Gravitational waves from the electroweak phase transitions

Ruth Durrer

Department of Theoretical Physics
Geneva University
Switzerland

Work in collaboration with: Chiara Caprini, Elisa Fenu, Tina Kahniashvili, Thomas Konstandin, Geraldine Servant
arXiv:0906.4772

Cambridge, August 28, 2009
Outline

1. Introduction

2. Sources of gravitational waves

3. The spectrum
 - Causality
 - Temporal behavior, coherence vs incoherence

4. The electroweak phase transition
 - Bubble collisions
 - Turbulent MHD
 - Limits of primordial magnetic fields from the EW transition

5. Conclusions
Introduction

The Universe has expanded and cooled down from a very hot initial state to (presently) 2.7°K. It seems likely that it underwent several phase transitions during its evolution of adiabatic expansion.
Inflation
Events

- **Inflation**
- **Pre-heating**, $T_i \simeq 10^{14}$ GeV, $t_i = 2.3 \text{ sec} \left(\frac{1 \text{ MeV}}{T_i} \right)^2 g_{\text{eff}}(T)^{-1/2} \simeq 10^{-32} \text{ sec}$,

 $$\eta_i = a(t_i) / H(t_i) = 2t_i / (1 + z_i) \simeq 10^{-10} \text{ sec},$$

 $$\omega_i \simeq (10^9 - 10^{12}) \text{ Hz}.$$
Inflation

Pre-heating, $T_i \simeq 10^{14}$ GeV, $t_i = 2.3 \text{sec} \left(\frac{1 \text{MeV}}{T_i} \right)^2 g_{\text{eff}}(T)^{-1/2} \simeq 10^{-32} \text{sec}$,

$\eta_i = a(t_i)/H(t_i) = 2t_i/(1 + z_i) \simeq 10^{-10} \text{sec}$,

$\omega_i \simeq (10^9 - 10^{12}) \text{Hz}$.

The electroweak transition $T_{ew} \simeq 10^2$ GeV, $t_{ew} \simeq 10^{-10} \text{sec}$,

$\eta_{ew} \simeq 10^5 \text{sec}$, $\omega_{ew} \simeq (10^{-5} - 10^{-3}) \text{Hz}$.
- **Inflation**

- **Pre-heating**, \(T_i \simeq 10^{14} \text{GeV} \), \(t_i = 2.3 \text{sec} \left(\frac{1 \text{MeV}}{T_i} \right)^2 g_{\text{eff}}(T)^{-1/2} \simeq 10^{-32} \text{sec} \),

 \(\eta_i = a(t_i)/H(t_i) = 2t_i/(1 + z_i) \simeq 10^{-10} \text{sec} \),

 \(\omega_i \simeq (10^9 - 10^{12}) \text{Hz} \).

- **The electroweak transition** \(T_{\text{ew}} \simeq 10^2 \text{GeV} \), \(t_{\text{ew}} \simeq 10^{-10} \text{sec} \),

 \(\eta_{\text{ew}} \simeq 10^5 \text{sec} \), \(\omega_{\text{ew}} \simeq (10^{-5} - 10^{-3}) \text{Hz} \).

\(\Rightarrow \) **LISA**
Events

- **Inflation**
 \[T_i \simeq 10^{14} \text{GeV}, \quad t_i = 2.3 \text{sec} \left(\frac{1 \text{MeV}}{T_i} \right)^2 g_{\text{eff}}(T)^{-1/2} \simeq 10^{-32} \text{sec}, \]
 \[\eta_i = \frac{a(t_i)}{H(t_i)} = 2t_i/(1 + z_i) \simeq 10^{-10} \text{sec}, \]
 \[\omega_i \simeq (10^9 - 10^{12}) \text{Hz}. \]

- **Pre-heating**
 \[T_i \simeq 10^{14} \text{GeV}, \quad t_i = 2.3 \text{sec} \left(\frac{1 \text{MeV}}{T_i} \right)^2 g_{\text{eff}}(T)^{-1/2} \simeq 10^{-32} \text{sec}, \]
 \[\eta_i = \frac{a(t_i)}{H(t_i)} = 2t_i/(1 + z_i) \simeq 10^{-10} \text{sec}, \]
 \[\omega_i \simeq (10^9 - 10^{12}) \text{Hz}. \]

- **The electroweak transition**
 \[T_{ew} \simeq 10^2 \text{GeV}, \quad t_{ew} \simeq 10^{-10} \text{sec}, \]
 \[\eta_{ew} \simeq 10^5 \text{sec}, \quad \omega_{ew} \simeq (10^{-5} - 10^{-3}) \text{Hz}. \]
 \[\Rightarrow \text{LISA} \]

