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Chapter 1

Introduction to Inverse Problems

Inverse problems are usually concerned with the interpretation of indirect measurements.
They assume that there is a connection between the quantities of interest and measured
data that is referred to as the forward model or the forward operator. The forward operator
typically models the physics of data acquisition.

Inverse problems arise in many different fields of science and technology, such as medical
imaging, geoscience, climate studies, astronomy, microscopy, non-destructive testing and
many others. Mathematically, they are formulated as operator equations

Au = f, (1.1)

where A : U → V is the forward operator acting between some spaces U and V, typically
Hilbert or Banach spaces, f are the measured data and u is the quantity we want to
reconstruct from the data.

Hadamard [16] gave a definition that was supposed to describe the class of mathematical
problems that could be reasonably solved in practice. Applied to problem (1.1), it reads
as follows.

Definition 1.0.1. The problem (1.1) is called well-posed if

• it has a solution ∀f ∈ V,

• the solution is unique,

• the solution depends continuously on the data, i.e. small errors in the data f result
in small errors in the reconstruction.

If any of these properties are not satisfied, the problem is called ill-posed.

Some of the notions in this definition, like the notions of “small”, need to be made
precise, for example, using norms in particular spaces. This choice will affect the well- or
ill-posedness of the problem. It turns out, however, that under reasonable (and realistic)
choices of norms many inverse problems are ill-posed. Their practical significance lead to
the development of the so-called regularisation theory that provides a mathematical basis
for dealing with ill-posed problems.

In this course we will develop this theory for linear inverse problems (i.e. those,w here
the forward operator A is a linear bounded operator). This class includes such important
applications as computer tomography, magnetic resonance imaging and image deblurring
in microscopy or astronomy. There are, however, many other important applications, such
as seismic imaging, where the forward operator in non-linear (e.g., parameter identification
problems for PDEs).
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6 1.1. EXAMPLES OF INVERSE PROBLEMS

1.1 Examples of Inverse Problems

1.1.1 Differentiation

Consider the problems of evaluation the derivative of a function f ∈ L2[0, π/2]. Let

Df = f ′,

where D : L2[0, π/2]→ L2[0, π/2].

Proposition 1.1.1. The operator D is unbounded from L2[0, π/2]→ L2[0, π/2].

Proof. Take a sequence fn(x) = sin(nx), n = 1, . . . ,∞. Clearly, fn ∈ L2[0, π/2] for all
n and ‖fn‖ = 1. However, Dfn(x) = n cos(nx) and ‖(‖Dfn) = n → ∞ as n → ∞.
Therefore, Dfn /∈ L2[0, π/2] and D is unbounded.

This shows that differentiation is ill-posed from L2 to L2. It does not mean that it
can not be well-posed in other spaces. For instance, it is well-posed from H1 (the Sobolev
space of L2 functions whose derivatives are also L2) to L2. Indeed, ∀u ∈ H1 we get

‖Df‖L2 = ‖f ′‖L2 6 ‖f‖H1 = ‖f‖L2 + ‖f ′‖L2 .

However, since in practice we typically deal with functions corrupted by nonsmooth
noise, the L2 setting is practice-relevant, while the H1 setting is not.

Differentiation can be written as an inverse problem for an integral equation. For
instance, the derivative u of some function f ∈ L2[0, 1] with f(0) = 0 satisfies

f(x) =

∫ x

0
u(t) dt,

which can be written as an operator equation Au = f with (A·)(x) :=
∫ x

0 ·(t) dt.

1.1.2 Image Deblurring and Denoising

Whenever a camera (or a microscope, or a telescope) records an image, what is recorded
is an integral transform of the image:

f(x) = (Au)(x) :=

∫
K(x, ξ)u(ξ) dξ, (1.2)

Here u(ξ) is the ‘true’ image and K(x, ξ) is the so-called point-spread function (PSF). The
PSF models the optics of the camera. If a bright source localised at ξ = ξ0 is recorded
(i.e., u(ξ) can be well approximated by the Dirac delta δ(ξ − ξ0)), the result has the form
f(x) = K(x, ξ0). This function is typically not localised, i.e. the point source gets spread
out, hence the name of the PSF. For non-localised images, the effect is that the image
gets blurred. The task of restoring a sharp image from its blurred version is called image
deblurring and plays a crucial role in the processing of microscopy and astronomy images.
Apart from blur, recorded images often suffer from measurement noise; therefore, the task
of image deblurring is often complemented with that of denoising.

A special case of problem (1.2) is when the PSF is spatially invariant and takes the
form

K(x, ξ) = K(x− ξ).
In this case, the integral transform (1.2) is a convolution and the reconstruction problem
is referred to as deconvolution.
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Theorem 1.1.2 (e.g., [12, Thm. XI.6.6]). Let A : L2(Ω) → L2(Ω) be as defined in (1.2)
with K(·, ·) ∈ L2(Ω × Ω) (in this case A is called a Hilbert-Schmidt operator). Then A is
compact.

Remark 1.1.3. As we shall see later in the course, inversion of a compact operator is
ill-posed and, therefore, deblurring (and its special case, deconvolution) is an ill-posed
problem.

Remark 1.1.4. In some cases one considers the task of denoising separately, i.e. one
considers the problem (1.1) with A be the identity operator. This is not really an inverse
problem, but it is usually solved using the same methods as problem (1.1).

1.1.3 Matrix Inversion

In finite dimensions, the inverse problem (1.1) becomes a linear system. Linear systems are
formally well-posed in the sense that the error in the solution is bounded by some constant
times the error in the right-hand side, however, this constant depends on the condition
number of the matrix A and can get arbitrary large for matrices with large condition
numbers. In this case, we speak of ill-conditioned problems.

Consider the problem (1.1) with u ∈ Rn and f ∈ Rn being n-dimensional vectors with
real entries and A ∈ Rn×n being a matrix with real entries. Assume further A to be
symmetric and positive definite.

We know from the spectral theory of symmetric matrices that there exist eigenvalues
λ1 > λ2 > . . . > λn > 0 and corresponding (orthonormal) eigenvectors aj ∈ Rn for
j ∈ {1, . . . , n} such that A can be written as

A =
n∑
j=1

λjaja
>
j . (1.3)

It is well known from numerical linear algebra that the condition number κ = λ1/λn is a
measure of how stable (1.1) can be solved, which we will illustrate what follows.

We assume that we measure fδ instead of f , with ‖f − fδ‖2 6 δ‖A‖ = δλ1, where
‖ · ‖2 denotes the Euclidean norm of Rn and ‖A‖ the operator norm of A (which equals
the largest eigenvalue of A). Then, if we further denote with uδ the solution of Auδ = fδ,
the difference between uδ and the solution u to (1.1) is

u− uδ =
n∑
j=1

λ−1
j aja

>
j (f − fδ).

Therefore, we can estimate

‖u− uδ‖22 =

n∑
j=1

λ−2
j ‖aj‖22︸ ︷︷ ︸

=1

|a>j (f − fδ)|2 6 λ−2
n ‖f − fδ‖22,

due to the orthonormality of eigenvectors, the Cauchy-Schwarz inequality, and λn 6 λj .
Thus, taking square roots on both sides yields the estimate

‖u− uδ‖2 6 λ−1
n ‖f − fδ‖2 6 κδ.

Hence, we observe that in the worst case an error δ in the data y is amplified by the con-
dition number κ of the matrix A. A matrix with large κ is therefore called ill-conditioned.
We want to demonstrate the effect of this error amplification with a small example.
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Example 1.1.5. Let us consider the matrix

A =

(
1 1
1 1001

1000

)
,

which has eigenvalues λj = 1 + 1
2000 ±

√
1 + 1

20002
, condition number κ ≈ 4002 � 1, and

operator norm ‖A‖ ≈ 2. For given data f = (1, 1)> the solution to Au = f is u = (1, 0)>.
Now let us instead consider perturbed data fδ = (99/100, 101/100)>. The solution uδ

to Auδ = fδ is then uδ = (−19.01, 20)>.
Let us reflect on the amplification of the measurement error. By our initial assumption

we find that δ = ‖f − fδ‖/‖A‖ ≈ ‖(0.01,−0.01)>‖/2 =
√

2/200. Moreover, the norm of
the error in the reconstruction is then ‖u− uδ‖ = ‖(20.01, 20)>‖ ≈ 20

√
2. As a result, the

amplification due to the perturbation is ‖u− uδ‖/δ ≈ 4000 ≈ κ.

1.1.4 Tomography

In almost any tomography application the underlying inverse problem is either the inversion
of the Radon transform1 or of the X-ray transform.

For u ∈ C∞0 (Rn), s ∈ R, and θ ∈ Sn−1 the Radon transform R : C∞0 (Rn)→ C∞(Sn−1×
R) can be defined as the integral operator

f(θ, s) = (Ru)(θ, s) =

∫
x·θ=s

u(x) dx (1.4)

=

∫
θ⊥
u(sθ + y) dy,

which, for n = 2, coincides with the X-ray transform,

f(θ, s) = (Pu)(θ, s) =

∫
R
u(sθ + tθ⊥) dt,

for θ ∈ Sn−1 and θ⊥ being the vector orthogonal to θ. Hence, the X-ray transform (and
therefore also the Radon transform in two dimensions) integrates the function u over lines
in Rn, see Fig. 1.12.

Example 1.1.6. Let n = 2. Then Sn−1 is simply the unit sphere S1 = {θ ∈ R2 | ‖θ‖ = 1}.
We can choose for instance θ = (cos(ϕ), sin(ϕ))>, for ϕ ∈ [0, 2π), and parametrise the
Radon transform in terms of ϕ and s, i.e.

f(ϕ, s) = (Ru)(ϕ, s) =

∫
R
u(s cos(ϕ)− t sin(ϕ), s sin(ϕ) + t cos(ϕ)) dt. (1.5)

Note that—with respect to the origin of the reference coordinate system—ϕ determines
the angle of the line along one wants to integrate, while s is the offset from that line from
the centre of the coordinate system.

Remark 1.1.7 ([20, p. 38]). It can be shown that the Radon transform is linear and
continuous, i.e. R ∈ L(L2(B), L2(Z)), and even compact.

1Named after the Austrian mathematician Johann Karl August Radon (16 December 1887 – 25 May
1956).

2Figure adapted from Wikipedia https://commons.wikimedia.org/w/index.php?curid=3001440, by
Begemotv2718, CC BY-SA 3.0.

https://commons.wikimedia.org/w/index.php?curid=3001440
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θ

s

u(x)

t

tθ⊥

Figure 1.1: Visualization of the Radon transform in two dimensions (which coincides with the
X-ray transform). The function u is integrated over the ray parametrized by θ and s.3

X-ray Computed Tomography (CT)

In X-ray computed tomography (CT), the unknown quantity u represents a spatially vary-
ing density that is exposed to X-radiation from different angles, and that absorbs the
radiation according to its material or biological properties.

The basic modelling assumption for the intensity decay of an X-ray beam is that within
a small distance ∆t it is proportional to the intensity itself, the density, and the distance,
i.e.

I(x+ (t+ ∆t)θ)− I(x+ tθ)

∆t
= −I(x+ tθ)u(x+ tθ),

for x ∈ θ⊥. By taking the limit ∆t→ 0 we end up with the ordinary differential equation

d

dt
I(x+ tθ) = −I(x+ tθ)u(x+ tθ), (1.6)

Let R > 0 be the radius of the domain of interest centred at the origin. Then, we integrate
(1.6) from t = −

√
R2 − ‖x‖22, the position of the emitter, to t =

√
R2 − ‖x‖22, the position

of the detector, and obtain∫ √R2−‖x‖22

−
√
R2−‖x‖22

d
dtI(x+ tθ)

I(x+ tθ)
dt = −

∫ √R2−‖x‖22

−
√
R2−‖x‖22

u(x+ tθ) dt .

Note that, due to d/dx log(f(x)) = f ′(x)/f(x), the left hand side in the above equation
simplifies to∫ √R2−‖x‖22

−
√
R2−‖x‖22

d
dtI(x+ tθ)

I(x+ tθ)
dt = log

(
I

(
x+

√
R2 − ‖x‖22θ

))
− log

(
I

(
x−

√
R2 − ‖x‖22θ

))
.

As we know the radiation intensity at both the emitter and the detector, we therefore
know f(x, θ) := log(I(x−θ

√
R2 − ‖x‖22))− log(I(x+θ

√
R2 − ‖x‖22)) and we can write the

estimation of the unknown density u as the inverse problem of the X-ray transform (1.5)
(if we further assume that u can be continuously extended to zero outside of the circle of
radius R).

Example 1.1.8 ([20, p. 38]). Let B := {x ∈ R2 | ‖x‖ 6 1} denote the unit ball in R2 and
Z := [−1, 1]× [0, π). Moreover, let θ(ϕ) := (cos(ϕ), sin(ϕ))>, θ⊥(ϕ) := (sin(ϕ),− cos(ϕ))>
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be the unit vectors pointing in the direction described by ϕ and orthogonal to it. Then,
the Radon transform/X-ray transform is defined as the operator R : L2(B)→ L2(Z) with

(Ru)(s, ϕ) :=

∫ √1−s2

−
√

1−s2
u
(
sθ(ϕ) + tθ⊥(ϕ)

)
dt.

It can be shown that the Radon transform is linear and continuous, i.e. R ∈ L(L2(B), L2(Z)),
and even compact, i.e. R ∈ K(L2(B), L2(Z)).

Positron Emission Tomography (PET)

In Positron Emission Tomography (PET) a so-called radioactive tracer (a positron emitting
radionuclide on a biologically active molecule) is injected into a patient (or subject). The
emitted positrons of the tracer will interact with the subjects’ electrons after travelling a
short distance (usually less than 1mm), causing the annihilation of both the positron and
the electron, which results in a pair of gamma rays moving into (approximately) opposite
directions. This pair of photons is detected by the scanner detectors, and an intensity
f(ϕ, s) can be associated with the number of annihilations detected at the detector pair
that forms the line with offset s and angle ϕ (with respect to the reference coordinate
system). Thus, we can consider the problem of recovering the unknown tracer density u
as a solution of the inverse problem (1.4) again. The line of integration is determined by
the position of the detector pairs and the geometry of the scanner.



Chapter 2

Generalised Solutions

Functional analysis is the basis of the theory that we will cover in this course. We cannot
recall all basic concepts of functional analysis and instead refer to popular textbooks that
deal with this subject, e.g., [8, 25]. Nevertheless, we shall recall a few important definitions
that will be used in this lecture.

We will focus on inverse problems with bounded linear operators A, i.e. A ∈ L(U ,V)
with

‖A‖L(U ,V) := sup
u∈U\{0}

‖Au‖V
‖u‖U

= sup
‖u‖U61

‖Au‖V <∞.

For A : U → V we further want to denote by

(a) D(A) := U the domain,

(b) N (A) := {u ∈ U | Au = 0} the kernel,

(c) R(A) := {f ∈ V | f = Au, u ∈ U} the range

of A.
We say that A is continuous at u ∈ U if for all ε > 0 there exists δ > 0 with

‖Au−Av‖V 6 ε for all v ∈ U with ‖u− v‖U 6 δ.

For linearK it can be shown that continuity is equivalent to boundedness, i.e. the existence
of a constant C > 0 such that

‖Au‖V 6 C‖u‖U
for all u ∈ U . Note that this constant C actually equals the operator norm ‖A‖L(U ,V).

In this Chapter we only consider A ∈ L(U ,V) with U and V being Hilbert spaces. From
functional calculus we know that every Hilbert space U is equipped with a scalar product,
which we are going to denote by 〈·, ·〉U (or simply 〈·, ·〉, whenever the space is clear from the
context). In analogy to the transpose of a matrix, this scalar product structure together
with the theorem of Fréchet-Riesz [25, Section 2.10, Theorem 2.E] allows us to define the
(unique) adjoint operator of A, denoted with A∗, as follows:

〈Au, v〉V = 〈u,A∗v〉U , for all u ∈ U , v ∈ V.

In addition to that, a scalar product can be used to define orthogonality. Two elements
u, v ∈ U are said to be orthogonal if 〈u, v〉 = 0. For a subset X ⊂ U the orthogonal
complement of X in U is defined as

X⊥ := {u ∈ U | 〈u, v〉U = 0 for all v ∈ X} .

11
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One can show that X⊥ is a closed subspace and that U⊥ = {0}. Moreover, we have that
X ⊂ (X⊥)⊥. If X is a closed subspace then we even have X = (X⊥)⊥. In this case there
exists the orthogonal decomposition

U = X ⊕ X⊥,

which means that every element u ∈ U can uniquely be represented as

u = x+ x⊥ with x ∈ X and x⊥ ∈ X⊥,

see for instance [25, Section 2.9, Corollary 1].
The mapping u 7→ x defines a linear operator PX ∈ L(U ,U) that is called orthogonal

projection on X .

Lemma 2.0.1 (cf. [19, Section 5.16]). Let X ⊂ U be a closed subspace. The orthogonal
projection onto X satisfies the following conditions:

(a) PX is self-adjoint, i.e. P ∗X = PX ,

(b) ‖PX ‖L(U ,U) = 1 (if X 6= {0}),

(c) I − PX = PX⊥ ,

(d) ‖u− PXu‖U 6 ‖u− v‖U for all v ∈ X ,

(e) x = PXu if and only if x ∈ X and u− x ∈ X⊥.

Remark 2.0.2. Note that for a non-closed subspace X we only have (X⊥)⊥ = X . For
A ∈ L(U ,V) we therefore have

• R(A)⊥ = N (A∗) and thus N (A∗)⊥ = R(A),

• R(A∗)⊥ = N (A) and thus N (A)⊥ = R(A∗).

Hence, we can deduce the following orthogonal decompositions

U = N (A)⊕R(A∗) and V = N (A∗)⊕R(A).

We will also need the follwoing relationship between the ranges of A∗ and A∗A.

