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Organisation

I Lectures take place Mondays, Wednesdays, and Fridays, 11am–12pm, MR14.

I Course materials (lecture notes, example sheets, etc.) will be provided at

http://www.damtp.cam.ac.uk/research/cia/teaching/201718lentinvprob.html

I Four example sheets and example classes (details to follow).

I Revision class will be held on 30 May 2018, 2–3pm, MR14.

I Written exam will be held on 11 June 2018, 1.30–4.30pm, location TBA.

I For further questions email either m.j.ehrhardt@damtp.cam.ac.uk or ll542@cam.ac.uk.
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Example classes

I Example sheets will be discussed/presented on the following dates:

I 31 January 2018, 2–3pm, MR15.

I 14 February 2018, 2–3pm, MR15.

I 28 January 2018, 2–3pm, MR15.

I 14 March 2018, 2–3pm, MR15.

I Hand in solutions to at least two questions which are specified in advance:

I See course website.

I Made available one week before deadline.

I Hand in two days before respective example class (i.e. lecture on Monday 11am).
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What are inverse problems?

I Engl, Hanke, Neubauer (1996):
"Inverse problems are concerned with determining causes for a desired or an
observed effect."

I Direct problem:

Cause (Parameter, Unkown, etc.) ⇒ Effect (Data, Measurements, etc.)

I Inverse problem:

Cause (Parameter, Unkown, etc.) ⇐ Effect (Data, Measurements, etc.)
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What are inverse problems?

I Inverse problems ≈ ill-posed/ill-conditioned problems.

I Well-posedness in the sense of Hadamard (1923):

I Existence of a solution (for all admissible data),

I Uniqueness of a solution,

I Continuous dependence of the solution on the data.

I If any of these conditions is violated the problem is called ill-posed.
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What are inverse problems?

I Given a (physical/mathematical) model K : U → V,

I Given measurements f ∈ V,

I Recover u ∈ U such that
Ku = f.

I Main difficulty: K−1 does not exist or is not continuous.

I Applications in:

I physics, biology, medicine,

I engineering, finance, machine learning,

I imaging (e.g. computed tomography), computer vision, image processing,

I and many more...
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Examples: deblurring

Observed image f .

K−1

Original image u.

f(y) = (Ku)(y) :=
∫
R2
k(y − x)u(x) dx
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Examples: computerised tomography (CT)

CT scanner, Wikipedia, CC BY 2.0, by daveynin. CT scan, Wikipedia, public domain.

8 of 15



Examples: computerised tomography (CT)

Measured data f .

K−1

Original image u.

f(θ, s) = (Ku)(θ, s) :=
∫
x·θ=s

u(x) dx

See videos at http://www.siltanen-research.net/IPexamples/xray_tomography.
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Examples: positron emission tomography (PET)

1Images by courtesy of Matthias J. Ehrhardt.
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Hyperspectral imaging/remote sensing

Data f : hyperspectral & panchromatic image.

data non-blind blind

data non-blind blinddata non-blind blinddata non-blind blind

Reconstruction u and reconstructed kernel.

1Bungert et al., Blind Image Fusion for Hyperspectral Imaging with the Directional Total Variation, arXiv:1710.05705, (2017)
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Examples: electrical impedance tomography (EIT)

EIT Setup Reconstruction.

∇ · (σ∇u) = 0 in Ω ⊂ Rn

u|∂Ω = f

I u : Ω→ R electric potential,
I σ : Ω→ R conductivity,
I f voltage applied at the boundary ∂Ω,

Calderón’s problem: recover σ from boundary measurements Λσ(f) = σ ∂u
∂n

∣∣
∂Ω

.

1Images taken from Wikipedia, CC BY 3.0, S. Heinrich, H. Schiffmann, A. Frerichs, A. Klockgether-Radke, and I. Frerichs.
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Examples: motion estimation

Observed image f(0, ·). Observed image f(1, ·). Estimated velocities v.

I Given image sequence f : [0, 1]× Ω ⊂ R2 → R,

I Recover velocity field v : Ω→ R2 that satisfies optical flow equation

∂tf +∇f · v = 0 in [0, 1]× Ω.

1Images taken from http://vision.middlebury.edu/flow/data/.
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Examples: machine learning

Images from MNIST dataset.1

I Given training samples {xi, yi}ni=1 with
I feature vectors xi ∈ Rd,

I class labels yi ∈ {0, 1, . . . , 9}.

I Find classifier f : Rd → {0, 1, . . . , 9} minimising empirical risk

L(f) =
1
n

∑
i

c(f(xi), yi).

I c : {0, 1, . . . , 9}2 → [0,+∞) is a cost/loss function.
1http://yann.lecun.com/exdb/mnist/
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Lecture outline

1. Introduction

1.1 Examples of ill-posed inverse problems

2. Inverse problems

2.1 Generalised solutions and inverse

2.2 Compact operators

2.3 Singular value decomposition

3. Regularisation

3.1 Parameter-choice strategies

3.2 Spectral regularisation methods

3.3 Tikhonov regularisation

4. Variational regularisation

5. Numerical algorithms
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