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1. Overview: Optimal transport crosses many branches of mathematics such as partial differ-
ential equations, probability, fluid mechanics and functional analysis. Applications of Optimal
Transport are increasing as numerical developments have made computations ever more effi-
cient. We now see applications of optimal transport in (i) image retrieval, registration and
morphing, (ii) color and texture analysis, (iii) image denoising and restoration, (iv) morphom-
etry, (v) super resolution, and (vi) machine learning. In this course I aim to give an overview
of the theory of optimal transport. Whilst we will cover some of the numerical methods I will
largely skip applications.

2. Scheduling: We meet for an hour, twice a week on Mondays and Fridays at 10am in MR5
for the first six weeks in the Lent term.

3. Prerequisites: Little prior knowledge will be needed with just some basic understanding
of measure theory and functional analysis.

4. Texts: I recommend Villani’s Topics in Optimal Transportation. 1 will mostly use this
book, for more recent topics I will use the relevant research papers. Other good references are
Villani’s ‘other’ book Optimal Transport Old and New, Santambrogio’s book Optimal Transport
for Applied Mathematicians, and Ambrosio, Gigli and Savaré’s book Gradient Flows in Metric
Spaces and in the Space of Probability Measures.

5. Content of Course: I aim to cover the following topics.

Kantorovich Duality. Kantorovich duality forms the basis for many theoretical results re-
garding optimal transport, for example the equivalence of Monge and Kantorovich’s for-
mulation.

Existence and Characterisations of Optimal Transport Maps. We prove existence of
optimal transport plans, and their characterisation as the subgradient of a convex func-
tion.

Connections to Fluid Mechanics: Benamou and Brenier’s Formulation. In their sem-
inal work Benamou and Brenier wrote the Wasserstein distance (an example of an optimal
transport distance) as the minimum kinetic energy of an evolving (in time) fluid satis-
fying the continuity equation and with the endpoints fixed (at ¢ = 0 and ¢ = 1). This
leads to one numerical approach for computing the Wasserstein distance and leads to the
understanding of the Riemannian structure in the Wasserstein metric space.



Wasserstein spaces, Geodesics, and Riemannian Structure. Via the Benamou and Bre-

nier formulation we can characterise tangent spaces and the Riemannian structure of the
Wasserstein metric space.

Gradient Flows for the Fokker-Planck Equation. Jordan, Kinderlehrer and Otto showed
how the Wasserstein distance arises naturally in the gradient flow approach for computing
solutions to the Fokker-Planck equation.

Numerical Methods: Cuturi’s Entropy Regularised Approach. Arguably the biggest de-
velopment (at least in recent years) in the computation of optimal transport distances was
due to Cuturi’s entropy regularised approach. The idea is to use entropy to regularise the
distance, then some simple rearrangements reveal this is a Kullback-Liebler divergence.
Standard methods, e.g. Sinkhorns algorithm, can then be used to find minimizers of the
entropy regularised distance.