Lemma 2.0.3. Let A ∈ L(U ,V). Then R(A∗A) = R(A∗).

Proof. It is clear that R(A∗A) = R(A∗|R(A)) ⊆ R(A∗), so we are left to prove that
R(A∗) ⊆ R(A∗A).

Let u ∈ R(A∗) and let ε > 0. Then, there exists f ∈ N (A∗)⊥ = R(A) with ‖A∗f −
u‖U < ε/2 (recall the orthogonal decomposition in Remark 2.0.2). As N (A∗)⊥ = R(A),
there exists x ∈ U such that ‖Ax− f‖V < ε/(2‖A‖L(U ,V)). Putting these together we have

‖A∗Ax− u‖U 6 ‖A∗Ax−A∗f‖U + ‖A∗f − u‖U
6 ‖A∗‖L(U ,V)‖Ax− f‖V︸ ︷︷ ︸

<ε/2

+ ‖A∗f − u‖U︸ ︷︷ ︸
<ε/2

< ε

which shows that u ∈ R(A∗A) and thus also R(A∗) ⊆ R(A∗A).
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2.1 Generalised Inverses

Recall the inverse problem
Au = f, (2.1)

where A : U → V is a linear bounded operator and U and V are Hilbert spaces.

Definition 2.1.1 (Minimal-norm solutions). An element u ∈ U is called

• a least-squares solution of (2.1) if

‖Au− f‖V = inf{‖Av − f‖V , v ∈ U};

• a minimal-norm solution of (2.1) (and is denoted by u†) if

‖u†‖U 6 ‖v‖U for all least squares solutions v.

Remark 2.1.2. Since R(A) is not closed in general (it is never closed for a compact
operator, unless the range is finite-dimensional), a least-squares solution may not exist. If
it exists, then the minimal-norm solution is unique (it is the orthogonal projection of the
zero element onto an affine subspace defined by ‖Au− f‖V = min{‖Av − f‖V , v ∈ U}).

In numerical linear algebra it is a well known fact that the normal equations can be
used to compute least-squares solutions. The same holds true in the infinite-dimensional
case.

Theorem 2.1.3. Let f ∈ V and A ∈ L(U ,V). Then, the following three assertions are
equivalent.

(a) u ∈ U satisfies Au = PR(A)
f .

(b) u is a least squares solution of the inverse problem (2.1).

(c) u solves the normal equation
A∗Au = A∗f. (2.2)

Remark 2.1.4. The name normal equation is derived from the fact that for any solution
u its residual Au− f is orthogonal (normal) to R(A). This can be readily seen, as we have
for any v ∈ U that

0 = 〈v,A∗(Au− f)〉U = 〈Av,Au− f〉V
which shows Au− f ∈ R(A)⊥.

Proof of Theorem 2.1.3. For (a) ⇒ (b): Let u ∈ U such that Au = PR(A)
f and let v ∈ U

be arbitrary. With the basic properties of the orthogonal projection, Lemma 2.0.1 (d), we
have

‖Au− f‖2V = ‖(I − PR(A)
)f‖2V 6 inf

g∈R(A)
‖g − f‖2V 6 inf

v∈U
‖Av − f‖2V ,

which shows that u is a least squares solution. Here, the last inequality follows from
R(A) ⊂ R(A).

For (b)⇒ (c): Let u ∈ U be a least squares solution and let v ∈ U an arbitrary element.
We define the quadratic polynomial F : R→ R,

F (λ) := ‖A(u+ λv)− f‖2V = λ2‖Av‖2V − 2λ 〈Av, f −Au〉V + ‖f −Au‖2V .
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A necessary condition for u ∈ U to be a least squares solution is F ′(0) = 0, which leads to
〈v,A∗(f −Au)〉U = 0. As v was arbitrary, it follows that the normal equation (2.2) must
hold.

For (c) ⇒ (a): From the normal equation it follows that A∗(f − Au) = 0, which

is equivalent to f − Au ∈ R(A)⊥, see Remark 2.1.4. Since R(A)⊥ =
(
R(A)

)⊥
and

Au ∈ R(A) ⊂ R(A), the assertion follows from Lemma 2.0.1 (e):

Au = PR(A)
f ⇔ Au ∈ R(A) and f −Au ∈

(
R(A)

)⊥
.

Lemma 2.1.5. Let f ∈ V and let L be the set of least squares solutions to the inverse
problem (2.1). Then, L is non-empty if and only if f ∈ R(A)⊕R(A)⊥.

Proof. Let u ∈ L. It is easy to see that f = Au+ (f −Au) ∈ R(A)⊕R(A)⊥ as the normal
equations are equivalent to f −Au ∈ R(A)⊥.

Consider now f ∈ R(A)⊕R(A)⊥. Then there exists u ∈ U and g ∈ R(A)⊥ =
(
R(A)

)⊥
such that f = Au+g and thus PR(A)

f = PR(A)
Au+PR(A)

g = Au and the assertion follows
from Theorem 2.1.3 (a).

Remark 2.1.6. If the dimensions of U and R(A) are finite, then R(A) is closed, i.e.
R(A) = R(A). Thus, in a finite dimensional setting, there always exists a least squares
solution.

Theorem 2.1.7. Let f ∈ R(A) ⊕ R(A)⊥. Then there exists a unique minimal norm
solution u† to the inverse problem (2.1) and all least squares solutions are given by {u†}+
N (A).

Proof. From Lemma 2.1.5 we know that there exists a least squares solution. As noted
in Remark 2.1.2, in this case the minimal-norm solution is unique. Let ϕ be an arbitrary
least-squares solution. Using Theorem 2.1.3 we get

A(ϕ− u†) = Aϕ−Au† = PR(A)
f − PR(A)

f = 0, (2.3)

which shows that ϕ− u† ∈ N (A), hence the assertion.

If a least-squares solution exists for a given f ∈ V then the minimal-norm solution can
be computed (at least in theory) using the Moore-Pensrose generalised inverse.

Definition 2.1.8. Let A ∈ L(U ,V) and let

Ã := A|N (A)⊥ : N (A)⊥ → R(A)

denote the restriction of A to N (A)⊥. The Moore-Penrose inverse A† is defined as the
unique linear extension of Ã−1 to

D(A†) = R(A)⊕R(A)⊥

with
N (A†) = R(A)⊥.



CHAPTER 2. GENERALISED SOLUTIONS 15

Remark 2.1.9. Due to the restriction to N (A)⊥ and R(A) we have that Ã is injective
and surjective. Hence, Ã−1 exists and is linear and – as a consequence – A† is well-defined
on R(A).

Moreover, due to the orthogonal decomposition D(A†) = R(A) ⊕ R(A)⊥, there exist
for arbitrary f ∈ D(A†) elements f1 ∈ R(A) and f2 ∈ R(A)⊥ with f = f1 + f2. Therefore,
we have

A†f = A†f1 +A†f2 = A†f1 = Ã−1f1 = Ã−1PR(A)
f , (2.4)

where we used that f2 ∈ R(A)⊥ = N (A†). Thus, A† is well-defined on the entire domain
D(A†).

Remark 2.1.10. As orthogonal complements are always closed we get that

D(A†) = R(A)⊕R(A)⊥ = V,

and hence, D(A†) is dense in V. Thus, if R(A) is closed it follows that D(A†) = V and on
the other hand, D(A†) = V implies R(A) is closed. We note that for ill-posed problems
R(A) is usually not closed; for instance, if A is compact then R(A) is closed if and only if
it is finite-dimensional [1, Ex.1 Section 7.1].

If A is bijective we have that A† = A−1. We also highlight that the extension A† is not
necessarily continuous.

Theorem 2.1.11 ([14, Prop. 2.4]). Let A ∈ L(U ,V). Then A† is continuous, i.e. A† ∈
L(D(A†),U), if and only if R(A) is closed.

Example 2.1.12. To illustrate the definition of the Moore-Penrose inverse we consider a
simple example in finite dimensions. Let the linear operator A : R3 → R2 be given by

Ax =

(
2 0 0
0 0 0

)x1

x2

x3

 =

(
2x1

0

)
.

It is easy to see that R(A) = {f ∈ R2 | f2 = 0} and N (A) = {x ∈ R3 | x1 = 0}. Thus,
N (A)⊥ = {x ∈ R3 | x2, x3 = 0}. Therefore, Ã : N (A)⊥ → R(A), given by x 7→ (2x1, 0)>,
is bijective and its inverse Ã−1 : R(A)→ N (A)⊥ is given by f 7→ (f1/2, 0, 0)>.

To get the Moore-Penrose inverse A†, we need to extend Ã−1 to R(A)⊕R(A)⊥ in such
a way that A†f = 0 for all f ∈ R(A)⊥ = {f ∈ R2 | f1 = 0}. It is easy to see that the
Moore-Penrose inverse A† : R2 → R3 is given by the following expression

A†f =

1/2 0
0 0
0 0

(f1

f2

)
=

f1/2
0
0

 .

Let us consider data f̃ = (8, 1)> 6∈ R(A). Then, A†f̃ = A†(8, 1)> = (4, 0, 0)>.

It can be shown that A† can be characterised by the Moore-Penrose equations.

Lemma 2.1.13 ([14, Prop. 2.3]). The Moore-Penrose inverse A† satisfies R(A†) = N (A)⊥

and the Moore-Penrose equations

(a) AA†A = A,
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(b) A†AA† = A†,

(c) A†A = I − PN (A),

(d) AA† = PR(A)

∣∣∣
D(A†)

,

where PN (A) and PR(A)
denote the orthogonal projections on N (A) and R(A), respectively.

The next theorem shows that minimal-norm solutions can indeed be computed using
the Moore-Penrose generalised inverse.

Theorem 2.1.14. For each f ∈ D(A†), the minimal norm solution u† to the inverse
problem (2.1) is given via

u† = A†f.

Proof. As f ∈ D(A†), we know from Theorem 2.1.7 that the minimal norm solution u†

exists and is unique. With u† ∈ N (A)⊥, Lemma 2.1.13, and Theorem 2.1.3 we conclude
that

u† = (I − PN (A))u
† = A†Au† = A†PR(A)

f = A†AA†f = A†f.

As a consequence of Theorem 2.1.14 and Theorem 2.1.3, we find that the minimum
norm solution u† of Au = f is a minimum norm solution of the normal equation (2.2), i.e.

u† = (A∗A)†A∗f.

Thus, in order to compute u† we can equivalently consider finding the minimum norm
solution of the normal equation.

2.2 Compact Operators

Definition 2.2.1. Let A ∈ L(U ,V). Then A is said to be compact if for any bounded set
B ⊂ U the closure of its image A(B) is compact in V. We denote the space of compact
operators by K(U ,V).

Remark 2.2.2. We can equivalently define an operator A to be compact if the image of
a bounded sequence {uj}j∈N ⊂ U contains a convergent subsequence {Aujk}k∈N ⊂ V.

Compact operators are very common in inverse problems. In fact, almost all (linear)
inverse problems involve the inversion of a compact operator. As the following result shows,
compactness of the forward operator is a major source if ill-posedness.

Theorem 2.2.3. Let A ∈ K(U ,V) with an infinite dimensional range. Then, the Moore-
Penrose inverse of A is discontinuous.

Proof. As the range R(A) is of infinite dimension, we can conclude that U and N (A)⊥

are also infinite dimensional. We can therefore find a sequence {uj}j∈N with uj ∈ N (A)⊥,
‖uj‖U = 1 and 〈uj , uk〉U = 0 for j 6= k. Since A is a compact operator the sequence
fj = Auj has a convergent subsequence, hence, for all δ > 0 we can find j, k such that
‖fj − fk‖V < δ. However, we also obtain

‖A†fj −A†fk‖2U = ‖A†Auj −A†Auk‖2U
= ‖uj − uk‖2U = ‖uj‖2U − 2 〈uj , uk〉U + ‖uk‖2U = 2,

which shows thatA† is discontinuous. Here, the second identity follows from Lemma 2.1.13 (c)
and the fact that uj , uk ∈ N (A)⊥.
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To have a better understanding of when we have f ∈ R(A)\R(A) for compact operators
A, we want to consider the singular value decomposition of compact operators.

Singular value decomposition of compact operators

Theorem 2.2.4 ([17, p. 225, Theorem 9.16]). Let U be a Hilbert space and A ∈ K(U ,U) be
self-adjoint. Then there exists an orthonormal basis {xj}j∈N ⊂ U of R(A) and a sequence
of eigenvalues {λj}j∈N ⊂ R with |λ1| > |λ2| > . . . > 0 such that for all u ∈ U we have

Au =
∞∑
j=1

λj 〈u, xj〉U xj .

The sequence {λj}j∈N is either finite or we have λj → 0.

Remark 2.2.5. The notation in the theorem above only makes sense if the sequence
{λj}j∈N is infinite. For the case that there are only finitely many λj the sum has to be
interpreted as a finite sum.

Moreover, as the eigenvalues are sorted by absolute value |λj |, we have ‖A‖L(U ,U) = |λ1|.

If A is not self-adjoint, the decomposition in Theorem 2.2.4 does not hold any more.
Instead, we can consider the so-called singular value decomposition of a compact linear
operator.

Theorem 2.2.6. Let A ∈ K(U ,V). Then there exists

(a) a not-necessarily infinite null sequence {σj}j∈N with σ1 > σ2 > . . . > 0,

(b) an orthonormal basis {xj}j∈N ⊂ U of N (A)⊥,

(c) an orthonormal basis {yj}j∈N ⊂ V of R(A) with

Axj = σjyj , A∗yj = σjxj , for all j ∈ N. (2.5)

Moreover, for all u ∈ U we have the representation

Au =
∞∑
j=1

σj 〈u, xj〉 yj . (2.6)

The sequence {(σj , xj , yj)} is called singular system or singular value decomposition
(SVD) of A.

For the adjoint operator A∗ we have the representation

A∗f =

∞∑
j=1

σj 〈f, yj〉 xj ∀f ∈ V. (2.7)

Proof. Consider B = A∗A and C = AA∗. Both B and C are compact, self-adjoint and
even positive semidefinite, so that by Theorem 2.2.4 both admit a spectral representation
and, by positive semidefiniteness, their eigenvalues are positive, i.e.

Bu =

∞∑
j=1

σ2
j 〈u, xj〉xj ∀u ∈ U , Cf =

∞∑
j=1

σ̃2
j 〈f, yj〉 yj ∀f ∈ V,
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where {xj} and {yj} are orthonormal bases of R(A∗A) and R(AA∗), respectively, and
σj , σ̃j > 0 for all j. As pointed out in Remark 2.0.2 and Lemma 2.0.3, we have R(A∗A) =

R(A∗) = N (A)⊥ and, therefore, {xj} is also a basis of N (A)⊥. Analogously, {yj} is also
a basis of R(A).

Since σ̃2
j is an eigenvalue of C for the eigenvector yj , we get that

σ̃2
jA
∗yj = A∗(σ̃2

j yj) = A∗Cyj = A∗AA∗yj = BA∗yj

and therefore σ̃2
j is also an eigenvalue of B (for the eigenvector A∗yj). Hence, with no

loss of generality we can assume that σ̃j = σj . We further observe that
{
A∗yj
σj

}
form an

orthonormal basis of R(A∗) = N (A)⊥, since〈
A∗yj
σj

,
A∗yk
σk

〉
=

1

σjσk
〈yj , AA∗yk〉 =

1

σjσk

〈
yj , σ

2
kyk
〉

=

{
1, if j = k,

0, otherwise.

Therefore, we can choose {xj} to be

xj = σ−1
j A∗yj

and we get that
A∗yj = σjxj .

We also observe that
Axj = σ−1

j AA∗yj = σ−1
j σ2

j yj = σjyj ,

which proves (2.5).
Extending the basis {xj} of R(A∗) to a basis of U , we expand an arbitrary u ∈ U as

u =
∑∞

j=1 〈u, xj〉xj and, since U = N (A) ⊕ R(A∗) (Remark 2.0.2), obtain the singular
value decompositions (2.6) – (2.7)

Au =
∞∑
j=1

σj 〈u, xj〉 yj ∀u ∈ U , A∗f =
∞∑
j=1

σj 〈f, yj〉xj ∀f ∈ V.

We can now derive a representation of the Moore-Penrose inverse in terms of the singular
value decomposition.

Theorem 2.2.7. Let A ∈ K(U ,V) with singular system {(σj , xj , yj)}j∈N and f ∈ D(A†).
Then the Moore-Penrose inverse of A can be written as

A†f =
∞∑
j=1

σ−1
j 〈f, yj〉xj . (2.8)

Proof. We know that, since f ∈ D(A†), u† = A†f solves the normal equations

A∗Au† = A∗f.

From Theorem 2.2.6 we know that

A∗Au† =

∞∑
j=1

σ2
j

〈
u†, xj

〉
xj , A∗f =

∞∑
j=1

σj 〈f, yj〉xj , (2.9)
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which implies that 〈
u†, xj

〉
= σ−1

j 〈f, yj〉

Expanding u† ∈ N (A)⊥ in the basis {xj}, we get

u† =
∞∑
j=1

〈
u†, xj

〉
xj =

∞∑
j=1

σ−1
j 〈f, yj〉xj = A†f.

The representation (2.8) makes it clear again that the Moore-Penrose inverse is un-
bounded. Indeed, taking the sequence yj we note that ‖A†yj‖ = σ−1

j → ∞, although
‖yj‖ = 1.

The unboundedness of the Moore-Penrose inverse is also reflected in the fact that the
series in (2.8) may not converge for a given f . The convergence criterion for the series is
called the Picard criterion.

Definition 2.2.8. We say that the data f satisfy the Picard criterion, if

‖A†f‖2 =
∞∑
j=1

|〈f, yj〉|2
σ2
j

<∞. (2.10)

Remark 2.2.9. The Picard criterion is a condition on the decay of the coefficients 〈f, yj〉.
As the singular values σj decay to zero as j → ∞, the Picard criterion is only met if the
coefficients 〈f, yj〉 decay sufficiently fast.

