ∈ D(K†).

a) Assume that f ∈ H2([0, 1]) and ‖f ′′‖L2([0,1]) ≤ c. Verify the following estimate for the overall

L2-error between u† and Rαf
δ:

‖K†f −Rαf δ‖L2([0,1]) ≤
√

6

α
δ +

√
17

4
αc (1)

b) Show that Rα : L2([0, 1])→ L2([0, 1]) is a convergent regularisation method and determine a
corresponding a-priori parameter choice rule.

c) Discretise Rα by evaluating Rα at 2n discrete points xk := (k − 1)α2 , k ∈ {1, . . . , 2n}, for

α = 1
n−1 and n ∈ N \ {1}. This way we obtain a mapping R̃α : R2n → R2n. Implement a

Matlab function diffquot that takes a vector f̃ = (f(x1), f(x2), . . . , f(x2n))T ∈ R2n as an
input argument and returns the output R̃αf̃ .

d) Test your function for α = 2−k, k ∈ {2, 4, . . . , 8}, and

i. f(x) = cos(πx) for x ∈ [0, 1];

ii. f(x) =


0 x ∈

[
0, 1

3

[
,

x− 1
3 x ∈

[
1
3 ,

2
3

[
,

1
3 x ∈

[
2
3 , 1
]
,

and plot the maximum error ‖R̃αf̃ − (f ′(x1), f ′(x2), . . . , f ′(x2n))> ‖∞ in dependence of α.
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Exercise 4 (Deconvolution)
Let Ω := [0, 1]2, k ∈ L2(Ω) and k̃ be the periodic extension of k with

k̃(z) =

{
k(z) z ∈ Ω

k(mod(z, 1)) z ∈ R2 \ Ω
,

where mod(z, 1) = (mod(z1, 1),mod(z2, 1)) and consider the convolution operator K : L2(Ω) →
L2(Ω) with

(Ku)(x) :=

∫
Ω
k̃(x− y)u(y) dy .

a) Compute the singular value decomposition of K.
Hint: you can represent a function v ∈ L2(Ω) as v =

∑
m,n∈Z〈v, ϕm,n〉ϕm,n with ϕm,n(x1, x2) =

exp(−i2π(mx1 + nx2)).

b) Argue empirically with the singular values whether the inverse problem is ill-posed or not,
for the specific choices

i. k(x1, x2) = 1
h2
χ[− 1

2
, 1
2 ]

(
x1−1/2

h

)
χ[− 1

2
, 1
2 ]

(
x2−1/2

h

)
for 0 < h < 1.

ii. k(x1, x2) = ϕ(x1)ϕ(x2) with ϕ(x) :=

{
exp

(
− 1

1/4−(x−1/2)2

)
x ∈ ]0, 1[

0 else
.

Is the ill-posedness mild or severe?

c) Implement the deconvolution as in exercise 4 of example sheet 1. Regularise the problem using

i. Truncated singular value decomposition,

ii. Tikhonov regularisation.

How does the latter relate to exercise 4 c) on example sheet 1?

Please turn over!
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Exercise 5 (The Radon transform)

a) The Matlab command f = radon(u, phi); computes a discretised two-dimensional radon
transform of a discrete image u for a vector of angles phi. Use this command to set up a matrix
R that maps the column-vector representation of u into the column-vector representation of
the sinogram f for an arbitrary image u ∈ R64×64

≥0 and angles phi with phi(j) = j for
j ∈ {0, 2, . . . , 178}.

b) Create a noisy sinogram by applying R to a down-sampled version of the Shepp-Logan phan-
tom (built-in in Matlab; use the command phantom) and subsequently adding non-negative,
random numbers to the sinogram. Create multiple versions with different noise levels.

c) Compute a singular value decomposition of R via the Matlab command svd and visualise
selected singular vectors of your choice.

d) Create a ’pseudo’-inverse of R by constructing an appropriate matrix with inverted singular
values and apply this matrix to the column-vector representations of your noisy sinograms.
Regularise the Moore-Penrose inverse using

i. Truncated singular value decomposition;

ii. Tikhonov regularisation.
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