- **Confinement transition**
 \[T_c \simeq 10^2 \text{MeV}, \quad t_c \simeq 10^{-5} \text{sec}, \]
 \[\eta_c \simeq 10^7 \text{sec}, \quad \omega_c \simeq (10^{-7} - 10^{-5}) \text{Hz}. \]
- **Inflation**

 \[T_i \simeq 10^{14} \text{GeV}, \quad t_i = 2.3 \text{sec} \left(\frac{1 \text{MeV}}{T_i} \right)^2 g_{\text{eff}}(T)^{-1/2} \simeq 10^{-32} \text{sec}, \]

 \[\eta_i = a(t_i)/H(t_i) = 2t_i/(1 + z_i) \simeq 10^{-10} \text{sec}, \]

 \[\omega_i \simeq (10^9 - 10^{12}) \text{Hz}. \]

- **Pre-heating**

 \[T_i \simeq 10^{14} \text{GeV}, \quad t_i = 2.3 \text{sec} \left(\frac{1 \text{MeV}}{T_i} \right)^2 g_{\text{eff}}(T)^{-1/2} \simeq 10^{-32} \text{sec}, \]

 \[\eta_i = a(t_i)/H(t_i) = 2t_i/(1 + z_i) \simeq 10^{-10} \text{sec}, \]

 \[\omega_i \simeq (10^9 - 10^{12}) \text{Hz}. \]

- **The electroweak transition**

 \[T_{\text{ew}} \simeq 10^2 \text{GeV}, \quad t_{\text{ew}} \simeq 10^{-10} \text{sec}, \]

 \[\eta_{\text{ew}} \simeq 10^5 \text{sec}, \quad \omega_{\text{ew}} \simeq (10^{-5} - 10^{-3}) \text{Hz}. \]

 \[\Rightarrow \text{LISA} \]

- **Confinement transition**

 \[T_c \simeq 10^2 \text{MeV}, \quad t_c \simeq 10^{-5} \text{sec}, \]

 \[\eta_c \simeq 10^7 \text{sec}, \quad \omega_c \simeq (10^{-7} - 10^{-5}) \text{Hz}. \]

 \[\Rightarrow \text{pulsar timing arrays} \]
Events

- **Inflation**
 \[T_i \sim 10^{14} \text{GeV}, \quad t_i = 2.3 \text{sec} \left(\frac{1 \text{MeV}}{T_i} \right)^2 g_{\text{eff}}(T)^{-1/2} \sim 10^{-32} \text{sec}, \]
 \[\eta_i = a(t_i)/H(t_i) = 2t_i/(1 + z_i) \sim 10^{-10} \text{sec}, \]
 \[\omega_i \sim (10^9 - 10^{12}) \text{Hz}. \]

- **Pre-heating**, \[T_i \sim 10^{14} \text{GeV}, \quad t_i = 2.3 \text{sec} \left(\frac{1 \text{MeV}}{T_i} \right)^2 g_{\text{eff}}(T)^{-1/2} \sim 10^{-32} \text{sec}, \]
 \[\eta_i = a(t_i)/H(t_i) = 2t_i/(1 + z_i) \sim 10^{-10} \text{sec}, \]
 \[\omega_i \sim (10^9 - 10^{12}) \text{Hz}. \]

- **The electroweak transition** \[T_{ew} \sim 10^2 \text{GeV}, \quad t_{ew} \sim 10^{-10} \text{sec}, \]
 \[\eta_{ew} \sim 10^5 \text{sec}, \quad \omega_{ew} \sim (10^{-5} - 10^{-3}) \text{Hz}. \]
 \[\Rightarrow \text{LISA} \]

- **Confinement transition** \[T_c \sim 10^2 \text{MeV}, \quad t_c \sim 10^{-5} \text{sec}, \]
 \[\eta_c \sim 10^7 \text{sec}, \quad \omega_c \sim (10^{-7} - 10^{-5}) \text{Hz}. \]
 \[\Rightarrow \text{pulsar timing arrays} \]

??
Gravitational waves are sourced by fluctuations in the energy momentum tensor which have a non-vanishing spin-2 contribution.

\[ds^2 = a^2 \left(d\eta^2 + (\gamma_{ij} + 2h_{ij}) dx^i dx^j \right) \]

where \(h_{ij} \) is transverse and traceless.

In Fourier space \(k^i h_{ij} = h_j = 0 \).
Sources of gravitational waves

Gravitational waves are sourced by fluctuations in the energy momentum tensor which have a non-vanishing spin-2 contribution.

\[ds^2 = a^2 \left(d\eta^2 + (\gamma_{ij} + 2h_{ij})dx^i dx^j \right) \]

where \(h_{ij} \) is transverse and traceless.