In case the singular system is given by the Fourier basis, then the coefficients 〈f, yj〉
are just the Fourier coefficients of f . Therefore, the Picard criterion is a condition on the
decay of the Fourier coefficients which is equivalent to the smoothness of f .

It turns our that the Picard criterion also can be used to characterise elements in the
range of the forward operator.

Theorem 2.2.10. Let A ∈ K(U ,V) with singular system {(σj , xj , yj)}j∈N, and f ∈ R(A).
Then f ∈ R(A) if and only if the Picard criterion

∞∑
j=1

∣∣〈f, yj〉V ∣∣2
σ2
j

<∞ (2.11)

is met.

Proof. Let f ∈ R(A), thus there is a u ∈ U such that Au = f . It is easy to see that we
have

〈f, yj〉V = 〈Au, yj〉V = 〈u,A∗yj〉U = σj 〈u, xj〉U
and therefore

∞∑
j=1

σ−2
j | 〈f, yj〉V |2 =

∞∑
j=1

| 〈u, xj〉U |2 6 ‖u‖2U <∞ .

Now let the Picard criterion (2.11) hold and define u :=
∑∞

j=1 σ
−1
j 〈f, yj〉V xj ∈ U . It

is well-defined by the Picard criterion (2.11) and we conclude

Au =
∞∑
j=1

σ−1
j 〈f, yj〉V Axj =

∞∑
j=1

〈f, yj〉V yj = PR(A)
f = f ,

which shows f ∈ R(A).
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Although all ill-posed problems are not easy to solve, some are worse than others,
depending on how fast the singular values decay to zero.

Definition 2.2.11. We say that an ill-posed inverse problem (2.1) is mildly ill-posed if
the singular values decay at most with polynomial speed, i.e. there exist γ,C > 0 such that
σj > Cj−γ for all j. We call the ill-posed inverse problem severely ill-posed if its singular
values decay faster than with polynomial speed, i.e. for all γ,C > 0 one has that σj 6 Cj−γ

for j sufficiently large.

Example 2.2.12. Let us consider the example of differentiation again, as introduced in
Section 1.1.1. The forward operator A : L2([0, 1])→ L2([0, 1]) in this problem is given by

(Au)(t) =

∫ t

0
u(s) ds =

∫ 1

0
K(s, t)u(s) ds ,

with K : [0, 1]× [0, 1]→ R defined as

K(s, t) :=

{
1 s 6 t

0 else
.

This is a special case of the integral operators as introduced in Section 1.1.2. Since the
kernel K is square integrable, A is compact.

The adjoint operator A∗ is given via

(A∗f)(s) =

∫ 1

0
K(t, s)f(t) dt =

∫ 1

s
v(t) dt . (2.12)

Now we want to compute the eigenvalues and eigenvectors of A∗A, i.e. we look for σ2

and x ∈ L2([0, 1]) with

σ2x(s) = (A∗Ax)(s) =

∫ 1

s

∫ t

0
x(r) dr dt .

We immediately observe x(1) = 0 and further

σ2x′(s) =
d

ds

∫ 1

s

∫ t

0
x(r) dr dt = −

∫ s

0
x(r) dr ,

from which we conclude x′(0) = 0. Taking the derivative another time thus yields the
ordinary differential equation

σ2x′′(s) + x(s) = 0 ,

for which solutions are of the form

x(s) = c1 sin(σ−1s) + c2 cos(σ−1s) ,

with some constants c1, c2. In order to satisfy the boundary conditions x(1) = c1 sin(σ−1)+
c2 cos(σ−1) = 0 and x′(0) = c1 = 0, we chose c1 = 0 and σ such that cos(σ−1) = 0. Hence,
we have

σj =
2

(2j − 1)π
for j ∈ N ,
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and by choosing c2 =
√

2 we obtain the following normalised representation of xj :

xj(s) =
√

2 cos

((
j − 1

2

)
πs

)
.

According to (2.5) we further obtain

yj(s) = σ−1
j (Axj)(s) =

(
j − 1

2

)
π

∫ s

0

√
2 cos

((
j − 1

2

)
πt

)
dt =

√
2 sin

((
j − 1

2

)
πs

)
,

and hence, for f ∈ L2([0, 1]) the Picard criterion becomes

2
∞∑
j=1

σ−2
j

(∫ 1

0
f(s) sin

(
σ−1
j s
)
ds

)2

<∞ .

Expanding f in the basis {yj}

f(t) =
∞∑
j=1

(∫ 1

0
f(s) sin

(
σ−1
j s
)
ds

)
sin
(
σ−1
j t
)

and formally differentiating the series, we obtain

f ′(t) =
∞∑
j=1

σ−1
j

(∫ 1

0
f(s) sin

(
σ−1
j s
)
ds

)
cos
(
σ−1
j t
)
.

Therefore, the Picard criterion is nothing but the condition for the legitimacy of such differ-
entiation, i.e. for the differentiability of the Fourier series by differentiating its components,
and it holds if f is differentiable and f ′ ∈ L2([0, 1]).

From the decay of the singular values we see that this inverse problem is mildly ill-posed.
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Chapter 3

Regularisation Theory

3.1 What is Regularisation?

We have seen that the Moore-Penrose inverse A† is unbounded. Therefore, given noisy
data fδ such that ‖fδ − f‖ 6 δ, we cannot expect convergence A†fδ → A†f as δ → 0. To
achieve convergence, we replace A† with a family of well-posed (bounded) operators Rα
with α = α(δ, fδ) and require that Rα(δ,fδ)(fδ)→ A†f for all f ∈ D(A†) and all fδ ∈ V s.t.
‖f − fδ‖V 6 δ as δ → 0.

Definition 3.1.1. Let A ∈ L(U ,V) be a bounded operator. A family {Rα}α>0 of continuous
operators is called regularisation (or regularisation operator) of A† if

Rαf → A†f = u†

for all f ∈ D(A†) as α→ 0.

Definition 3.1.2. If the family {Rα}α>0 consists of linear operators, then one speaks of
linear regularisation of A†.

Hence, a regularisation is a pointwise approximation of the Moore–Penrose inverse with
continuous operators. As in the interesting cases the Moore–Penrose inverse may not be
continuous we cannot expect that the norm of Rα stays bounded as α → 0. This is
confirmed by the following results.

Theorem 3.1.3 (Banach–Steinhaus e.g. [8, p. 78], [26, p. 173]). Let U ,V be Hilbert spaces
and {Aj}j∈N ⊂ L(U ,V) a family of point-wise bounded operators, i.e. for all u ∈ U there
exists a constant C(u) > 0 with supj∈N ‖Aju‖V 6 C(u). Then

sup
j∈N
‖Aj‖L(U ,V) <∞ .

Corollary 3.1.4 ([26, p. 174]). Let U ,V be Hilbert spaces and {Aj}j∈N ⊂ L(U ,V). Then
the following two conditions are equivalent:

(a) There exists A ∈ L(U ,V) such that

Au = lim
j→∞

Aju for all u ∈ U .

(b) There is a dense subset X ⊂ U such that limj→∞Aju exists for all u ∈ X and

sup
j∈N
‖Aj‖L(U ,V) <∞ .

23
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Theorem 3.1.5. Let U , V be Hilbert spaces, A ∈ L(U ,V) and {Rα}α>0 a linear regulari-
sation as defined in Definition 3.1.2. If A† is not continuous, {Rα}α>0 cannot be uniformly
bounded. In particular this implies the existence of an element f ∈ V with ‖Rαf‖ → ∞ for
α→ 0.

Proof. We prove the theorem by contradiction and assume that {Rα}α>0 is uniformly
bounded. Hence, there exists a constant C with ‖Rα‖L(U ,V) 6 C for all α > 0. Due to
Definition 3.1.1, we have Rα → A† on D(A†). Since D(A†) is dense in V, by Corollary
3.1.4 we get that A† ∈ L(U ,V), which is a contradiction to the assumption that A† is not
continuous.

It remains to show the existence of an element f ∈ V with ‖Rαf‖V → ∞ for α → 0.
If such an element would not exist, we could conclude {Rα}α>0 ⊂ L(U ,V). However,
Theorem 3.1.3 then implies that {Rα}α>0 has to be uniformly bounded, which contradicts
the first part of the proof.

With the additional assumption that ‖ARα‖L(U ,V) is bounded, we can even show that
Rαf diverges for all f 6∈ D(A†).

Theorem 3.1.6. Let A ∈ L(U ,V) and {Rα}α>0 be a linear regularisation of A†. If

sup
α>0
‖ARα‖L(U ,V) <∞ ,

then ‖ARαf‖U →∞ for f 6∈ D(A†).

Proof. Define uα := Rαf for f 6∈ D(A†). Assume that there exists a sequence αk → 0
such that ‖uαk‖U is uniformly bounded. Since bounded sets in a Hilbert space are weakly
pre-compact, there exists a weakly convergent subsequence uαkl with some limit u ∈ U , cf.
[15, Section 2.2, Theorem 2.1]. As continuous linear operators are also weakly continuous,
we further have Auαkl ⇀ Au. On the other hand, for any f ∈ D(A†) we have that
ARαf → AA†f = PR(A)

f . By Corollary 3.1.4 we then conclude that this also holds
for any f ∈ V, i.e. also for f 6∈ D(A†). Therefore, we get that Au = PR(A)

f . Since

V = R(A) ⊕ R(A)⊥, we get that f ∈ R(A) ⊕ R(A)⊥ = D(A†) in contradiction to the
assumption f /∈ D(A†).

3.2 Parameter Choice Rules

We have stated in the beginning of this chapter that we would like to obtain a regularisation
that would guarantee that Rα(fδ)→ A†f for all f ∈ D(A†) and all fδ ∈ V s.t. ‖f−fδ‖V 6 δ
as δ → 0. This means that the parameter α, referred to as the regularisation parameter,
needs to be chosen as a function of δ (and perhaps also fδ) so that α → 0 as δ → 0 (i.e.
we need to regularise less as the data get more precise).

This can be illustrated with the following observation. For linear regularisations we
can split the total error between the regularised solution of the noisy problem Rαfδ and
the minimal norm solution of the noise-free problem u† = A†f as

‖Rαfδ − u†‖U 6 ‖Rαfδ −Rαf‖U + ‖Rαf − u†‖U
6 δ‖Rα‖L(V,U)︸ ︷︷ ︸

data error

+ ‖Rαf −A†f‖U︸ ︷︷ ︸
approximation error

. (3.1)
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Figure 3.1: The total error between a regularised solution and the minimal norm solution decom-
poses into the data error and the approximation error. These two errors have opposing trends: For
a small regularisation parameter α the error in the data gets amplified through the ill-posedness
of the problem and for large α the operator Rα is a poor approximation of the Moore–Penrose
inverse.

The first term of (3.1) is the data error ; this term unfortunately does not stay bounded
for α → 0, which we can conclude from Theorem 3.1.5. The second term, known as the
approximation error, however vanishes for α→ 0, due to the pointwise convergence of Rα
to A†. Hence it becomes evident from (3.1) that a good choice of α depends on δ, and
needs to be chosen such that the approximation error becomes as small as possible, whilst
the data error is being kept at bay. See Figure 3.1 for an illustration.

Parameter choice rules are defined as follows.

Definition 3.2.1. A function α : R>0×V → R>0, (δ, fδ) 7→ α(δ, fδ) is called a parameter
choice rule. We distinguish between

(a) a priori parameter choice rules, which depend on δ only;

(b) a posteriori parameter choice rules, which depend on both δ and fδ;

(c) heuristic parameter choice rules, which depend on fδ only.

Now we are ready to define a regularisation that ensures the convergence Rα(δ,fδ)(fδ)→
A†f as δ → 0.

Definition 3.2.2. Let {Rα}α>0 be a regularisation of A†. If for all f ∈ D(A†) there exists
a parameter choice rule α : R>0 × V → R>0 such that

lim
δ→0

sup
fδ : ‖f−fδ‖V6δ

‖Rαfδ −A†f‖U = 0 (3.2)

and

lim
δ→0

sup
fδ : ‖f−fδ‖V6δ

α(δ, fδ) = 0 (3.3)

then the pair (Rα, α) is called a convergent regularisation.
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3.2.1 A priori parameter choice rules

First of all we want to discuss a priori parameter choice rules in more detail. Historically,
they were the first to be studied. First let us show that for every regularisation an a priori
parameter choice rule, and thus, a convergent regularisation, exists.

Theorem 3.2.3. Let {Rα}α>0 be a regularisation of A†, for A ∈ L(U ,V). Then there exists
an a priori parameter choice rule α = α(δ) such that (Rα, α) is a convergent regularisation.

Proof. Let f ∈ D(A†) be arbitrary but fixed. Since Rαf → A†f , we can find a monotone
increasing function γ : R>0 → R>0 with limε→0 γ(ε) = 0 such that for every ε > 0 we have∥∥∥Rγ(ε)f −A†f

∥∥∥
U
6
ε

2
.

As the operator Rγ(ε) is continuous for fixed ε, there exists ρ(ε) > 0 with∥∥Rγ(ε)g −Rγ(ε)f
∥∥
U 6

ε

2
for all g ∈ V with ‖g − f‖V 6 ρ(ε) .

Without loss of generality we can assume ρ to be a continuous, strictly monotone increasing
function with limε→0 ρ(ε) = 0. Then, due to the inverse function theorem there exists a
strictly monotone and continuous function ρ−1 on the range of ρ with limδ→0 ρ

−1(δ) = 0.
We continuously extend ρ−1 on R>0 and define our a priori strategy as

α : R>0 → R>0, α(δ) = γ(ρ−1(δ)) .

Then limδ→0 α(δ) = 0 follows. Furthermore, for all ε > 0 there exists δ := ρ(ε), such that
with α(δ) = γ(ε)∥∥∥Rα(δ)fδ −A†f

∥∥∥
U
6
∥∥Rγ(ε)fδ −Rγ(ε)f

∥∥
U +

∥∥∥Rγ(ε)f −A†f
∥∥∥
U
6 ε

follows for all fδ ∈ V with ‖f − fδ‖V 6 δ. Thus, (Rα, α) is a convergent regularisation
method.

For linear regularisations, an important characterisation of a priori parameter choice
strategies that lead to convergent regularisation methods is as follows.

Theorem 3.2.4. Let {Rα}α>0 be a linear regularisation, and α : R>0 → R>0 an a priori
parameter choice rule. Then (Rα, α) is a convergent regularisation method if and only if

(a) limδ→0 α(δ) = 0

(b) limδ→0 δ‖Rα(δ)‖L(V,U) = 0

Proof. ⇐: Let condition a) and b) be fulfilled. From (3.1) we then observe that for any
f ∈ D(A†) and fδ ∈ V s.t. ‖f − fδ‖V 6 δ∥∥∥Rα(δ)fδ −A†f

∥∥∥
U
→ 0 for δ → 0.

Hence, (Rα, α) is a convergent regularisation method.
⇒: Now let (Rα, α) be a convergent regularisation method. We prove that conditions 1
and 2 have to follow from this by showing that violation of either one of them leads to
a contradiction to (Rα, α) being a convergent regularisation method. If condition a) is
violated, (3.3) is violated and hence, (Rα, α) is not a convergent regularisation method. If
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condition a) is fulfilled but condition b) is violated, there exists a null sequence {δk}k∈N
with δk‖Rα(δk)‖L(V,U) > C > 0, and hence, we can find a sequence {gk}k∈N ⊂ V with
‖gk‖V = 1 and δk‖Rα(δk)gk‖U > C̃ for some C̃. Let f ∈ D(A†) be arbitrary and define
fk := f + δkgk. Then we have on the one hand ‖f − fk‖V 6 δk, but on the other hand the
norm of

Rα(δk)fk −A†f = Rα(δk)f −A†f + δkRα(δk)gk

cannot converge to zero, as the second term δkRα(δk)gk is bounded from below by a positive
constant C by construction. Hence, (3.2) is violated for fδ = f + gk and thus, (Rα, α) is
not a convergent regularisation method.

3.2.2 A posteriori parameter choice rules

It is easy to convince oneself that if an a priori parameter choice rule α = α(δ) defines a
convergence regularisation then α̃ = α(Cδ) with any C > 0 also defines a convergent reg-
ularisation (for linear regularisations, it is a trivial corollary of Theorem 3.2.4). Therefore,
from the asymptotic point of view, all these regularisations are equivalent. For a fixed error
level δ, however, they can produce very different solutions. Since in practice we have to
deal with a typically small, but fixed δ, we would like to have a parameter choice rule that
is sensitive to this value. To achieve this, we need to use more information than merely
the error level δ to choose the parameter α and we will obtain this information from the
approximate data fδ.

The basic idea is as follows. Let f ∈ D(A†) and fδ ∈ V such that ‖f − fδ‖ 6 δ and
consider the residual between fδ and uα := Rαfδ, i.e.

‖Auα − fδ‖ .

Let u† be the minimal norm solution and define

µ := inf{‖Au− f‖, u ∈ U} = ‖Au† − f‖.

We observe that u† satisfies the following inequality

‖Au† − fδ‖ 6 ‖Au† − f‖+ ‖fδ − f‖ 6 µ+ δ

and in some cases this estimate may be sharp. Hence, it appears not to be useful to choose
α(δ, fδ) with ‖Auα − fδ‖ < µ + δ. In general, it may be not straightforward to estimate
µ, but if R(A) is dense in V, we get that R(A)⊥ = {0} due to Remark 2.0.2 and µ = 0.
Therefore, we ideally ensure that R(A) is dense.

These observations motivate the Morozov’s discrepancy principle, which in the case
µ = 0 reads as follows.

