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The Fourier transform
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Any signal f € L*(R") can be written as
fo = | Flo)e ™7 do,

where f are the Fourier coefficients and ¢~ are eigenfunctions of
—A.



The Fourier transform

Soundwave of a guitar string DCT coefficients of sound signal

Amplitude
Magnitude

i

X 015 02
Time (sec) Frequency Hz)

Any signal f € L*(R") can be written as
f(-x) = f(a)e*ix-g do, fh(x) = / h(g)f(o.)efix-o' do
R~ n

where f are the Fourier coefficients and ¢~ are eigenfunctions of
—A.

Important everyday application: frequency filtering



Laplacian eigenfunctions

Laplacian eigenfunctions describe the modes of vibration of an object.

Applications: signal processing, clustering, PDEs, shape optimization,
etc.



Linear vs. nonlinear eigenfunctions in applications

Laplacian eigenfunctions are of limited use for images and other data
sources which are inherently non-smooth.
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What do we expect from nonlinear spectral theory?

Wish list:

@ To be able to decompose every datum f
as

f= /0 c(C(1) di

¢(1): eigenfunctions, ¢(¢): coefficients
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What do we expect from nonlinear spectral theory?

Wish list: Applications:
@ To be able to decompose every datum f spectral analysis /
as o synthesis
f—/ c()¢(7) dt spectral filtering /
0 denoising

¢(1): eigenfunctions, ¢(¢): coefficients

@ To be able to compute individual eigen- clustering,
functions segmentation

machine learning



What are we prepared to give up?

@ Existence of an orthonormal basis of eigenfunctions;
@ Eigenfunctions in the decomposition

f= [ et

may become dependent on f. Such a decomposition may even not
exist.



Example: nonlinear spectral graph clustering




Example: computing distance functions
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Example: discrete-to-continuum limits
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Example: discrete-to-continuum limits
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Example: discrete-to-continuum limits
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Example: colour maps
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Practicalities

Lectures will take place on Tuesdays and Thursdays in a hybrid
format (MR12 and zoom), 11am-12pm;

Graduate course: no exam, example classes by arrangement if
there is interest from the audience;

Lectures will be recorded, recordings will be available on Moodle;

Lecture notes will be made available on Moodle; they are still under
development — please report any typos or factual errors you spot;
please do not share the notes with 3rd parties;

Nonlinear spectral analysis is not a complete theory yet; some
questions are unanswered;

The course web page is
https://www.damtp.cam.ac.uk/research/cia/introdu
ction—nonlinear-spectral—-analysis

Please email y.korolev@maths.cam.ac.uk with any questions.


https://www.damtp.cam.ac.uk/research/cia/introduction-nonlinear-spectral-analysis
https://www.damtp.cam.ac.uk/research/cia/introduction-nonlinear-spectral-analysis
mailto:y.korolev@maths.cam.ac.uk

Questions? Comments?
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