In Fourier space \(k^i h_{ij} = h_i^i = 0 \).

Einstein’s eqn. to first order in \(h_{ij} \) give

\[\left(\partial^2_\eta + 2\mathcal{H}\partial_\eta + k^2 \right) h_{ij} = 8\pi Ga^2 \Pi_{ij} \]

Here \(\Pi_{ij}(k) \) is the Fourier component of the tensors type (spin-2) anisotropic stress and

\[\mathcal{H} = \frac{a'}{a}. \]
Sources of gravitational waves

Gravitational waves are sourced by fluctuations in the energy momentum tensor which have a non-vanishing spin-2 contribution.

\[ds^2 = a^2 \left(d\eta^2 + (\gamma_{ij} + 2h_{ij}) dx^i dx^i \right) \]

where \(h_{ij} \) is transverse and traceless.

In Fourier space \(k^i h_{ij} = h_i^i = 0 \).

Einstein’s eqn. to first order in \(h_{ij} \) give

\[\left(\partial^2_{\eta} + 2\mathcal{H}\partial_{\eta} + k^2 \right) h_{ij} = 8\pi G a^2 \Pi_{ij} \]

Here \(\Pi_{ij}(k) \) is the Fourier component of the tensors type (spin-2) anisotropic stress and

\[\mathcal{H} = \frac{a'}{a} \]

During a first order phase transition anisotropic stresses can be generated by

(Kamionkowksi, Kosowsky, Turner, Watkins, 92-94)

- Colliding bubbles
Sources of gravitational waves

Gravitational waves are sourced by fluctuations in the energy momentum tensor which have a non-vanishing spin-2 contribution.

\[ds^2 = a^2 \left(d\eta^2 + (\gamma_{ij} + 2h_{ij}) dx^i dx^j \right) \]

where \(h_{ij} \) is transverse and traceless.

In Fourier space \(k^i h_{ij} = h^{i}_{i} = 0 \).

Einstein’s eqn. to first order in \(h_{ij} \) give

\[\left(\partial_{\eta}^2 + 2\mathcal{H}\partial_\eta + k^2 \right) h_{ij} = 8\pi G a^2 \Pi_{ij} \]

Here \(\Pi_{ij}(k) \) is the Fourier component of the tensors type (spin-2) anisotropic stress and \(\mathcal{H} = \frac{a'}{a} \).

During a first order phase transition anisotropic stresses can be generated by (Kamionkowski, Kosowsky, Turner, Watkins, 92-94)

- Colliding bubbles
- Inhomogeneities in the distribution of the order parameter field.
Sources of gravitational waves

Gravitational waves are sourced by fluctuations in the energy momentum tensor which have a non-vanishing spin-2 contribution.

\[ds^2 = a^2 \left(d\eta^2 + (\gamma_{ij} + 2h_{ij})dx^i dx^j \right) \]

where \(h_{ij} \) is transverse and traceless.

In Fourier space \(k^i h_{ij} = h^i_i = 0 \).

Einstein’s eqn. to first order in \(h_{ij} \) give

\[\left(\partial^2_\eta + 2H \partial_\eta + k^2 \right) h_{ij} = 8\pi G a^2 \Pi_{ij} \]

Here \(\Pi_{ij}(k) \) is the Fourier component of the tensors type (spin-2) anisotropic stress and \(H = \frac{a'}{a} \).

During a first order phase transition anisotropic stresses can be generated by (Kamionkowski, Kosowsky, Turner, Watkins, 92-94)

- Colliding bubbles
- Inhomogeneities in the distribution of the order parameter field.
- Inhomogeneities in the cosmic fluid (e.g. turbulence) or other fields (e.g. magnetic field).
Because of causality, the correlator \(\langle \Pi_{ij}(\eta_1, x)\Pi_{lm}(\eta_2, y) \rangle = M_{ijlm}(\eta_1, \eta_2, x - y) \) is a function of compact support. For distances \(|x - y| > \max(\eta_1, \eta_2)\), \(M \equiv 0 \).
Because of causality, the correlator \(\langle \Pi_{ij}(\eta_1, x)\Pi_{lm}(\eta_2, y) \rangle = M_{ijlm}(\eta_1, \eta_2, x - y) \) is a function of compact support. For distances \(|x - y| > \max(\eta_1, \eta_2)\), \(M \equiv 0 \).