Definition 3.2.5 (Morozov’s discrepancy principle). Let uα = Rαfδ with α(δ, fδ) chosen
as follows

α(δ, fδ) = sup{α > 0 | ‖Auα(δ,fδ) − fδ‖ 6 ηδ} (3.4)

for given δ, fδ and a fixed constant η > 1. Then uα(δ,fδ) = Rα(δ,fδ)fδ is said to satisfy
Morozov’s discrepancy principle.
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It can be shown that the a-posteriori parameter choice rule (3.4) indeed yields a con-
vergent regularization method [14, Chapter 4.3].

Practical a-posteriori regularisation strategies are usually designed as follows. We pick
a null sequence {αj}j∈N and iteratively compute uαj = Rαjfδ for j ∈ {1, . . . , j∗}, j∗ ∈ N,
until uαj∗ satisfies Morozov’s discrepancy principle. This procedure is justified by the
following theorem.

Theorem 3.2.6. Let {Rα}α>0 be a linear regularisation of A† and {ARα}α>0 be uniformly
bounded. Moreover, let R(A) be dense in V, f ∈ V and let {αj}j∈N be a null sequence.
Then, for all δ > 0 there exists a finite index j∗ ∈ N such that the inequalities

‖Auαj∗ − fδ‖ 6 ηδ < ‖Auαj − fδ‖
are satisfied for all j < j∗.

Proof. We know that {ARα} converges pointwise to AA† = PR(A)
on D(A†), which to-

gether with the uniform boundedness assumption already implies pointwise convergence in
V, as we have already shown in the proof of Theorem 3.1.5. Hence, for all f ∈ V we can
conclude that

lim
α→0
‖Auα − f‖ = lim

α→0
‖ARαf − f‖ = ‖PR(A)

f − f‖ = 0.

3.2.3 Heuristic parameter choice rules

As the measurement error δ is not always easy to obtain in practice, it is tempting to
use a parameter choice rule that only depends on the measured data fδ and not on their
error δ, i.e. to use a heuristic parameter choice rule. Unfortunately, heuristic rules yield
convergent regularisations only for well-posed problems, as the following result, known as
the Bakushinskii veto [5], demonstrates.

Theorem 3.2.7. Let A ∈ L(U ,V) and {Rα} be a regularization for A†. Let α = α(fδ)
be a parameter choice rule such that (Rα, α) is a convergent regularization. Then A† is
continuous from V to U .
Proof. Since, for an arbitrary f ∈ V, Rα(f)f only depends on f (and not on any additional
parameters), we can as well define an operator R′ : V → U such that R′f := Rα(f)f for
all f ∈ V. By the definition of a convergent regularisation (Def. 3.2.2) we get that for any
f ∈ D(A†)

lim
δ→0

sup
fδ : ‖f−fδ‖V6δ

‖Rα(fδ)fδ −A†f‖U = lim
δ→0

sup
fδ : ‖f−fδ‖V6δ

‖R′fδ −A†f‖U = 0.

Taking fδ = f for all δ, we get that R′f = A†f for all f ∈ D(A†). Therefore, for any
f ∈ D(A†) and for every sequence {fj}j∈N ⊂ V converging to f we get that

lim
j→∞

‖Rα(f)fj −A†f‖ = lim
j→∞

‖R′fj −R′f‖ = 0,

i.e. R′ is continuous on D(A†) in V. In particular, we get that on D(A†), A† = R′ is
continuous. Since A† is continuous, by Theorem 2.1.11 we get that R(A) is closed and
D(A†) = V, hence A† is continuous from V to U .

Remark 3.2.8. Since D(A†) = V, we get that R′ = A† on the whole space V and we
conclude that R′(·) = Rα(·)(·) has to be linear. However, we did not assume linearity of
Rα or anything at all about the parameter choice rule α(fδ) and cannot expect linearity
of R′, which is another contradiction.
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3.3 Spectral Regularisation

Recall the spectral representation (2.8) of the Moore-Penrose inverse A†

A†f =
∞∑
j=1

1

σj
〈f, yj〉xj ,

where {(σj , xj , yj)} is the singular system of A.
The source of ill-posedness of A† are the eigenvalues 1/σj , which explode as j → ∞,

since σj → 0 as j → ∞. Let us construct a regularisation by modifying these eigenvalues
as follows

Rαf :=
∞∑
j=1

gα(σj) 〈f, yj〉xj , f ∈ V, (3.5)

with an appropriate function gα : R+ → R+ such that gα(σ) → 1
σ as α → 0 for all σ > 0

and

gα(σ) 6 Cα for all σ ∈ R+. (3.6)

Theorem 3.3.1. Let gα : R+ → R+ be a piecewise continuous function satisfying (3.6),
limα→0 gα(σ) = 1

σ and

sup
α,σ

σgα(σ) 6 γ (3.7)

for some constant γ > 0. If Rα is defined as in (3.5), we have

Rαf → A†f as α→ 0

for all f ∈ D(A†).

Proof. From the singular value decomposition of A† and the definition of Rα we obtain

Rαf −A†f =

∞∑
j=1

(
gα(σj)−

1

σj

)
〈f, yj〉V xj =

∞∑
j=1

(σjgα(σj)− 1) 〈u†, xj〉U xj .

Consider

‖Rαf −A†f‖2U =
∞∑
j=1

(σjgα(σj)− 1)2
∣∣∣〈u†, xj〉U ∣∣∣2 .

From (3.7) we can conclude

(σjgα(σj)− 1)2 6 (1 + γ2) ,

whilst

∞∑
j=1

(1 + γ2)
∣∣∣〈u†, xj〉U ∣∣∣2 = (1 + γ2)‖u†‖2 < +∞.
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Therefore, by the reverse Fatou lemma we get the following estimate

lim sup
α→0

∥∥∥Rαf −A†f∥∥∥2

U
= lim sup

α→0

∞∑
j=1

(σjgα(σj)− 1)2
(
〈u†, xj〉U

)2

6
∞∑
j=1

(
lim sup
α→0

σjgα(σj)− 1

)2 ∣∣∣〈u†, xj〉U ∣∣∣2 = 0 ,

where the last equality is due to the pointwise convergence of gα(σj) to 1/σj . Hence, we
have

∥∥Rαf −A†f∥∥U → 0 for α→ 0 for all f ∈ D(A†).

Theorem 3.3.2. Let the assumptions of Theorem 3.3.1 hold and let α = α(δ) be an a-
priori parameter choice rule. Then (Rα(δ), α(δ)) with Rα as defined in (3.5) is a convergent
regularisation method if

lim
δ→0

δCα(δ) = 0.

Proof. The result follows immediately from ‖Rα(δ)‖L(U ,V) 6 Cα(δ) and Theorem 3.2.4.

3.3.1 Truncated singular value decomposition

As a first example for a spectral regularisation of the form (3.5) we want to consider the
so-called truncated singular value decomposition. The idea is to discard all singular values
below a certain threshold α, which is achieved using the following function gα

gα(σ) =

{
1
σ σ > α

0 σ < α
. (3.8)

Note that for all σ > 0 we naturally obtain limα→0 gα(σ) = 1/σ. Condition (3.7) is
obviously satisfied with γ = 1 and condition (3.6) with Cα = 1

α . Therefore, truncated SVD
is a convergent regularisation if

lim
δ→0

δ

α
= 0. (3.9)

Equation (3.5) then reads as follows

Rαf =
∑
σj>α

1

σj
〈f, yj〉V xj , (3.10)

for all f ∈ V. Note that the sum in (3.10) is always well-defined (i.e. finite) for any α > 0
as zero is the only accumulation point of singular vectors of compact operators.

Let A ∈ K(U ,V) with singular system {σj , xj , yj)}j∈N, and choose for δ > 0 an index
function j∗ : R+ → N with j∗(δ) → ∞ for δ → 0 and limδ→0 δ/σj∗(δ) = 0. We can
then choose α(δ) = σj∗(δ) as an a-priori parameter choice rule to obtain a convergent
regularisation.

Note that in practice a larger δ implies that more and more singular values have to be
cut off in order to guarantee a stable recovery that successfully suppresses the data error.

A disadvantage of this approach is that it requires the knowledge of the singular vectors
of A (only finitely many, but the number can still be large).
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3.3.2 Tikhonov regularisation

The main idea behind Tikhonov regularisation1 is to consider the normal equations and
shift the eigenvalues of A∗A by a constant factor, which will be associated with the regu-
larisation parameter α. This shift can be realised via the function

gα(σ) =
σ

σ2 + α
(3.11)

and the corresponding Tikhonov regularisation (3.5) reads as follows

Rαf =

∞∑
j=1

σj
σ2
j + α

〈f, yj〉V xj . (3.12)

Again, we immediately observe that for all σ > 0 we have limα→0 gα(σ) = 1/σ. Condi-
tion (3.7) is satisfied with γ = 1. Since 0 6 (σ − √α)2 = σ2 − 2σ

√
α + α, we get that

σ2 + α > 2σ
√
α and

σ

σ2 + α
6

1

2
√
α
.

This estimate implies that (3.6) holds with Cα = 1
2
√
α
. Therefore, Tikhonov regularisation

is a convergent regularisation if

lim
δ→0

δ√
α

= 0. (3.13)

The formula (3.12) suggests that we need all singular vectors of A in order to compute
the regularisation. However, we note that σ2

j are the eigenvalues of A∗A and, hence, σ2
j +α

are the eigenvectors of A∗A+αI (where I is the identity operator). Applying this operator
to the regularised solution uα = Rαf , we get

(A∗A+ αI)uα =
∞∑
j=1

(σ2
j + α)〈uα, xj〉U xj =

∞∑
j=1

(σ2
j + α)

σj
σ2
j + α

〈f, yj〉V xj = A∗f.

Therefore, the regularised solution uα can be computed without knowing the singular
system of A by solving the following well-posed linear equation

(A∗A+ αI)uα = A∗f. (3.14)

Remark 3.3.3. Rewriting equation (3.14) as

A∗(Auα − f) + αuα = 0,

we note that it looks like a condition for the minimum of some quadratic form. Indeed, it
can be easily checked that (3.14) is the first order optimality condition for the following
optimisation problem

min
u∈U
‖Au− f‖2 + α‖u‖2. (3.15)

The condition (3.14) is necessary (and, by convexity, sufficient) for the minimum of the
functional in (3.15). Therefore, the regularised solution uα can also be computed by solv-
ing (numerically) the variational problem (3.15). This is the starting point for modern
variational regularisation methods, which we will consider in the next chapter.

1Named after the Russian mathematician Andrey Nikolayevich Tikhonov (30 October 1906 - 7 October
1993)
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Chapter 4

Variational Regularisation

Recall the variation formulation of Tikhonov regularisation for some data fδ ∈ V

min
u∈U
‖Au− fδ‖2 + α‖u‖2.

The first term in this expression, ‖Au− fδ‖2, penalises the misfit between the predictions
of the operator A and the measured data fδ and is called the fidelity function or fidelity
term. The second term, ‖u‖2 penalises some unwanted features of the solution (in this
case, a large norm) and is called the regularistaion term. The regularisation parameter α
in this context balances the influence of these two terms on the functional to be minimised.

More generally, using the notations F(Au, f) for the fidelity function and J (u) for the
regulariser, we can formally write down the variational regularisation problem as follows

min
u∈U
F(Au, f) + αJ (u), (4.1)

i.e.

Rαf ∈ arg min
u∈U

F(Au, f) + αJ (u).

In this chapter, we will study the properties of (4.1) for different choices of F and J ,
but before that we will recall some necessary theoretical concepts.

4.1 Background

4.1.1 Banach spaces and weak convergence

Banach spaces are complete, normed vector spaces (as Hilbert spaces) but they may not
have an inner product. For every Banach space U , we can define the space of linear and
continuous functionals which is called the dual space U∗ of U , i.e. U∗ := L(U ,R). Let
u ∈ U and p ∈ U∗, then we usually write the dual product 〈p, u〉 instead of p(u). Moreover,
for any A ∈ L(U ,V) there exists a unique operator A∗ : V∗ → U∗, called the adjoint of A
such that for all u ∈ U and p ∈ V∗ we have

〈A∗p, u〉 = 〈p,Au〉 .

It is easy to see that either side of the equation are well-defined, e.g. A∗p ∈ U∗ and u ∈ U .
The dual space of a Banach space U can be equipped with the following norm

‖p‖U∗ = sup
u∈U ,‖u‖U61

〈p, u〉 .

33
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With this norm the dual space is itself a Banach space. Therefore, it has a dual space as
well which we will call the bi-dual space of U and denote it with U∗∗ := (U∗)∗. As every
u ∈ U defines a continuous and linear mapping on the dual space U∗ by

〈E(u), p〉 := 〈p, u〉 ,

the mapping E : U → U∗∗ is well-defined. It can be shown that E is a linear and continuous
isometry (and thus injective). In the special case when E is surjective, we call U reflexive.
Examples of reflexive Banach spaces include Hilbert spaces and Lq, `q spaces with 1 <
q < ∞. We call the space U separable if there exists a set X ⊂ U of at most countable
cardinality such that X = U .

A problem in infinite dimensional spaces is that bounded sequences may fail to have
convergent subsequences. An example is for instance in `2 the sequence {uk}k∈N ⊂ `2, ukj =

1 if k = j and 0 otherwise. It is easy to see that ‖uk‖`2 = 1 and that there is no u ∈ `2
such that uk → u. To circumvent this problem, we define a weaker topology on U . We say
that {uk}k∈N ⊂ U converges weakly to u ∈ U if and only if for all p ∈ U∗ the sequence of
real numbers {

〈
p, uk

〉
}k∈N converges and

〈p, uj〉 → 〈p, u〉 .

We will denote weak convergence by uk ⇀ u. On a dual space U∗ we could define another
topology (in addition to the strong topology induced by the norm and the weak topology
as the dual space is a Banach space as well). We say a sequence {pk}k∈N ⊂ U∗ converges
in weak-∗ to p ∈ U∗ if and only if〈

pk, u
〉
→ 〈p, u〉 for all u ∈ U

and we denote weak-∗ convergence by pk
∗→ p. Similarly, for any topology τ on U we

denote the convergence in that topology by uk τ→ u.
With these two new notions of convergence, we can solve the problem of bounded

sequences:

Theorem 4.1.1 (Sequential Banach-Alaoglu Theorem, e.g. [22, p. 70] or [24, p. 141]).
Let U be a separable normed vector space. Then every bounded sequence {uk}k∈N ⊂ U∗ has
a weak-∗ convergent subsequence.

Theorem 4.1.2 ([26, p. 64]). Each bounded sequence {uk}k∈N in a reflexive Banach space
U has a weakly convergent subsequence.

An important property of functionals, which we will need later, is sequential lower
semicontinuity. Roughly speaking this means that the functional values for arguments
near an argument u are either close to E(u) or greater than E(u).

Definition 4.1.3. Let U be a Banach space with topology τU . The functional E : U → R̄
is said to be sequentially lower semi-continuous with respect to τU (τU -l.s.c.) at u ∈ U if

E(u) 6 lim inf
j→∞

E(uj)

for all sequences {uj}j∈N ⊂ U with uj → u in the topology τU of U .
Remark 4.1.4. For topologies that are not induced by a metric we have to differ between a
topological property and its sequential version, e.g. continuous and sequentially continuous.
If the topology is induced by a metric, then these two are the same. However, for instance
the weak and weak-∗ topology are generally not induced by a metric.
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Figure 4.1: Visualisation of lower semi-continuity. The solid dot at a jump indicates the value
that the function takes. The function on the left is continuous and thus lower semi-continuous.
The functions in the middle and on the right are discontinuous. While the function in the middle
is lower semi-continuous, the function on the right is not (due to the limit from the left at the
discontinuity).

Example 4.1.5. The functional ‖ · ‖1 : `2 → R̄ with

‖u‖1 =

{∑∞
j=1 |uj | if u ∈ `1

∞ else

is weakly (and, hence, strongly) lower semi-continuous in `2.

Proof. Let {uj}j∈N ⊂ `2 be a weakly convergent sequence with uj ⇀ u ∈ `2. We have with
δk : `2 → R, 〈δk, v〉 = vk that for all k ∈ N

ujk = 〈δk, uj〉 → 〈δk, u〉 = uk .

The assertion follows then with Fatou’s lemma

‖u‖1 =
∞∑
k=1

|uk| =
∞∑
k=1

lim
j→∞

|ujk| 6 lim inf
j→∞

∞∑
k=1

|ujk| = lim inf
j→∞

‖uj‖1 .

Note that it is not clear whether both the left and the right hand side are finite.

4.1.2 Convex analysis

Infinity calculus

We will look at functionals E : U → R̄ whose range is modelled to be the extended real
line R̄ := R ∪ {−∞,+∞} where the symbol +∞ denotes an element that is not part of
the real line that is by definition larger than any other element of the reals, i.e.

x < +∞

for all x ∈ R (similarly, x > −∞ for all x ∈ R). This is useful to model constraints: for
instance, if we were trying to minimise E : [−1,∞) → R, x 7→ x2 we could remodel this
minimisation problem by Ẽ : R→ R̄

Ẽ(x) =

{
x2 if x > −1

∞ else
.

Obviously both functionals have the same minimiser but Ẽ is defined on a vector space
and not only on a subset. This has two important consequences: on the on hand, it makes
many theoretical arguments easier as we do not need to worry whether E(x+ y) is defined
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or not. On the other hand, it makes practical implementations easier as we are dealing
with unconstrained optimisation instead of constrained optimisation. This comes at a cost
that some algorithms are not applicable any more, e.g. the function Ẽ is not differentiable
everywhere whereas E is (in the interior of its domain).

It is useful to note that one can calculate on the extended real line R̄ as we are used to
on the real line R but the operations with ±∞ need yet to be defined.

Definition 4.1.6. The extended real line is defined as R̄ := R ∪ {−∞,+∞} with the
following rules that hold for any x ∈ R and λ > 0:

x+∞ :=∞+ x :=∞ λ · ∞ :=∞ · λ :=∞
x/∞ := 0 ∞+∞ :=∞ .

