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Linear spectral analysis
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The Fourier transform
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Any signal f 2 L2(Rn) can be written as

f (x) =
Z

Rn
f̂ (�)e�ix·� d�,

fh(x) =
Z

Rn
h(�) f̂ (�)e�ix·� d�

where f̂ are the Fourier coefficients and e�ix·� are eigenfunctions of
��.

Important everyday application: frequency filtering



The Fourier transform
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Any signal f 2 L2(Rn) can be written as

f (x) =
Z

Rn
f̂ (�)e�ix·� d�, fh(x) =

Z

Rn
h(�) f̂ (�)e�ix·� d�

where f̂ are the Fourier coefficients and e�ix·� are eigenfunctions of
��.

Important everyday application: frequency filtering



Laplacian eigenfunctions

Laplacian eigenfunctions describe the modes of vibration of an object.
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Applications: signal processing, clustering, PDEs, shape optimization,
etc.



Linear vs. nonlinear eigenfunctions in applications

Laplacian eigenfunctions are of limited use for images and other data
sources which are inherently non-smooth.
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What do we expect from nonlinear spectral theory?

Wish list:
To be able to decompose every datum f
as

f =

Z 1

0
c(t)⇣(t) dt

⇣(t): eigenfunctions, c(t): coefficients

To be able to compute individual eigen-
functions

Applications:

spectral analysis /
synthesis

spectral filtering /
denoising

clustering,
segmentation

machine learning
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What are we prepared to give up?

Existence of an orthonormal basis of eigenfunctions;
Eigenfunctions in the decomposition

f =

Z 1

0
c(t)⇣(t) dt

may become dependent on f . Such a decomposition may even not
exist.



Example: nonlinear spectral graph clustering



Example: computing distance functions
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Example: discrete-to-continuum limits
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Example: colour maps
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Practicalities
Lectures will take place on Tuesdays and Thursdays in a hybrid
format (MR12 and zoom), 11am-12pm;

Graduate course: no exam, example classes by arrangement if
there is interest from the audience;

Lectures will be recorded, recordings will be available on Moodle;

Lecture notes will be made available on Moodle; they are still under
development – please report any typos or factual errors you spot;
please do not share the notes with 3rd parties;

Nonlinear spectral analysis is not a complete theory yet; some
questions are unanswered;

The course web page is
https://www.damtp.cam.ac.uk/research/cia/introdu
ction-nonlinear-spectral-analysis

Please email y.korolev@maths.cam.ac.uk with any questions.

https://www.damtp.cam.ac.uk/research/cia/introduction-nonlinear-spectral-analysis
https://www.damtp.cam.ac.uk/research/cia/introduction-nonlinear-spectral-analysis
mailto:y.korolev@maths.cam.ac.uk


Questions? Comments?
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