

Please submit exercises 3 and 4.

Exercise 1 (Convexity of a sum)

Let $\alpha \geq 0$ and $E, F: \mathcal{U} \to \mathbb{R}_{\infty}$ be two convex functions. Prove the following two statements.

- a) The sum of the two functions $E + \alpha F \colon \mathcal{U} \to \mathbb{R}_{\infty}$ is convex
- b) If, in addition $\alpha > 0$ and F is strictly convex, then $E + \alpha F$ is strictly convex.

Exercise 2 (Convexity of data term)

Let \mathcal{U}, \mathcal{V} be normed spaces. Furthermore, let $K \in \mathcal{L}(\mathcal{U}, \mathcal{V}), f \in \mathcal{V}$ and $D: \mathcal{V} \to \mathbb{R}_{\infty}$ be defined as $D(u) := \frac{1}{2} \|Ku - f\|_{\mathcal{V}}^2$. Prove the following two statements.

- a) Show that D is convex.
- b) Show that D may not be strictly convex in general, even if K is injective.
- c) Let \mathcal{V} be an inner product space and $\lambda \in (0, 1), u, v \in \mathcal{U}$. Show that

$$D(\lambda u + (1-\lambda)v) = \lambda D(u) + (1-\lambda)D(v) - \frac{\lambda(1-\lambda)}{2} \|K(u-v)\|_{\mathcal{V}}^2.$$

Exercise 3 (Convex conjugate)

Let \mathcal{U} be a Banach space and let $E: \mathcal{U} \to \mathbb{R}_{\infty}$ be proper, lower semi-continuous and convex. Then the *Fenchel conjugate* or *convex conjugate* of E is defined to be the mapping $E^*: \mathcal{U}^* \to \mathbb{R}_{\infty}$ with

$$E^*(v) := \sup_{u \in \mathcal{U}} \left\{ \langle v, u \rangle - E(u) \right\}.$$

- a) Compute the convex conjugates of the following functionals.
 - i. $E \colon \mathbb{R} \to \mathbb{R}, E(u) = \frac{1}{p} |u|^p$ and $1 < p, q < \infty$ with $\frac{1}{p} + \frac{1}{q} = 1$.
 - ii. $E(u) = \frac{1}{2} ||u||^2$ for a Hilbert space \mathcal{U} .
 - iii. $F(u) = E(\alpha u a) + \langle b, x \rangle + \beta$ for $\alpha \neq 0, \beta \in \mathbb{R}, a \in \mathcal{U}, b \in \mathcal{U}^*$.
- b) Let \mathcal{U} be a Hilbert space and $E: \mathcal{U} \to \mathbb{R}_{\infty}$ a proper, lower semi-continuous and convex functional. Show that

$$p \in \partial E(u) \quad \Leftrightarrow \quad u \in \partial E^*(p)$$

for all $u, p \in \mathcal{U}$.

Hint: You may exploit the fact that under the stated assumptions $E = E^{**}$ holds true.

Exercise 4 (Differentiation)

Let \mathcal{U} be a Banach space and $E: \mathcal{U} \to \mathbb{R}$ be a convex functional that is Fréchet-differentiable in $u \in \mathcal{U}$. Then

$$\partial E(u) = \{E'(u)\}.$$

Exercise 5 (Bregman iteration)

Let $f \in \mathcal{V}, K \in \mathcal{L}(\mathcal{U}, \mathcal{V})$ and $J : \mathcal{U} \to \mathbb{R}_{\infty}$ be a functional. The iteration

$$u^{k+1} \in \underset{u \in \mathcal{U}}{\arg\min} \left\{ \frac{1}{2} \| Ku - f \|_{\mathcal{V}}^{2} + D_{J}^{p^{k}}(u, u^{k}) \right\}$$

$$p^{k+1} = p^{k} + K^{*}(f - Ku^{k+1})$$
(1)

with $u^0 = p^0 = 0$ and $p^k \in \partial J(u^k)$ for all $k \in \mathbb{N}$ is known as *Bregman iteration*. In this exercise we will analyse properties of the Bregman iteration which can be seen as an iterative regularisation method.

- a) Show that the Bregman iterates monotonically decrease the data fidelity, i.e. they satisfy $\|Ku^{k+1} f\|_{\mathcal{V}} \leq \|Ku^k f\|_{\mathcal{V}}$.
- b) If \mathcal{V} is a Hilbert space, show that the Bregman iteration can also be written as

$$u^{k+1} \in \underset{u \in \mathcal{U}}{\arg\min} \left\{ \frac{1}{2} \| Ku - f^k \|_{\mathcal{V}}^2 + J(u) \right\}$$
$$f^{k+1} = f^k + f - Ku^{k+1}$$

for $u^0 = 0, f^0 = f$.

- c) Show that if there exists a $k_* \in \mathbb{N}$ such that u^{k_*} satisfies $Ku^{k_*} = f$, $u^k = u^{k_*}$ for all $k \ge k_*$ and u^{k_*} is a *J*-minimising solution of all elements in the set $\{u \in \mathcal{U} \mid Ku = f\}$.
- d) Consider now the noisy case where u^k are the iterates for noisy data, i.e. f^{δ} replaces f in the definition of the iteration and $||f f^{\delta}|| \leq \delta$ for some $f \in \mathcal{R}(K)$. Let $u^* \in \mathcal{U}$ such that $Ku^* = f$. Show that u^k progressively approximates u^* in a Bregman sense, i.e.

$$D_J^{p^{k+1}}(u^{\dagger}, u^{k+1}) \le D_J^{p^k}(u^{\dagger}, u^k),$$

as long as $||Ku^{k+1} - f^{\delta}||_{\mathcal{V}} \ge \delta$. Thus the Bregman iteration with Morozov's discrepancy principle as a stopping criterion is a useful strategy to find *J*-minimising solutions.

Note that this also implies $D_J^{p^{k+1}}(u^{\dagger}, u^{k+1}) \leq D_J^{p^k}(u^{\dagger}, u^k)$ for all $k \in \mathbb{N}$ in case of $\delta = 0$.

e) Consider again the noise-free case, i.e. $\delta = 0$. Show the estimate

$$D_J^{p^k}(u^{\dagger}, u^k) \le \frac{\|w\|_{\mathcal{V}}^2}{2k}$$

for $k \geq 1$ on the speed of the convergence under a source condition $p^{\dagger} := K^* w \in \partial J(u^{\dagger})$ for some $u^{\dagger} \in \mathcal{U}$ with $Ku^{\dagger} = f$.