Some calculations are not defined, e.g.,

∞−∞ and ∞ ·∞ .

Using functions with values on the extended real line, one can easily describe sets C ⊂ U .

Definition 4.1.7 (Characteristic function). Let C ⊂ U be a set. The function χC : U → R̄,

χC(u) =

{
0 u ∈ C
∞ u ∈ U \ C

is called the characteristic function of the set C.

Using characteristic functions, one can easily write constrained optimisation problems
as unconstrained ones:

min
u∈C

E(u) ⇔ min
u∈U

E(u) + χC(u).

Definition 4.1.8. Let U be a vector space and E : U → R̄ a functional. Then the effective
domain of E is

dom(E) := {u ∈ U | E(u) <∞} .

Definition 4.1.9. A functional E is called proper if the effective domain dom(E) is not
empty.

Convexity

A property of fundamental importance of sets and functions is convexity.

Definition 4.1.10. Let U be a vector space. A subset C ⊂ U is called convex, if λu+ (1−
λ)v ∈ C for all λ ∈ (0, 1) and all u, v ∈ C.

Definition 4.1.11. A functional E : U → R̄ is called convex, if

E(λu+ (1− λ)v) 6 λE(u) + (1− λ)E(v)

for all λ ∈ (0, 1) and all u, v ∈ dom(E) with u 6= v. It is called strictly convex if the
inequality is strict.

Obviously, strict convexity implies convexity.
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Figure 4.2: Example of a convex set (left) and non-convex set (right).

∞
∅

Figure 4.3: Example of a convex function (left), a strictly convex function (middle) and a non-
convex function (right).

Example 4.1.12. The absolute value function R → R, x 7→ |x| is convex but not strictly
convex while the quadratic function x 7→ x2 is strictly convex. For other examples, see
Figure 4.3.

Example 4.1.13. The characteristic function χC(u) is convex if and only if C is a convex
set. To see the convexity, let u, v ∈ dom(χC) = C. Then by the convexity of C the convex
combination λu+ (1− λ)v is as well in C and both the left and the right hand side of the
desired inequality are zero.

Lemma 4.1.14. Let α > 0 and E,F : U → R̄ be two convex functionals. Then E +
αF : U → R̄ is convex. Furthermore, if α > 0 and F strictly convex, then E + αF is
strictly convex.

Fenchel conjugate

In convex optimisation problems (i.e. those involving convex functions) the concept of
Fenchel conjugates plays a very important role.

Definition 4.1.15. Let E : U → R̄ be a functional. The functional E∗ : U∗ → R̄,

E∗(p) = sup
u∈U

[〈u, p〉 − E(u)],

is called the Fenchel conjugate of E.

Theorem 4.1.16 ([13, Prop. 4.1]). For any functional E : U → R̄ the following inequality
holds:

E∗∗ := (E∗)∗ 6 E.

If E is proper, lower-semicontinuous (see Def. 4.1.3) and convex, then

E∗∗ = E.



38 4.1. BACKGROUND

Figure 4.4: Visualisation of the subdifferential. Linear approximations of the functional have to
lie completely underneath the function. For points where the function is not differentiable there
may be more than one such approximation.

Subgradients

For convex functions one can generalise the concept of a derivative so that it would also
make sense for non-differentiable functions.

Definition 4.1.17. A functional E : U → R̄ is called subdifferentiable at u ∈ U , if there
exists an element p ∈ U∗ such that

E(v) > E(u) + 〈p, v − u〉

holds, for all v ∈ U . Furthermore, we call p a subgradient at position u. The collection of
all subgradients at position u, i.e.

∂E(u) := {p ∈ U∗ | E(v) > E(u) + 〈p, v − u〉 ,∀v ∈ U} ,

is called subdifferential of E at u.

Remark 4.1.18. Let E : U → R̄ be a convex functional. Then the subdifferential is non-
empty at all u ∈ dom(E). If dom(E) 6= ∅, then for all u 6∈ dom(E) the subdifferential is
empty, i.e. ∂E(u) = ∅.

Theorem 4.1.19 ([3, Thm. 7.13]). Let E : U → R̄ be a proper convex function and
u ∈ dom(E). Then ∂E(u) is a weak-∗ compact convex subset of U∗.

For differentiable functions the subdifferential consists of just one element – the deriva-
tive. For non-differentiable functionals the subdifferential is multivalued; we want to con-
sider the subdifferential of the absolute value function as an illustrative example.

Example 4.1.20. Let E : R → R be the absolute value function E(u) = |u|. Then, the
subdifferential of E at u is given by

∂E(u) =


{1} for u > 0

[−1, 1] for u = 0

{−1} for u < 0

,

which you will prove as an exercise. A visual explanation is given in Figure 4.4.

The subdifferential of a sum of two functions can be characterised as follows.

Theorem 4.1.21 ([13, Prop. 5.6]). Let E : U → R̄ and F : U → R̄ be proper l.s.c. convex
functions and suppose ∃u ∈ dom(E) ∪ dom(F ) such that E is continuous at u. Then

∂(E + F ) = ∂E + ∂F.
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Using the subdifferential, one can characterise minimisers of convex functionals.

Theorem 4.1.22. An element u ∈ U is a minimiser of the functional E : U → R̄ if and
only if 0 ∈ ∂E(u).

Proof. By definition, 0 ∈ ∂E(u) if and only if for all v ∈ U it holds

E(v) > E(u) + 〈0, v − u〉 = E(u) ,

which is by definition the case if and only if u is a minimiser of E.

Bregman distances

Convex functions naturally define some distance measure that became known as the Breg-
man distance.

Definition 4.1.23. Let E : U → R̄ be a convex functional. Moreover, let u, v ∈ U , E(v) <
∞ and q ∈ ∂E(v). Then the (generalised) Bregman distance of E between u and v is
defined as

Dq
E(u, v) := E(u)− E(v)− 〈q, u− v〉 . (4.2)

v u

Dp
E(u, v)E(u)

E
E(v) + 〈p, u− v〉

Figure 4.5: Visualization of the Bregman distance.

Remark 4.1.24. It is easy to check that a Bregman distance somewhat resembles a metric
as for all u, v ∈ U , q ∈ ∂E(v) we have that Dq

E(u, v) > 0 and Dq
E(v, v) = 0. There are

functionals where the Bregman distance (up to a square root) is actually a metric; e.g.
E(u) := 1

2‖u‖2U for Hilbert space U , then Dq
E(u, v) = 1

2‖u − v‖2U . However, in general,
Bregman distances are not symmetric and Dq

E(u, v) = 0 does not imply u = v, as you will
see on the example sheets.

To overcome the issue of non-symmetry, one can introduce the so-called symmetric
Bregman distance.

Definition 4.1.25. Let E : U → R̄ be a convex functional. Moreover, let u, v ∈ U , E(u) <
∞, E(v) < ∞, q ∈ ∂E(v) and p ∈ ∂E(u). Then the symmetric Bregman distance of E
between u and v is defined as

Dsymm
E (u, v) := Dq

E(u, v) +Dp
E(v, u) = 〈p− q, u− v〉 . (4.3)
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Absolutely one-homogeneous functionals

Definition 4.1.26. A functional E : U → R̄ is called absolutely one-homogeneous if

E(λu) = |λ|E(u) ∀λ ∈ R, ∀u ∈ U .

Absolutely one-homogeneous convex functionals have some useful properties, for exam-
ple, it is obvious that E(0) = 0. Some further properties are listed below.

Proposition 4.1.27. Let E(·) be a convex absolutely one-homogeneous functional and let
p ∈ ∂E(u). Then the following equality holds:

E(u) = (p, u).

Proof. Left as exercise.

Remark 4.1.28. The Bregman distance Dp
E(v, u) in this case can be written as follows:

Dp
E(v, u) = E(v)− (p, v).

Proposition 4.1.29. Let E(·) be a proper, convex, l.s.c. and absolutely one-homogeneous
functional. Then the Fenchel conjugate E∗(·) is the characteristic function of the convex
set ∂E(0).

Proof. Left as exercise.

An obvious consequence of the above results is the following

Proposition 4.1.30. For any u ∈ U , p ∈ ∂E(u) if and only if p ∈ ∂E(0) and E(u) =
(p, u).

4.1.3 Minimisers

Definition 4.1.31. Let E : U → R̄ be a functional. We say that u∗ ∈ U solves the min-
imisation problem

min
u∈U

E(u)

if and only if E(u∗) <∞ and E(u∗) 6 E(u), for all u ∈ U . We call u∗ a minimiser of E.

Definition 4.1.32. A functional E : U → R̄ is called bounded from below if there exists
a constant C > −∞ such that for all u ∈ U we have E(u) > C.

This condition is obviously necessary for the existence of the infimum infu∈U E(u).

Existence

If all minimising sequences (that converge to the infimum assuming it exists) are un-
bounded, then there cannot exist a minimiser. A sufficient condition to avoid such a
scenario is coercivity.

Definition 4.1.33. A functional E : U → R̄ is called coercive, if for all {uj}j∈N with
‖uj‖U →∞ we have E(uj)→∞.
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x2

x

exp(x)

x

Figure 4.6: While the coercive function on the left has a minimiser, it is easy to see that the
non-coercive function on the right does not have a minimiser.

Remark 4.1.34. Coercivity is equivalent to its negated statement which is “if the function
values {E(uj)}j∈N ⊂ R are bounded, so is the sequence {uj}j∈N ⊂ U”.

Although coercivity is not strictly speaking necessary, it is sufficient that all minimising
sequences are bounded.

Lemma 4.1.35. Let E : U → R̄ be a proper, coercive functional and bounded from below.
Then the infimum infu∈U E(u) exists in R, there are minimising sequences, i.e. {uj}j∈N ⊂
U with E(uj)→ infu∈U E(u), and all minimising sequences are bounded.

Proof. As E is proper and bounded from below, there exists a C1 > 0 such that we
have −∞ < −C1 < infuE(u) < ∞ which also guarantees the existence of a minimising
sequence. Let {uj}j∈N be any minimising sequence, i.e. E(uj) → infuE(u). Then there
exists a j0 ∈ N such that for all j > j0 we have

E(uj) 6 inf
u
E(u) + 1︸ ︷︷ ︸
=:C2

<∞ .

With C := max{C1, C2} we have that |E(uj)| < C for all j > j0 and thus from the
coercivity it follows that {uj}j>j0 is bounded, see Remark 4.1.34. Including a finite number
of elements does not change its boundedness which proves the assertion.

A positive answer about the existence of minimisers is given by the following Theorem
known as the “direct method” or “fundamental theorem of optimisation”.

Theorem 4.1.36 (“Direct method”, David Hilbert, around 1900). Let U be a Banach space
and τU a topology (not necessarily the one induced by the norm) on U such that bounded
sequences have τU -convergent subsequences. Let E : U → R̄ be proper, bounded from below,
coercive and τU -l.s.c. Then E has a minimiser.

Proof. From Lemma 4.1.35 we know that infu∈U E(u) is finite, minimising sequences exist
and that they are bounded. Let {uj}j∈N ∈ U be a minimising sequence. Thus, from
the assumption on the topology τU there exists a subsequence {ujk}k∈N and u∗ ∈ U with
ujk

τU→ u∗ for k →∞. From the sequential lower semi-continuity of E we obtain

E(u∗) 6 lim inf
k→∞

E(ujk) = lim
j→∞

E(uj) = inf
u∈U

E(u) <∞ ,

which shows that E(u∗) <∞ and E(u∗) 6 E(u) for all u ∈ U ; thus u∗ minimises E.

The above theorem is very general but its conditions are hard to verify but the situation
is a easier in reflexive Banach spaces (thus also in Hilbert spaces).
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Corollary 4.1.37. Let U be a reflexive Banach space and E : U → R̄ be a functional which
is proper, bounded from below, coercive and l.s.c. with respect to the weak topology. Then
there exists a minimiser of E.

Proof. The statement follows from the direct method, Theorem 4.1.36, as in reflexive
Banach spaces bounded sequences have weakly convergent subsequences, see Theorem
4.1.2.

Remark 4.1.38. For convex functionals on reflexive Banach spaces, the situation is even
easier. It can be shown that a convex function is l.s.c. with respect to the weak topology
if and only if it is l.s.c. with respect to the strong topology (see e.g. [13, Corollary 2.2., p.
11] or [6, p. 149] for Hilbert spaces).

Remark 4.1.39. It is easy to see that the key ingredient for the existence of minimisers is
that bounded sequences have a convergent subsequence. In variational regularisation this
is usually ensured by an appropriate choice of the regularisation functional.

Uniqueness

Theorem 4.1.40. Assume that the functional E : U → R̄ has at least one minimiser and
is strictly convex. Then the minimiser is unique.

Proof. Let u, v be two minimisers of E and assume that they are different, i.e. u 6= v.
Then it follows from the minimising properties of u and v as well as the strict convexity of
E that

E(u) 6 E(1
2u+ 1

2v) <
1

2
E(u) +

1

2
E(v)︸ ︷︷ ︸
6E(u)

6 E(u)

which is a contradiction. Thus, u = v and the assertion is proven.

Example 4.1.41. Convex (but not strictly convex) functions may have have more than
one minimiser, examples include constant and trapezoidal functions, see Figure 4.7. On
the other hand, convex (and even non-convex) functions may have a unique minimiser, see
Figure 4.7.

a) b)

Figure 4.7: a) Convex functions may not have a unique minimiser. b) Neither strict convexity
nor convexity is necessary for the uniqueness of a minimiser.
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4.2 Well-posedness and Regularisation Properties

Our goal is to study the properties of optimisation problem (4.1) as a convergent regulari-
sation for the ill-posed problem

Au = f, (4.4)

where A : U → V is a linear bounded operator and U and V are Banach spaces (and
not Hilbert spaces as in Chapter 3). In particular, we will ask questions of existence of
minimisers (well-posedness of the regularised problem) and parameter choice rules that
guarantee the convergence of the minimisers to an appropriate generalised solution of (4.4)
for different choices of the data term and regularisation functional. To this end, we need to
extend the definitions of a least-squares solution and a minimal-norm solution (Def. 2.1.1)
to an arbitrary data term and regularisation term.

Definition 4.2.1 (J -minimising solutions). Suppose that the fidelity term is such that the
optimisation problem

min
u∈U
F(Au, f) (4.5)

has a solution for any f ∈ V. Let

• u†J ∈ arg minu∈U F(Au, f) and

• J (u†J ) 6 J (ũ) for all ũ ∈ arg minu∈U F(Au, f).

Then u†J is called a J -minimising solution of (4.4).

Remark 4.2.2. In order to simplify the presentation, we will assume that equation (4.4)
has a solution with a finite value of J , i.e. there exists at least one element u† such that
Au† = f and J (u†) < +∞. With the natural assumption that F(f, g) > 0 for all f, g ∈ V
and F(f, f) = 0 we get that problem (4.5) is solvable and its optimal value is zero.

Remark 4.2.3. Even if problem (4.5) is solvable, a J -minimising solution may not exist.
If it does, it may be non-unique. We will later see conditions, under which a J -minimising
solution exists. Non-uniqueness, however, is common with popular choses of J . In this
case we need to define a selection operator that will select a single element from all the
J -minimising solutions (see [7]). We will not explicitly mention this, stating all results for
just a J -minimising solution.

The next theorem states the main result of this chapter.

Theorem 4.2.4. Let U and V be Banach spaces and τU and τV some topologies (not
necessarily induced by the norm) in U and V, respectively. Suppose that problem (4.4) is
solvable and the solution has a finite value of J . Assume also that

(i) A : U → V is τU → τV continuous;

(ii) J : U → R̄+ is proper, τU -l.s.c. and its non-empty sublevel-sets {u ∈ U : J (u) 6 C}
are τU -sequentially compact;

(iii) F : V × V → R̄+ is proper, τV-l.s.c. in the first argument and norm-l.s.c. in the
second one and satisfies

F(f, f) = 0 and F(f, fδ) 6 C(δ)→ 0 as δ → 0

for all f ∈ V and all fδ ∈ V such that ‖fδ − f‖ 6 δ;
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(iv) there exists an a priori parameter choice rule α = α(δ) such that limδ→0 α(δ) = 0
and limδ→0C(δ)/α(δ) = 0.

Then

(i’) there exists a J -minimising solution u†J of (4.4);

(ii’) for any fixed α > 0 and fδ ∈ V there exists a minimiser uαδ ∈ arg minu∈U F(Au, fδ)+
αJ (u);

(iii’) the parameter choice rule α = α(δ) from Assumption(iv) guarantees that uδ :=

u
α(δ)
δ

τU→ u†J as δ → 0 (possibly, along a subsequence) and J (uδ)→ J (u†J ).

Proof. (i’) Under the assumptions made, optimisation problem (4.5) has at least one so-
lution, i.e. the set of minimisers is non-empty. Denote it by MF (f). Let us show that
MF (f) is τU -closed. Consider a sequence {un} ⊂ MF (f) such that un

τU→ ū. Since A is
τU → τV continuous, we get that Aun

τV→ Aū. Since F(·, ·) is τV -l.s.c. in the first argument,
we get that

F(Aū, f) 6 lim inf
n→∞

F(Aun, f) = 0,

since all un are minimisers of (4.5). Since F(·, ·) > 0, we get that F(Aū, f) = 0 and ū is a
minimiser of (4.5), henceMF (f) is τU -closed.

A J -minimsing solution solves the following problem

min
u∈MF (f)

J (u).

Since J is bounded from below, the infimum in this problem exists and we denote it by
Jmin. Consider any minimising sequence {uk}. By Assumption (ii), the sublevel sets of
J are τU -sequentially compact and uk contains a τU -converging subsequence ukj

τU→ ũ as
j →∞. SinceMF (f) is τU -closed, ũ ∈MF (f). Since J is τU -l.s.c., we get that

J (ũ) 6 lim inf
j→∞

J (ukj ) = Jmin.

