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Exercise 1 (Subdifferential)
Let U be a Banach space and J : U → R∞ be a functional. We define the subdifferential of J at
any v ∈ U as

∂J(v) :=
{
p ∈ U∗

∣∣∣ J(u) ≥ J(v) + 〈p, u− v〉 for all u ∈ U
}
.

Characterise the subdifferential for the

a) quadratic function: U = R, J(u) = 1
2u

2,

b) absolute value function: U = R, J(u) = |u|,

c) squared `2-norm: U = `2, J(u) = 1
2‖u‖

2
`2 := 1

2

∑∞
j=1 |uj |2,

d) `1-norm: U = `2,

J(u) = ‖u‖`1 :=

{∑∞
j=1 |uj | if u ∈ `1

∞ else
, and

e) characteristic function of the unit ball in R: U = R, J(u) = χC(u), C := {u ∈ R | |u| ≤ 1}.

Exercise 2 (Proximal operators)
Let U be a Hilbert space and J : U → R∞ be a l.s.c., coercive, convex and proper functional. The
proximal operator of J at any z ∈ U and step size α ≥ 0 is defined as proxαJ : U → U with

proxαJ (z) := arg min
u∈U

Φα,z(u)

and Φα,z(u) := 1
2‖u− z‖

2
U + αJ(u). It can be shown that ∂Φα,z(u) = u− z + α∂J(u).

a) Compute the proximal operators for the functionals defined in Exercise 1.

b) For a subset C ⊂ U of the Hilbert space U we consider the characteristic function

χC(u) :=

{
0 if u ∈ C
∞ else

.



i. For which subsets C is the proximal operator of χC well-defined?
Hint: You may use any standard results from linear / functional analysis.

ii. Compute the proximal operators for

• C = [0,∞) ⊂ R,

• C = {u ∈ Rn | ‖u‖2 ≤ 1}, and

• C = {u ∈ Rn | ‖u‖∞ ≤ 1}.

Exercise 3 (Bregman distances)
Let u, v ∈ U and p ∈ ∂J(v) be an element of the subdifferential. Then the Bregman distance of J
at u, v is defined as

Dp
J(u, v) := J(u)− J(v)− 〈p, u− v〉 .

a) In this exercise, we will investigate the properties of the Bregman distance for convex J .

i. Show that Bregman distances are non-negative, i.e. for all u, v ∈ U , p ∈ ∂J(v) it holds

Dp
J(u, v) ≥ 0 .

ii. Let J be absolutely one-homogeneous, i.e. for all λ ∈ R, u ∈ U we have J(λu) = |λ|J(u).
Show that p ∈ ∂J(v) if and only if J(v) = 〈p, v〉 and for all u ∈ U there is J(u) ≥ 〈p, u〉.
Thus,

Dp
J(u, v) = J(u)− 〈p, u〉 .

iii. Let J be absolutely one-homogeneous. Show that Bregman distances fulfill the triangle
inequality in the first argument, i.e. for all u, v, w ∈ U and p ∈ ∂J(w) there is

Dp
J(u+ v, w) ≤ Dp

J(u,w) +Dp
J(v, w) .

iv. Show that Bregman distances may not be symmetric, i.e. there exists a J and u, v ∈ U
with p ∈ ∂J(v), q ∈ ∂J(u) so that

Dp
J(u, v) 6= Dq

J(v, u) .

v. Show that a vanishing Bregman distance may not imply that the two arguments are
already the same, i.e. Dp

J(u, v) = 0 6⇒ u = v? What if J is strictly convex?

b) Compute the Bregman distances for the functions and functionals defined in Exercise 1.
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Exercise 4 (Variational regularisation)
We analyse some of the motivating examples for variational regularisation models which are of the
form Rαf := arg minu∈U Φα,f (u) with

Φα,f (u) :=
1

2
‖Ku− f‖2V + αJ(u)

and J : U → R∞ being a regularization functional.

a) On `2 we can define the regularization operators

R1
αf := arg min

u∈U

{
1

2
‖Ku− f‖2V + α‖u‖1

}
with ‖u‖1 :=∞ if u ∈ `2 \ `1 and

R2
αf := arg min

u∈U

{
1

2
‖Ku− f‖2V +

α

2
‖u‖22

}
which promote different properties in the regularized solution. For simplicity let K = I be
the identity operator. Show that

i. R1
αf is always sparse if α > 0, i.e. | supp(R1

αf)| <∞.

ii. R2
αf may not be sparse.

However, the price to pay is linearity. Show that

iii. R1
α is non-linear.

iv. R2
α is linear.

Hint: You may use the results of Exercise 2.

b) For Ω = [−1, 1], we consider total variation regularization that is naturally defined on the
space of functions of bounded variation BV(Ω) which provides regularity while still containing
discontinuous functions. In general one can prove that

H1,1(Ω) ⊂ BV(Ω) ⊂ L1(Ω) .

Show that these inclusions are strict. In particular, show that

i. BV(Ω) is larger than H1,1(Ω) as it contains discontinuous functions.

ii. BV(Ω) is smaller than L1(Ω) as it provides more regularity.

3



Exercise 5 (Denoising with basis representations)
In this exercise we are considering the task of denoising with the help of different basis represen-
tations. Let f ∈ Rn be a given image and f δ ∈ Rn a noisy observation of it, the task is to find f .
Obviously the task is ill-posed in the sense that there is not even a deterministic model that maps
f to f δ which we could invert. Instead we approach this problem by assuming that f is regular and
that f δ = f + η where η is an instance of a multi-variate Gaussian distribution with zero mean and
uniform standard deviation. Then this task can be modelled by minimising the cost functional

Φα,fδ(u) =
1

2
‖u− f δ‖22 + αJ(u) ,

where the first term penalises a mismatch to the data f δ and the second term J is designed such
that desirable solutions have a low value. It is reasonable to assume that for a regular f there exists
a basis {b1, . . . , bn} of Rn such that an energy

J(f) =
1

p
‖Bf‖pp =

1

p

n∑
j=1

|〈f, bj〉|p p ∈ {1, 2},

or

J(f) = ‖Bf‖0 :=
n∑
j=1

|〈f, bj〉|0 = |{j ∈ {1, . . . , n} | 〈f, bj〉 6= 0}|

of the basis representation Bf is small. Here B : Rn → Rn denotes the basis transformation

Bf =
n∑
j=1

〈f, bj〉bj .

a) Does Φα,fδ have minimisers and are they unique?

b) Compute explicit formulas that minimise Φα,fδ . Do all solutions depend on B?

c) Consider the Fourier basis and the wavelet bases 'haar' and 'db10'. Write a function in
MATLAB that computes the solution of 2.
Hint: You can use the MATLAB functions fft2 and wavedec2 for the transformation into
the Fourier and wavelet basis.

d) Load your favourite picture (if you do not have one, take 'cameraman.tif' which is built into
MATLAB) and generate several noisy data sets (e.g. with MATLAB’s randn) and denoise
them. Choose the regularisation parameter by

i. by the eye-ball-metric (select a few parameters and choose the solution you like) and

ii. by Morozov’s discrepancy principle.
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