Therefore, J (ũ) = Jmin and ũ is a J -minimising solution, which we from now on denote
by u†J .

(ii’) For a fixed α > 0 and fδ ∈ V consider the following optimisation problem

min
u∈U
F(Au, fδ) + αJ (u). (4.6)

Comparing the value of the objective function for any minimising sequence {un} and the
J -minimising solution u†J , we get that

J (un) 6
1

α
F(Au†J , fδ) + J (u†J ) = const.

By the sequential τU -compactness of the sublevel sets of J we get that {un} contains a
τU -converging subsequence unj

τU→ û. By Assumption (i) we get that Aunj
τV→ Aû. Since

F(·, ·) is τV -l.s.c in the first argument and J (·) is τU -l.s.c., we get that

F(Aû, fδ) + αJ (û) 6 lim inf
j→∞

F(Aun, fδ) + αJ (un) = inf
u∈U
F(Au, fδ) + αJ (u).

Therefore, û is a minimiser in (4.6), denoted further by uαδ .
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(iii’) Let us study the behaviour of uαδ when δ → 0 and α is chosen according to the a
priori parameter choice rule α = α(δ) from Assumption (iv). Denote uα(δ)

δ by uδ. Since uδ
solves (4.6) with α = α(δ), we get that

F(Auδ, fδ) + α(δ)J (uδ) 6 F(Au†J , fδ) + α(δ)J (u†J ) (4.7)

and, since F(·, ·) > 0,

α(δ)J (uδ) 6 F(Au†J , fδ) + α(δ)J (u†J ) = F(f, fδ) + α(δ)J (u†J ) 6 C(δ) + α(δ)J (u†J ).

Therefore, we get an upper bound on J (uδ):

J (uδ) 6
C(δ)

α(δ)
+ J (u†J ). (4.8)

The right-hand side is bounded uniformly in δ, since limδ→0C(δ)/α(δ) = 0 by Assump-
tion (iv) and u†J does not depend on δ.

Choosing an arbitrary sequence δn ↓ 0, we conclude, using the τU -compactness of
the sublevel sets of J , that the sequence uδn contains a τU -convergent subsequence (that
we do not relabel to avoid triple subscripts) uδn

τU→ u0. By Assumption (i) we get that
Auδn

τV→ Au0.
By Assumption (iii) F(·, ·) is l.s.c. in both arguments and hence we get the following

estimate

F(Au0, f) 6 lim inf
n→∞

F(Auδn , fδn) 6 lim inf
n→∞

F(Auδn , fδn) + α(δn)J (uδn)

6 lim inf
n→∞

F(Au†J , fδn) + α(δn)J (u†J ) = lim inf
n→∞

F(f, fδn) + α(δn)J (u†J )

6 lim inf
n→∞

C(δn) + α(δn)J (u†J ) = 0.

Here we used the facts that J (·) > 0 and uδn is a minimiser in (4.6) with α = α(δ). Hence,
u0 solves problem (4.5).

Now it is left to show that u0 has minimal value of J among all the minimisers of (4.5).
Indeed, using Assumption (iv) and the fact that J (u†J ) 6 J (u) for any minimiser u of (4.5),
we conclude from (4.8) that

J (u†J ) 6 J (u0) 6 lim inf
n→∞

J (uδn) 6 lim sup
n→∞

J (uδn) 6 lim sup
n→∞

C(δ)

α(δ)
+ J (u†J ) = J (u†J ).

Therefore, there exists limn→∞ J (uδn) = J (u0) = J (u†J ) and u0 is a J -minimising solu-
tion of (4.4).

Remark 4.2.5. The compactness of the level sets of J (u) in Assumption (ii) can be
replaced by compactness of the level sets of Φα

f (u) := F(Au, f) + αJ (u).

Remark 4.2.6. The theorem proves convergence of the regularised solutions in τU , which
may differ from the strong topology. However, if J satisfies the Radon-Riesz property with
respect to the topology τU , i.e. uj

τU→ u and J (uj) → J (u) imply ‖uj − u‖ → 0, then we
get convergence in the norm topology. An example of a functional satisfying the Radon-
Riesz property is the norm in a Hilbert (or reflexive Banach) space with τU being the weak
topology.
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Examples of fidelity functions

Example 4.2.7. Let V be a Hilbert space and F(g, f) = ‖g − f‖2. Obviously, in both
arguments, it is strongly continuous (hence l.s.c.) and convex and, therefore, also weakly
l.s.c (see Theorem 4.1.2). Therefore, Assumption (iii) of Theorem 4.2.4 is satisfied with τV
being the weak or the strong topology. Furthermore, the following properties hold

F(f, f) = 0 and F(f, fδ) 6 C(δ) = δ2 → 0 as δ → 0

for all f ∈ V and all fδ ∈ V such that ‖fδ − f‖ 6 δ. Therefore, with an appropriate choice
of the regularisation functional J , we obtain a convergent regularisation if

lim
δ→0

δ2

α(δ)
= 0.

(Compare this with the result obtained in (3.13) for Tikhonov regularisation).

Example 4.2.8. Let V be a Banach space and F(g, f) = ‖g − f‖. In both arguments,
F(·, ·) is strongly continuous (hence l.s.c.) and convex and, by Theorem 4.1.2, also weakly
l.s.c. Assumption (iii) of Theorem 4.2.4 is again satisfied for the weak and the strong
topologies. Furthermore, we see that

F(f, f) = 0 and F(f, fδ) 6 C(δ) = δ → 0 as δ → 0

for all f ∈ V and all fδ ∈ V such that ‖fδ − f‖ 6 δ. Therefore, with an appropriate choice
of the regularisation functional J , we obtain a convergent regularisation if

lim
δ→0

δ

α(δ)
= 0.

A typical choice is V = L1(Ω) for some bounded set Ω ⊂ Rd and F(g, f) = ‖g − f‖1.

Examples of regularisers

Example 4.2.9. Let U be a Hilbert space and J (u) = ‖u‖2. As discussed in Exam-
ple 4.2.7, the norm in a Hilbert space is weakly l.s.c. By Theorem 4.1.2 we know that
(norm) bounded sequences have weakly convergent subsequences. Therefore, Assump-
tion (ii) of Theorem 4.2.4 is satisfied with τU being the weak topology and we obtain weak
convergence of the regularised solutions. However, since the norm in a Hilbert space has
the Radon-Riesz property, we also get strong convergence. The same approach works in
reflexive Banach spaces.

A classical example is regularisation in Sobolev spaces such as the space W 1,2 of L2

functions whose weak derivatives are also in L2. In the one-dimensional case, the space H1

consists only of continuous functions (in higher dimensions it is true for Sobolev spaces with
some other exponents), therefore, the regularised solutions will also be continuous. For this
reason, the regulariser J (u) = ‖u‖W 1,2 is sometimes referred to as the smoothing functional.
Whilst desirable in some applications, in imaging smooth reconstructions are usually not
favourable, since images naturally contain edges and therefore are not continuous functions.
To overcome this issue, other regularisers have been introduced that we will discuss later.

Example 4.2.10 (`1-regularisation). Let U = `2 be space of all square summable sequences
(i.e. such that ‖u‖2`2 =

∑∞
i=1 u

2
i < +∞). For example, u can represent the coefficients of a
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function in a basis (e.g., a Fourier basis or a wavelet basis). As a regularisation functional,
let us use not the `2-norm, but the `1-norm:

J (u) = ‖u‖`1 =
∞∑
i=1

|ui|.

By Example 4.1.5 J (·) is weakly l.s.c. in `2. It is evident that `p ⊂ `q and ‖ · ‖`p 6 ‖ · ‖`q
for p > q; in particular, we have that `2 ⊂ `1 and ‖ · ‖`2 6 ‖ · ‖`1 . Therefore, J (u) 6 C
implies that ‖ ·‖`2 6 C and, since `2 is a Hilbert space and bounded sequences have weakly
convergent subsequences, we conclude that the sublevel sets of J (·) are weakly sequentially
compact in `2. Therefore, Assumption (ii) of Theorem 4.2.4 is satisfied with τU being the
weak topology in `2. Hence, we get weak convergence of regularised solutions in `2 and
using the Radon-Riesz property we conclude that the convergence is actually strong.

The motivation for using the `1-norm as the regulariser instead of the `2-norm is as
follows. If the forward operator is non-injective, the inverse problem has more than one
solution and the solutions form an affine subspace. In the context of sequence spaces
representing coefficients of the solution in a basis, it is sometimes beneficial to look for
solutions that are sparse in the sense that they have finite support, i.e. | supp(u)| < ∞
with supp(u) = {i ∈ N |ui 6= 0}. This allows explaining the signal with a finite (and
often relatively small) number of basis functions and has widely ranging applications in,
for instance, compressed sensing. A finite dimensional illustration of the sparsity of `1-
regularised solutions is given in Figure 4.8. The corresponding minimisation problem

min
u∈`2

{
1

2
‖Au− f‖2`2 + α‖u‖1

}
. (4.9)

is also called lasso in the statistical literature.
Note that, although both J (u) = ‖u‖`2 and J (u) = ‖u‖`1 give the same type of

convergence – strong convergence in `2 (i.e., their topological properties are the same),
the structure of the regularised solutions is quite different. Therefore, topological con-
siderations should not be the only ones when choosing an appropriate regularisation for
an applied problem. Studying the geometric structure of the regularised solutions is an
important aspect of modern inverse imaging problems.

4.3 Total Variation Regularisation

As pointed out in Example 4.2.9, in imaging we are interested in regularisers that allow
for discontinuities while maintaining sufficient regularity of the reconstructions. One very
popular choice is the so-called total variation regulariser.

Definition 4.3.1. Let Ω ⊂ Rn be a bounded domain and u ∈ L1(Ω). Let D(Ω,Rn) be the
following set of vector-valued test functions (i.e. functions that map from Ω to Rn)

D(Ω,Rn) :=
{
ϕ ∈ C∞0 (Ω;Rn)

∣∣∣ ess supx∈Ω ‖ϕ(x)‖2 6 1
}
.

Total variation of u ∈ L1(Ω) is defined as follows

TV(u) = sup
ϕ∈D(Ω,Rn)

∫
Ω
u(x) divϕ(x) dx .



48 4.3. TOTAL VARIATION REGULARISATION

minimal `2-norm minimal `1-norm

Figure 4.8: Non-injective operators have a non-trivial kernel such that the inverse problem has
more than one solution and the solutions form an affine subspace visualised by the solid line.
Different regularisation functionals favour different solutions. The circle and the diamond indicate
all points with constant `2-norm, respectively `1-norm, and the minimal `2-norm and `1-norm
solutions are the intersections of the line with the circle, respectively the diamond. As it can
be seen, the minimal `2-norm solution has two non-zero components while the minimal `1-norm
solution has only one non-zero component and thus is sparser.

Remark 4.3.2. Definition 4.3.1 may seem a bit strange at the first glance, but we note
that for a function u ∈ L1(Ω) whose weak derivative ∇u exists and is also in L1(Ω,Rn)
(i.e. u belongs to the Sobolev space W 1,1(Ω)) we obtain, integrating by parts, that

TV(u) = sup
ϕ∈D(Ω,Rn)

∫
Ω
−〈∇u(x), ϕ(x)〉 dx.

By the Cauchy-Schwartz inequality we get that | 〈∇u(x), ϕ(x)〉 | 6 ‖∇u(x)‖2‖ϕ(x)‖2 6

‖∇u(x)‖2 for a.e. x ∈ Ω. On the other hand, choosing ϕ such that ϕ(x) = − ∇u(x)
‖∇u(x)‖2 (tech-

nically, such ϕ is not necessarily in D(Ω,Rn), but we can approximate it with functions from
D(Ω,Rn), since any function in W 1,1(Ω) can be approximated with smooth functions [2,
Thm. 3.17]; we omit the technicalities here), we get that −〈∇u(x), ϕ(x)〉 = ‖∇u(x)‖2.
Therefore, the supremum over ϕ ∈ D(Ω,Rn) is equal to

TV(u) =

∫
Ω
‖∇u(x)‖2 dx.

This shows that TV just penalises the the L1 norm (of the pointwise 2-norm) of the gradient
for any u ∈W 1,1(Ω). However, we will see that the space of functions that have finite value
of TV is larger than W 1,1(Ω) and contains, for instance, discontinuous functions.

Proposition 4.3.3. TV is a proper and convex functional L1(Ω)→ R̄. For any constant
function c : c(x) ≡ c ∈ R for all x and any u ∈ L1(Ω)

TV(c) = 0 and TV(u+ c) = TV(u).

Proof. Left as exercise.

Definition 4.3.4. The functions u ∈ L1(Ω) with a finite value of TV form a normed space
called the space of functions of bounded variation (the BV-spcae) defined as follows

BV(Ω) :=
{
u ∈ L1(Ω)

∣∣∣ ‖u‖BV := ‖u‖L1 + TV(u) <∞
}
.
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It can be shown that BV is a Banach space [4].

Remark 4.3.5. The definition of total variation (Def. 4.3.1) looks much like that of a dual
norm in some Banach space. Indeed, it can be shown that TV is a norm on a subspace of
BV and that this space is a dual of some Banach space.

Example 4.3.6 (TV of an indicator function). Suppose C ⊂ Ω ⊂ R2 is a bounded domain
with smooth boundary and u(·) = 1C(·) is its indicator function, i.e.

1C(u) =

{
1 u ∈ C
0 u ∈ U \ C

.

Then, using the divergence theorem, we get that for any test function ϕ ∈ D(Ω,Rn)∫
Ω
u(x) divϕ(x) dx =

∫
C

divϕ(x) dx =

∫
∂C
〈ϕ(x),n∂C(x)〉 dl,

where ∂C is the boundary of C and n∂C(x) is the unit normal at x. We, obviously, have
that for every x

〈ϕ(x),n(x)〉 =
1

2
(‖ϕ(x)‖2 + ‖n∂C(x)‖2 − ‖ϕ(x)− n∂C(x)‖2),

so we get that

TV(u) = sup
ϕ∈D(Ω,Rn)

∫
∂C

1

2
(‖ϕ(x)‖2 + ‖n∂C(x)‖2 − ‖ϕ(x)− n∂C(x)‖2) dl.

Since ∂C is smooth and ‖n∂C(x)‖ = 1 for every x, n∂C can be extended to feasible vector
field on Ω (i.e. one that is in D(Ω,Rn)) and the supremum is attained at ϕ = n∂C .
Therefore, we get that

TV(u) =

∫
∂C
‖n∂C(x)‖2 dl =

∫
∂C

1 · dl = Per(C),

where Per(C) is the perimeter of C.
Therefore, total variation of the characteristic function of a domain with smooth bound-

ary is equal to its perimeter. This can be extended to domains with Lipschitz boundary
by constructing a sequence of functions in D(Ω,Rn) that converge pointwise to n∂C .

To apply Theorem 4.2.4, we need to study the properties of TV as a functional L1(Ω)→
R̄. First of all, we note that BV(Ω) is compactly embedded in L1(Ω). We start with the
following classical result.

Theorem 4.3.7 (Rellich-Kondrachov, [2, Thm. 6.3]). Let Ω ⊂ Rn be a Lipschitz domain
(i.e. non-empty, open, connected and bounded with Lipschitz boundary) and either

n > mp and p∗ := np/(n−mp)
or n 6 mp and p∗ :=∞ .

Then the embedding Wm,p(Ω) → Lq(Ω) is continuous if 1 6 q 6 p∗ and compact if in
addition q < p∗.

Since functions from BV(Ω) can be approximated by smooth functions [4, Thm. 3.9],
the Rellich-Kandrachov Theorem (for m = 1, p = 1) gives us compactness for BV(Ω).



50 4.3. TOTAL VARIATION REGULARISATION

Corollary 4.3.8 ([4, Corrollary 3.49]). For any bounded Lipschitz domain Ω ⊂ Rn the
embedding

BV(Ω)→ L1(Ω)

is compact.

Therefore, the level sets of J (u) = ‖u‖BV are strongly sequentially compact in L1(Ω).
This is one of the ingredients we need to apply Theorem 4.2.4. The other one is lower-
semicontinuity, which is guaranteed by the following theorem.

Theorem 4.3.9. Let Ω ⊂ Rn be open and bounded. Then the total variation is strongly
l.s.c. in L1(Ω).

Proof. Let {uj}j∈N ⊂ BV(Ω) be a sequence converging in L1(Ω) with uj → u in L1(Ω).
Then for any test function ϕ ∈ D(Ω,Rn) we have that∫

Ω
[u(x)− uj(x)] divϕ(x)dx 6

∫
Ω
|u(x)− uj(x)|dx︸ ︷︷ ︸
=‖u−uj‖L1→0

ess supx∈Ω | divϕ(x)|︸ ︷︷ ︸
<∞

→ 0

and therefore∫
Ω
u(x) divϕ(x)dx = lim

j→∞

∫
Ω
uj(x) divϕ(x)dx = lim inf

j→∞

∫
Ω
uj(x) divϕ(x)dx

6 lim inf
j→∞

sup
ϕ∈D(Ω,Rn)

∫
Ω
uj(x) divϕ(x)dx 6 lim inf

j→∞
TV(uj).

Taking the supremum over all test functions on the left-hand side (and noting that the
right-hand side already does not depend on ϕ), we get the assertion:

TV(u) = sup
ϕ∈D(Ω,Rn)

∫
Ω
u(x) divϕ(x)dx 6 lim inf

j→∞
TV(uj).

Note that the left and right hand sides may not be finite.

This result can actually be strengthened, as the following corollary shows.

Corollary 4.3.10. Let Ω ⊂ Rn be open and bounded. Then the total variation is both
weakly and strongly l.s.c. in any Lp(Ω) space with 1 6 p <∞.

Proof. Since Ω is bounded, ‖u‖1 6 |Ω|1−1/p‖u‖p for any p > 1 (where |Ω| :=
∫

Ω 1 · dx)
and strong convergence in Lp(Ω) with p > 1 implies strong convergence in L1(Ω). Strong
lower-semicontinuity of the total variation in Lp(Ω) with p > 1 then follows from strong
lower-semicontinuity in L1(Ω).

Weak lower-semicontinuity in L1(Ω) follows from the fact that stong and weak sequen-
tial convergences coincide in L1(Ω) [11, Corollary IV.8.14].

As pointed out in Remark 4.1.38, in reflexive spaces strongly lower-semicontinuous
convex functions are also weakly lower-semicontinuous. Since the spaces Lp(Ω) with 1 <
p < ∞ are reflexive and by Proposition 4.3.3 total variation is convex, we get weak lower
semicontinuity in Lp(Ω) for any 1 < p <∞.

Remark 4.3.11. Combining these results, we conclude that with a suitable fidelity func-
tion and a suitable parameter choice rule the regulariser J (u) = TV(u) + ‖u‖1 ensures
strong L1-convergence of the regularised solutions. If the forward operator is such that
boundedness of the fidelity term implies boundedness of ‖u‖1, then the term ‖u‖1 can be
dropped and J (u) = TV(u) can be used instead, ensuring the same convergence properties.
See Remark 4.3.14 for an example of a situation when this is the case.
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If Ω ⊂ R2, it is often useful to consider TV not as a functional in L1(Ω), but as a
functional in L2(Ω). By Corollary 4.3.10, weak lower-semicontinuity holds in this case.
However, the compact embedding result in Theorem 4.3.8 does not hold any more (in two
dimensions, the embedding BV(Ω)→ L2(Ω) is continuous, but not compact [4, Corrollary
3.49]). However, the following result helps.

Proposition 4.3.12 ([4, Remark 3.50]). Let Ω ⊂ R2 be a bounded Lipschitz domain. Then
there exists a constant C > 0 such that for all u ∈ BV(Ω) the Poincaré–Wirtinger type
inequality is satisfied

‖u− uΩ‖L2 6 C TV(u),

where uΩ := 1
|Ω|
∫

Ω u(x)dx is the mean-value of u over Ω.

Corollary 4.3.13. It is often useful to consider a subspace BV0(Ω) ⊂ BV(Ω) of functions
with zero mean, i.e.

BV0(Ω) := {u ∈ BV(Ω):

∫
Ω
u(x)dx = 0}. (4.10)

Then for every function u ∈ BV0(Ω) we have that

‖u‖L2 6 C TV(u).

Remark 4.3.14. Total variation is often used in conjunction with the L2-fidelity (see
Example 4.2.7) under the assumption that the forward operatorA : L2(Ω)→ L2(Ω) satisfies
A1 6= 0, where 1(x) ≡ 1 for all x. In this case, the boundedness of TV(u) together with
the boundedness of the fidelity term ‖Au− fδ‖22 imply the boundedness of the mean value
uΩ ∈ R.

Indeed, suppose that there exists a sequence un is such that unΩ is unbounded. Then,
since A1 6= 0, the sequence AunΩ is also unbounded. Consider un0 := un − unΩ ∈ BV0(Ω).
By Proposition 4.3.3 we have that

TV(un0 ) = TV(un − unΩ) = TV(un)

and therefore bounded. We also have that

‖AunΩ‖2 = ‖AunΩ +Aun0 − fδ − (Aun0 − fδ)‖2 6 ‖Aun − fδ‖2 + ‖Aun0 − fδ‖2
6 ‖Aun − fδ‖2 + ‖A‖L2→L2‖un0‖2 + ‖fδ‖2.

The first term on the right-hand side is bounded by assumption; the second one is bounded,
since the bound on TV(un0 ) provides a bound on ‖un0‖2 and A is bounded; the third one is
bounded, since ‖fδ − f‖2 → 0. Therefore, ‖AunΩ‖2 is bounded, which is a contradiction.

These derivations show that using a combination of F(Au, fδ) = ‖Au−fδ‖22 and J (u) =
TV(u) under the assumption that A1 6= 0 guarantees that the L2-norm ‖uδ‖2 of the
regularised solution uδ is bounded uniformly in δ. Since bounded sequences in L2 have
weakly convergent subsequences (Theorem 4.1.2), this guarantees weak L2-convergence of
uδ as δ → 0 by Theorem 4.2.4. Furthermore, since ‖u‖1 6 |Ω|1/2‖u‖2 for any u ∈ L2(Ω),
we get a bound on ‖uδ‖1 and hence strong convergence in L1(Ω) by Remark 4.3.11.

This setting is widely used in imaging applications [23]. For instance, the so-called
ROF model for image denoising [21] consists in minimising the following functional

min
u∈L2(Ω)

‖u− fδ‖22 + αTV(u). (4.11)
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In this case, the forward operator is the identity operator (and A1 6= 0 is satisfied trivially).
More generally, one considers the following optimisation problem

min
u∈L2(Ω)

‖Au− fδ‖22 + αTV(u), (4.12)

where A : L2(Ω)→ L2(Ω) is injective. Injectiveness is equivalent to the condition that the
null-space is a singleton, i.e. {u ∈ L2(Ω): Au = 0} = {0}), and guarantees that A1 6= 0.



Chapter 5

Dual Perspective

In Chapter 4 we have established convergence of a regularised solution uδ to a J -minimising
solution u†J as δ → 0. However, we didn’t get any results on the speed of this convergence,
which is referred to as the convergence rate.

In modern regularisation methods, convergence rates are usually studied using Bregman
distances associated with the (convex) regularisation functional J . Recall that for a convex
functional J , u, v ∈ U such that J (v) < ∞ and q ∈ ∂J (v), the (generalised) Bregman
distance is given by the following expression (cf. Def. 4.1.23)

Dq
J (u, v) = J (u)− J (v)− 〈q, u− v〉 .

Also widely used is the symmetric Bregman distance (cf. Def. 4.1.25) given by the following
expression (here p ∈ ∂J (u))

Dsymm
J (u, v) = Dq

J (u, v) +Dp
J (v, u) = 〈p− q, u− v〉 .

Bregman distances appear to be a natural distance measure between a regularised
solution uδ and a J -minimising solution u†J . For instance, for classical L2- regularisation
with J (u) = 1

2‖u‖2U , the subgradient at u†J is p
u†J

= u†J (since J is differentiable) and we
get the following expression

D
u†J
J (uδ, u

†
J ) =

1

2
‖uδ‖2U −

1

2
‖u†J ‖2U −

〈
u†J , uδ − u

†
J

〉
=

1

2
(‖uδ‖2U − 2

〈
u†J , uδ

〉
+ ‖u†J ‖2U ) =

1

2
‖uδ − u†J ‖2U ,

which happens to coincide with the symmetric Bregman distance. Therefore, in the classical
L2-case, the Bregman distance just measures the L2-distance between a regularised solution
and a J -minimising solution.

We are looking for a convergence rate of the following form

Dsymm
J (uδ, u

†
J ) 6 ψ(δ),

where ψ : R+ → R+ is a known function of δ such that ψ(δ)→ 0 as δ → 0. To obtain such
an estimate, we need to not only understand the convergence of uδ (to u†J ), but also that
of the subgradient pδ ∈ ∂J (uδ), which should ideally converge to some pJ ∈ ∂J (u†J ).

53
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5.1 Dual Problem

Recall that uδ solves the following problem

min
u∈U
F(Au, fδ) + αJ (u) (5.1)

with an appropriately chosen α = α(δ). In this Chapter we will assume that U and V
are Hilbert spaces and will choose the standard fidelity F(Au, f) = 1

2‖Au− f‖2V . We will
also assume that the regulariser is proper, convex, l.s.c., absolute one-homogeneous and
satisfies conditions of Theorem 4.2.4.

In this case problem (5.1) takes the following form

min
u∈U

1

2
‖Au− fδ‖2V + αJ (u). (5.2)

We will see that all subgradients pδ ∈ ∂J (uδ) are closely related to solutions of the
dual problem of (5.2) in the sense of duality in convex optimisation [13].

Let us drop the subscript δ for some time and consider the function ϕ : V → R, ϕ(x) :=
1
2‖x− f‖2V , where f ∈ V is a parameter. The Fenchel conjugate of ϕ is given by

ϕ∗(ν) = sup
x∈V
〈ν, x〉 − ϕ(x) = sup

x∈V
〈ν, x〉 − 1

2
‖x− f‖2V , ν ∈ V.

The supremum is attained at x = ν + f and therefore

ϕ∗(ν) = 〈ν, ν + f〉 − 1

2
‖ν‖2V = 〈ν, f〉+

1

2
‖ν‖2V .

By Theorem 4.1.16 we have that ϕ is equal to its biconjugate, i.e.

ϕ(x) = sup
ν∈V
〈ν, x〉 − ϕ∗(ν) = sup

ν∈V
〈ν, x〉 − 〈ν, f〉 − 1

2
‖ν‖2V = sup

ν∈V
〈ν, x− f〉 − 1

2
‖ν‖2V .

For x = Au, therefore, we get that

ϕ(Au) =
1

2
‖Au− f‖2V = sup

ν∈V
〈ν,Au− f〉 − 1

2
‖ν‖2V .

Obviously, the objective function attains its maximum (at ν = Au− f), so we can replace
the supremum with a maximum. Note that we took the operator outside the norm, which
can be useful in numerical optimisation algorithms [10].

Now we can rewrite (5.2) as follows

min
u∈U

max
ν∈V
〈ν,Au− f〉 − 1

2
‖ν‖2V + αJ (u). (5.3)

Problem (5.3) is called the saddle-point problem. If it has a solution then we can easily
derive optimality conditions by differentiating the objective function in u and ν:

ν = Au− f, A∗
(−ν
α

)
∈ ∂J (u). (5.4)

We can swap the minimum and the maximum in (5.3) under the conditions given in [13,
Ch.III Thm 4.1 and Rem. 4.2], i.e. that ϕ(x) is continuous at x = 0, ϕ(0) < +∞ and
J (0) < +∞ (these conditions are, obviously, satisfied). We get

min
u∈U

max
ν∈V
〈ν,Au− f〉 − 1

2
‖ν‖2V + αJ (u) = max

ν∈V
min
u∈U
〈ν,Au− f〉 − 1

2
‖ν‖2V + αJ (u)

= max
ν∈V

{[
min
u∈U
〈ν,Au〉+ αJ (u)

]
− 〈ν, f〉 − 1

2
‖ν‖2V

}
. (5.5)
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The minimum of the expression in the square brackets is given by

min
u∈U
〈ν,Au〉+ αJ (u) = min

u∈U
〈A∗ν, u〉+ αJ (u)

= −αmax
u∈U

〈
A∗
(−ν
α

)
, u

〉
− J (u) = −αJ ∗

(
A∗
(−ν
α

))
.

Since J is absolute one-homogeneous, its Fenchel conjugate is the characteristic function
of ∂J (0) (Prop. 4.1.29) and we get

min
u∈U
〈ν,Au〉+ αJ (u) = −αχ∂J (0)

(
A∗
(−ν
α

))
.

Substituting this into (5.5), we get

max
ν∈V

{[
min
u∈U
〈ν,Au〉+ αJ (u)

]
− 〈ν, f〉 − 1

2
‖ν‖2V

}
= max

ν∈V : A∗(−να )∈∂J (0)
−〈ν, f〉 − 1

2
‖ν‖2V .

Denoting µ := − ν
α ∈ V, we rewrite this problem as follows

max
µ∈V : A∗µ∈∂J (0)

α
(
〈µ, f〉 − α

2
‖µ‖2V

)
. (5.6)

Problem (5.6) is called the dual problem. With this notation, optimality conditions (5.4)
take the following form

A∗µ ∈ ∂J (u), µ =
f −Au
α

. (5.7)

It can be shown [13] that for any feasible solution u0 of the primal problem (5.2) and for
any feasible solution µ0 of the dual problem (5.6), the objective value of the dual problem
does not exceed that of the primal problem, i.e.

1

2
‖Au0 − f‖2V + αJ (u0) > α 〈µ0, f〉 −

α2

2
‖µ0‖2V . (5.8)

This also holds for the optimal solutions uδ and µδ (where we return to the notation with
δ). The difference

1

2
‖Auδ − fδ‖2V + αJ (uδ)−

(
α 〈µδ, fδ〉 −

α2

2
‖µδ‖2V

)
> 0 (5.9)

is referred to as the duality gap. The fact that it is always non-negative is referred to as
weak duality. Under some assumptions (for instance, those in Theorem 5.1.1) the duality
gap is zero; in this case it is said that strong duality holds.

Existence of a solution is guaranteed by the following Theorem.

Theorem 5.1.1 ([13, Ch.III Thm 4.1 and Rem. 4.2]). Consider the primal problem (5.2)
in the general from

min
u∈U

E(Au) + F (u),

where E : V → R̄ and F : U → R̄. Suppose that

(i) the function E(Au) + F (u) : U → R̄ is proper, convex, l.s.c. and coercive;

(ii) ∃u0 ∈ U s.t. F (u0) < +∞, E(Au0) < +∞ and E(x) is continuous at x = Au0.
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Then

(i) Both the primal problem and its dual have solutions, which we denote by û and η̂,
respectively;

(ii) There is no duality gap between the primal and the dual problems, i.e. strong duality
holds;

(iii) The following optimality conditions hold

A∗η̂ ∈ ∂F (û), −η̂ ∈ ∂E(Aû).

In our case, E(Au) = 1
2‖Au − f‖2V and F (u) = αJ (u). Condition (i) is satisfied by

the assumptions of Theorem 4.2.4 (in particular, coercivity is implied by the compactness
of the sub-level sets). Condition (ii) is satisfied at u0 = 0. Therefore, for any δ > 0 there
exists a solution uδ of the primal problem (5.2) and µδ of the dual problem (5.6) and by
strong duality we have that

1

2
‖Auδ − fδ‖2V + αJ (uδ) = α 〈µδ, fδ〉 −

α2

2
‖µδ‖2V .

Optimality conditions (iii) in this case take the following form (cf. (5.7))

A∗µδ ∈ ∂J (uδ), µδ =
fδ −Auδ
α(δ)

, (5.10)

where we remind ourselves of the fact that α is chosen according to a parameter choice
rule α(δ).

5.2 Source Condition

Formal limits of problems (5.2) and (5.6) at δ = 0 are

inf
u : Au=f

J (u) = inf
u∈U

χ{f}(Au) + J (u) (5.11)

and

sup
µ : A∗µ∈∂J (0)

〈µ, f〉 = sup
µ : A∗µ∈∂J (0)

〈
µ,Au†J

〉
= sup

µ : A∗µ∈∂J (0)

〈
A∗µ, u†J

〉
= sup

v∈R(A∗)∩∂J (0)

〈
v, u†J

〉
. (5.12)

Since the characteristic function χ{f}(·) is not continuous anywhere in its domain,
Theorem 5.1.1 does not apply and we cannot expect strong duality in general. We cannot
even guarantee that a solution of the dual limit problem (5.12) exists. Indeed, the feasible
set R(A∗) ∩ ∂J (0) in (5.12) may be empty and even if it is not a solution may not exist,
since R(A∗) is not closed (strongly and hence weakly, since it is convex [11, Thm. V.3.13]).

Therefore, the behaviour of µδ as δ → 0 is unclear. (Recall that we need to understand
this behaviour to obtain an estimate on the Bregman distance between uδ and u†J ). A
natural question to ask is whether µδ remains bounded as δ → 0.

Theorem 5.2.1 (Necessary conditions, [18]). Suppose that conditions of Theorem 4.2.4
are satisfied with τU and τV being weak topologies in U and V, respectively. Suppose that
µδ is bounded uniformly in δ. Then there exists µ† ∈ V such that A∗µ† ∈ ∂J (u†J ).
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Definition 5.2.2 (Source condition [9]). We say that a J -minimising solution u†J satisfies
the source condition if ∃µ† ∈ V such that A∗µ† ∈ ∂J (u†J ), i.e. if

R(A∗) ∩ ∂J (u†J ) 6= ∅. (5.13)

Proof of Theorem 5.2.1. Consider an arbitrary sequence δn ↓ 0. Since ‖µδ‖V 6 C for all
δ, by weak compactness of a ball in a Hilbert space we get that there exists a weakly
convergent subsequence (that we do not relabel), i.e.

µδn ⇀ µ0 ∈ V.

By the weak-weak continuity of A∗ we get that

A∗µδn ⇀ A∗µ0.

Since ∂J (0) is weakly closed (Theorem 4.1.19) and A∗µδn ∈ ∂J (0) (see optimality condi-
tions (5.10), we get that

A∗µ0 ∈ ∂J (0).

Since J is absolute one-homogeneous, we get by Proposition 4.1.27 that

〈A∗µδn , uδn〉 = J (uδn).

We also note that

〈A∗µδn , uδn〉 =
〈
A∗µδn , u

†
J

〉
+
〈
A∗µδn , uδn − u†J

〉
=
〈
A∗µδn , u

†
J

〉
+ 〈µδn , Auδn − f〉 6

〈
A∗µδn , u

†
J

〉
+ ‖µδn‖V‖Auδn − f‖V .

Since ‖µδn‖V is bounded and ‖Auδn − f‖V → 0, we get that

〈A∗µδn , uδn〉 →
〈
A∗µ0, u

†
J

〉
.

On the other hand, we know that J (uδn)→ J (u†J ). Therefore, we get that

J (u†J ) =
〈
A∗µ0, u

†
J

〉
.

Since A∗µ0 ∈ ∂J (0) and J (u†J ) =
〈
A∗µ0, u

†
J

〉
, we conclude, using Proposition 4.1.30,

that A∗µ0 ∈ ∂J (u†J ) and the assertion of the Theorem holds with µ† = µ0.

So, the source condition is necessary for the boundedness of µδ. It turns out to be also
sufficient.

Theorem 5.2.3 (Sufficient conditions, [18]). Suppose that the source condition (5.13) is
satisfied at a J -minimising solution u†J and suppose that α(δ) is chosen such that δ

α(δ) is
uniformly bounded. Then µδ is bounded uniformly in δ. Moreover, µδ → µ† strongly in V
as δ → 0, where µ† is the solution of the dual limit problem (5.12) with minimal norm.

Proof. The source condition (5.13) guarantees that ∃µ0 ∈ V s.t. A∗µ0 ∈ ∂J (u†J ), i.e. thatA
∗µ0 ∈ ∂J (0),

J (u†J ) =
〈
A∗µ0, u

†
J

〉
=
〈
µ0, Au

†
J

〉
= 〈µ0, f〉 .
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For any feasible solution µ of the dual limit problem (5.12) we have that

〈µ, f〉 6 J (u†J ),

since weak duality between the limit primal and dual problems holds (problems (5.11)
and (5.12), respectively) and u†J is a feasible solution of (5.11). Therefore, µ0 solves the
dual limit problem (5.12) and

〈µ0, f〉 > 〈µδ, f〉 ∀δ, (5.14)

since µδ is feasible in (5.12).
Analogously, since µδ solves the dual problem (5.6) and µ0 is feasible in (5.6), we get

that for all δ
〈µδ, fδ〉 −

α

2
‖µδ‖2V > 〈µ0, fδ〉 −

α

2
‖µ0‖2V . (5.15)

Therefore,

α

2
‖µδ‖2V −

α

2
‖µ0‖2V 6 〈µδ, fδ〉 − 〈µ0, fδ〉 6 〈µδ, fδ − f〉+ 〈µδ, f〉

− 〈µ0, f〉+ 〈µ0, f − fδ〉 6 〈µ0 − µδ, f − fδ〉
6 δ‖µ0 − µδ‖V 6 δ(‖µ0‖V + ‖µδ‖V).

Noting that

α

2
‖µδ‖2V −

α

2
‖µ0‖2V =

α

2
(‖µδ‖V − ‖µ0‖V)(‖µδ‖V + ‖µ0‖V),

we get that

α

2
(‖µδ‖V − ‖µ0‖V)(‖µ0‖V + ‖µδ‖V) 6 δ‖µ0 − µδ‖V 6 δ(‖µ0‖V + ‖µδ‖V)

and
‖µδ‖V 6 ‖µ0‖V +

2δ

α
6 C, (5.16)

since δ
α is bounded.

By weak compactness of a ball in a Hilbert space, we conclude that for any sequence
δn ↓ 0 there exists a subsequence (which we do not relabel) such that

µδn ⇀ µ∗.

By weak-weak continuity of A∗ and weak closedness of ∂J (0) (Theorem 4.1.19) we get
that

A∗µ∗ ∈ ∂J (0)

and µ∗ is feasible in (5.12). Consider again the estimates (5.14) and (5.15) 〈µδn , f〉 −
α(δn)

2
‖µδn‖2V > 〈µ0, f〉 −

α(δn)

2
‖µ0‖2V ,

〈µ0, f〉 > 〈µδn , f〉

and let n→∞ so that δn → 0 and α(δn)→ 0. We get that{
〈µ∗, f〉 > 〈µ0, f〉 ,
〈µ0, f〉 > 〈µ∗, f〉 .
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Therefore, 〈µ∗, f〉 = 〈µ0, f〉 and µ∗ solves the dual limit problem (5.12).
Using weak lower semicontinuity of the norm in a Hilbert space, from (5.16) we get

that
‖µ∗‖V 6 lim inf

n→∞
‖µδn‖V 6 ‖µ0‖V (5.17)

for any µ0 solving (5.12). Therefore, µ∗ is the minimum norm solution of (5.12) (unique,
since it is an orthogonal projection of zero onto the feasible set in (5.12)). From (5.17)
and (5.16) with µ0 = µ∗ we than also get that

‖µδn‖V → ‖µ∗‖V

and the convergence µδn → µ∗ is actually strong by the Radon-Riesz property of the norm
in a Hilbert space (see Remark 4.2.6). So, we get the assertion of the Theorem with
µ† = µ∗.

Example 5.2.4 (Total Variation). Let U = V = L2(Ω) with Ω ⊂ R2 bounded and C ⊂ Ω
a domain with a C∞ boundary. Let J (·) = TV(·) and A : L2(Ω)→ L2(Ω) be the identity
operator (i.e., we consider the problem of denoising). From Example 4.3.6 we know that

TV(1C) = Per(C),

where 1C is the indicator function of the set C. Denoting by n∂C the unit normal, we obtain

Per(C) =

∫
∂C

1 =

∫
∂C
〈n∂C ,n∂C〉 .

Since n∂C ∈ C∞(∂C,R2) and ‖n∂C(x)‖2 = 1 for any x, we can extend n∂C to a C∞0 (Ω,R2)
vector field ψ with supx∈Ω ‖ψ(x)‖2 6 1. Therefore, using the divergence theorem, we
obtain that ∫

∂C
〈n∂C ,n∂C〉 =

∫
∂C
〈ψ,n∂C〉 =

∫
C

divψ = 〈divψ,1C〉 .

Combining all these equalities, we get that

TV(1C) = 〈divψ,1C〉 .

Note that, since ψ ∈ C∞0 (Ω,R2), divψ ∈ C∞(Ω) ⊂ L2(Ω).
Taking an arbitrary u ∈ U , we note that

TV(u)− 〈divψ, u〉 = sup
ϕ ∈ C∞0 (Ω,R2)

supx∈Ω ‖ϕ(x)‖2 6 1

〈u,divϕ〉 − 〈u,divψ〉 > 0,

since ϕ = divψ is feasible. Therefore, divψ ∈ ∂ TV(0) and, since TV(1C) = 〈divψ,1C〉,
we also get that

divψ ∈ ∂ TV(1C).

Since A is the identity operator, R(A∗) = U and the source condition is satisfied at u = 1C
with µ = divψ.

Example 5.2.5 (Total Variation). Let U = V = L2(Ω) with Ω ⊂ R2 bounded and C ⊂ Ω
be a domain with a nonsmppth boundary, e.g., a square C = [0, 1]2. Let J (·) = TV(·). We
will show in this example that in this case ∂ TV(1C) = ∅.
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1

1

ε

ε0

C

Cε

Figure 5.1: Example of a set whose indicator function does not satisfy the source condition.

Assume that there exists p0 ∈ ∂ TV(1C) ⊂ L2(Ω). Then by the results of Example 4.3.6
we have that

〈p0,1C〉 = TV(1C) = Per(C) = 4.

Since p0 is a subgradient, we get that for any u ∈ L2(Ω)

TV(u)− 〈p0, u〉 > 0.

Let us cut a triangle Cε of size ε from a corner of C as shown in Figure 5.1. Then for
u = 1C\Cε we get

TV(1C\Cε) >
〈
p0,1C\Cε

〉
= 〈p0,1C〉 − 〈p0,1Cε〉

and therefore

〈p0,1Cε〉 > TV(1C)−TV(1C\Cε) = Per(C)−Per(C\Cε) = 4−(4−2ε+
√

2ε) = (2−
√

2)ε > 0.

By Hölder’s inequality we get that

〈p0,1Cε〉 =

∫
Cε
p0 · 1 6

(∫
Cε
|p0|2

)1/2(∫
Cε

1

)1/2

=
1√
2
ε

(∫
Cε
|p0|2

)1/2

.

Combining the last two inequalities, we get

(2−
√

2)ε 6 〈p0,1Cε〉 6
1√
2
ε

(∫
Cε
|p0|2

)1/2

and therefore ∫
Cε
|p0|2 > 2(2−

√
2)2 > 0

for all ε > 0. However, since p0 ∈ L2(Ω) by assumption, we must have∫
Cε
|p0|2 → 0 as ε→ 0.

This contradiction proves that such p0 does not exist and ∂ TV(1C) = ∅.

5.3 Convergence Rates

Now we are ready to answer the question that we asked in the beginning of this Chapter -
how fast do the regularised solutions converge to a J -minimising solution? The answer is
given by the following Theorem.
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Theorem 5.3.1. Let the source condition (5.13) be satisfied at a J -minimising solution
u†J and let uδ be a regularised solution solving (5.2). Then the following estimate holds

Dsymm
J (uδ, u

†
J ) 6

1

2α

(
δ + α‖µ†‖V

)2
.

In the particular case when α(δ) ∼ δ we get

Dsymm
J (uδ, u

†
J ) 6 Cδ.

Proof. Consider the function

ϕ(g) =
1

2
‖g − fδ‖2V .

It is differentiable and its subdifferential is given by

∂ϕ(g) = {g − fδ}.

Taking g = Auδ and using the definition of a Bregman distance from f to Auδ we obtain

DAuδ−fδ
ϕ (f,Auδ) =

1

2
‖f − fδ‖2V −

1

2
‖Auδ − fδ‖2V − 〈Auδ − fδ, f −Auδ〉 > 0

and therefore
〈Auδ − fδ, f −Auδ〉 6

1

2
‖f − fδ‖2V −

1

2
‖Auδ − fδ‖2V .

Consider the symmetric Bregman distance Dsymm
J (uδ, u

†
J ). We obtain the following

expression

αDsymm
J (uδ, u

†
J ) = α

〈
A∗µ† −A∗µδ, u†J − uδ

〉
= α

〈
µ† − µδ, f −Auδ

〉
= α

〈
µ†, f −Auδ

〉
+ 〈−αµδ, f −Auδ〉 .

From the optimality conditions (5.10) we know that αµδ = fδ −Auδ. Therefore, we get

αDsymm
J (uδ, u

†
J ) = α

〈
µ†, f −Auδ

〉
+ 〈Auδ − fδ, f −Auδ〉

6 α
〈
µ†, f −Auδ

〉
+

1

2
‖f − fδ‖2V −

1

2
‖Auδ − fδ‖2V

6 α
〈
µ†, fδ −Auδ

〉
+ α

〈
µ†, f − fδ

〉
+

1

2
δ2 − 1

2
‖Auδ − fδ‖2V

6 α‖µ†‖V (‖fδ −Auδ‖V + ‖f − fδ‖V) +
1

2
δ2 − 1

2
‖Auδ − fδ‖2V

6 αδ‖µ†‖V −
(

1

2
‖Auδ − fδ‖2V − α‖µ†‖V‖Auδ − fδ‖V +

1

2
α2‖µ†‖V

)
+

1

2
α2‖µ†‖V +

1

2
δ2 = αδ‖µ†‖V −

1

2

(
‖Auδ − fδ‖V − α‖µ†‖V

)2

+
1

2
α2‖µ†‖V +

1

2
δ2 6

1

2
δ2 + αδ‖µ†‖V +

1

2
α2‖µ†‖V =

1

2

(
δ + α‖µ†‖V

)2
,

which yields the desired estimate. With α(δ) ∼ δ we immediately get

Dsymm
J (uδ, u

†
J ) 6 Cδ.
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Chapter 6

Numerical Optimisation Methods

In the last two chapters we formulated several optimisation problems in the context of
variational regularisation. In this Chapter we will discuss some methods that can be used
to efficiently solve them numerically. We will consider the case when U is a Banach space
and will study methods that can be used to find the minimum of a functional E : U → R.

6.1 More on derivatives in Banach spaces

Let us first discuss some more properties of derivatives and subdifferentials.

Definition 6.1.1. Let E : U → R be a mapping from the Banach space U to R and u ∈ U .
If there exists an operator A ∈ L(U ,R) = U∗ that

lim
h→0

|E(u+ h)− E(u)−Ah|
‖h‖U

= 0 ,

holds true, then E is called Fréchet differentiable in u and E′(u) := A the Fréchet derivative
in u. If the Fréchet derivative exists for all u ∈ U , the operator E′ : U → U∗ is called Fréchet
differentiable.

Example 6.1.2. Let U be a Banach space and p ∈ U∗. Then the Fréchet derivative of
〈u, p〉 is 〈u, p〉′ = p.

Example 6.1.3. Let U be a Hilbert space and M ∈ L(U ,U). Then the Fréchet derivative
of E : U → R,

E(u) = ‖u‖2M := 〈Mu, u〉
at any u ∈ U is given by

E′(u)(·) = 〈(M +M∗)u, ·〉 ,
and thus by the Riesz representation theorem can be identified with (M +M∗)u. If M is
self-adjoint then E′(u) = 2Mu.

Proof. Simple calculations show that

E(u+ h)− E(u) = 〈(M +M∗)u, h〉+ 〈Mh, h〉
which shows that

|E(u+ h)− E(u)− 〈(M +M∗)u, h〉 |
‖h‖U

=
| 〈Mh, h〉 |
‖h‖U

6
‖M‖‖h‖2U
‖h‖U

→ 0

for ‖h‖ → 0.

63
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Example 6.1.4. Let U ,V be Hilbert spaces, A ∈ L(U ,V), f ∈ V and E : U → R be defined
as E(u) := 1

2‖Au− f‖2V . Then the Fréchet derivative of E can be identified with

E′(u) = A∗(Au− f) .

Proof. It is clear that
1

2
‖Au− f‖2V =

1

2
‖Au‖2V − 〈Au, f〉+

1

2
‖f‖2V =

1

2
〈u,A∗Au〉 − 〈u,A∗f〉+

1

2
‖f‖2V

and
E′(u) = A∗Au−A∗f = A∗(Au− f).

An immediate consequence of Theorem 4.1.21 if the following

Proposition 6.1.5. Let U be a normed space, E : U → R be convex and Fréchet differen-
tiable and F : U → R̄ be proper, l.s.c. and convex. Then for all u ∈ dom(E+F ) = dom(F )
it holds

∂(E + F )(u) = E′(u) + ∂F (u) .

6.2 Gradient descent

Let U be a Hilbert space. In this section we will analyse the iteration

uk+1 = uk − τE′(uk) (6.1)

called gradient descent, which is one of the most popular methods to solve smooth minimi-
sation problems.

Lemma 6.2.1 (Descent Lemma). Let E : U → R be Fréchet differentiable and E′ Lipschitz
continuous with constant L ∈ R (which we will call L-smooth in what is to follow). Then
for all x, y ∈ U we have that

E(x) 6 E(y) +
〈
E′(y), x− y

〉
+
L

2
‖x− y‖2 .

Proof. For any t ∈ [0, 1] define g(t) := E(y + t(x − y)) for which we obviously have
g(1) = E(x) and g(0) = E(y). Then we have that∫ 1

0

〈
E′(y + t(x− y))− E′(y), x− y

〉
dt 6

∫ 1

0
‖E′(y + t(x− y))− E′(y)‖‖x− y‖dt

6
∫ 1

0
Lt‖x− y‖2dt

=
L

2
‖x− y‖2

and can further estimate

E(x)− E(y) = g(1)− g(0) =

∫ 1

0
g′(t)dt

=

∫ 1

0

〈
E′(y + t(x− y)), x− y

〉
dt

=

∫ 1

0

〈
E′(y), x− y

〉
dt+

∫ 1

0

〈
E′(y + t(x− y))− E′(y), x− y

〉
dt

6
〈
E′(y), x− y

〉
+
L

2
‖x− y‖2 .
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Remark 6.2.2. If E is convex, then the inequality of the lemma can also be written in
terms of the Bregman distance as DE′(y)

E (x, y) 6 L
2 ‖x− y‖2.

Theorem 6.2.3 (Convergence of gradient descent). Let E be L-smooth and the step size
of gradient descent be chosen as

τ <
2

L
.

Then gradient descent monotonically decreases the function value, i.e.

E(uk+1) 6 E(uk) .

Moreover, if E is bounded from below, then the gradients convergence to zero, i.e.

‖E′(uk)‖ → 0 ,

with rate (for some C > 0)

min
k=0,...,K−1

‖E′(uk)‖ 6 C

K1/2
.

Proof. Choosing x = uk+1 and y = uk in the Descent Lemma yields

E(uk+1)− E(uk) 6
〈
E′(uk),−τE′(uk)

〉
+
L

2
‖τE′(uk)‖2

= −τ‖E′(uk)‖2 +
τ2L

2
‖E′(uk)‖2 = − c

2
‖E′(uk)‖2

(6.2)

with c := τL
(

2
L − τ

)
> 0 which shows the monotonic descent.

Moreover, summing (6.2) over k = 0, . . . ,K − 1 yields

E(uK)− E(u0) 6 − c
2

K−1∑
k=0

‖E′(uk)‖2

and after rearranging

K−1∑
k=0

‖E′(uk)‖2 6
E(u0)− E(uK)

c/2
6
E(u0)− infu∈U E(u)

c/2
6 C2 .

Thus, letting K →∞ we have that

‖E′(uk)‖ → 0

and the convergence is with rate

min
k=0,...,K−1

‖E′(uk)‖2 6
1

K

K−1∑
k=0

‖E′(uk)‖2 6
C2

K
.

Taking the square root completes the proof.

Remark 6.2.4. It follows from the theorem that if {uk}k converges, then it converges to
a stationary point u∗ ∈ U with E′(u∗) = 0.
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Example 6.2.5. Consider Tikhonov regularisation, which consists in minimising

E(u) =
1

2
‖Au− f‖2V +

α

2
‖u‖2U

over all u in a Hilbert space U (where V is also a Hilbert space). Using the results of
Examples 6.1.3 and 6.1.4, we get that

E′(u) = A∗(Au− f) + αu.

We also observe that for all u, v ∈ U

E′(u)− E′(v) = A∗(Au− f) + αu−A∗(Av − f)− αv = (A∗A+ αI)(u− v)

and
‖E′(u)− E′(v)‖V 6 ‖A∗A+ αI‖L(U ,V)‖u− v‖U .

Therefore, E′ is Lipschitz continuous with constant L = ‖A∗A+αI‖L(U ,V) and we can use
gradient descent with step size

τ <
2

L
.
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