Therefore, the spatial Fourier transform, \(M_{ijlm}(\eta_1, \eta_2, k) \) is analytic in \(k \).
Because of causality, the correlator $\langle \Pi_{ij}(\eta_1, x)\Pi_{lm}(\eta_2, y) \rangle = M_{ijlm}(\eta_1, \eta_2, x - y)$ is a function of compact support. For distances $|x - y| > \max(\eta_1, \eta_2)$, $M \equiv 0$.

Therefore, the spatial Fourier transform, $M_{ijlm}(\eta_1, \eta_2, k)$ is analytic in k.

We decompose Π_{ij} into two helicity modes which we assume to be uncorrelated (parity),

$$
\Pi_{ij}(\eta, k) = e^+_{ij} \Pi^+(\eta, k) + e^-_{ij} \Pi^-(\eta, k)
$$

$$
\langle \Pi^+(\eta, k)\Pi^+(\eta', k') \rangle = \langle \Pi^-(\eta, k)\Pi^-(\eta', k') \rangle = (2\pi)^3 \delta^3(k - k') \rho_X^2 P(\eta, \eta', k)
$$

$$
\langle \Pi^+(\eta, k)\Pi^-(\eta', k') \rangle = 0.
$$

Here ρ_X is the energy density of the component X with anisotropic stress Π which has been factorized in order to keep $k^3 P(\eta, \eta', k)$ dimensionless.
Because of causality, the correlator \(\langle \Pi_{ij}(\eta_1, x)\Pi_{lm}(\eta_2, y) \rangle = M_{ijlm}(\eta_1, \eta_2, x - y) \) is a function of compact support. For distances \(|x - y| > \max(\eta_1, \eta_2) \), \(M \equiv 0 \).

Therefore, the spatial Fourier transform, \(M_{ijlm}(\eta_1, \eta_2, k) \) is analytic in \(k \).

We decompose \(\Pi_{ij} \) into two helicity modes which we assume to be uncorrelated (parity),

\[
\Pi_{ij}(\eta, k) = e_{ij}^+ \Pi_+(\eta, k) + e_{ij}^- \Pi_-(\eta, k)
\]

\[
\langle \Pi_+(\eta, k)\Pi_+^{*}(\eta', k') \rangle = \langle \Pi_-(\eta, k)\Pi_-^{*}(\eta', k') \rangle = (2\pi)^3 \delta^3(k - k') \rho_X^2 P(\eta, \eta', k)
\]

\[
\langle \Pi_+(\eta, k)\Pi_-^{*}(\eta', k') \rangle = 0.
\]

Here \(\rho_X \) is the energy density of the component \(X \) with anisotropic stress \(\Pi \) which has been factorized in order to keep \(k^3 P(\eta, \eta', k) \) dimensionless.

Causality implies that the function \(P(\eta, \eta', k) \) is analytic in \(k \). We therefore expect it to start out as white noise and to decay beyond a certain correlation scale \(k_c(\eta, \eta') > \min(1/\eta, 1/\eta') \).
The spectrum
If the gravitational wave source is active only for a short duration $\Delta \eta$ (less than one Hubble time), we can neglect the damping term $2H$ in the equation of motion for h.
If the gravitational wave source is active only for a short duration $\Delta \eta$ (less than one Hubble time), we can neglect the damping term $2\mathcal{H}$ in the equation of motion for h. The solution with vanishing initial conditions is then

\[
h(k, \eta) = \frac{8i\pi G a^3_*}{6ak} \left[e^{-ik\eta} \int_{\eta_*}^{\eta_*+\Delta \eta} d\eta' e^{ik\eta'} \Pi(\eta', k) + e^{ik\eta} \int_{\eta_*}^{\eta_*+\Delta \eta} d\eta' e^{-ik\eta'} \Pi(\eta', k) \right]
\]

\[
= \frac{8i\pi G a^3_*}{6ak} \left[e^{-ik\eta} \Pi(k, k) + e^{ik\eta} \Pi(-k, k) \right]
\]
If the gravitational wave source is active only for a short duration \(\Delta \eta \) (less than one Hubble time), we can neglect the damping term \(2H \) in the equation of motion for \(h \).

The solution with vanishing initial conditions is then

\[
h(k, \eta) = \frac{8i\pi G a_\ast^3}{6ak} \left[e^{-ik\eta} \int_{\eta_*}^{\eta_* + \Delta \eta} d\eta' e^{ik\eta'} \Pi(\eta', k) + e^{ik\eta} \int_{\eta_*}^{\eta_* + \Delta \eta} d\eta' e^{-ik\eta'} \Pi(\eta', k) \right]
\]

\[
= \frac{8i\pi G a_\ast^3}{6ak} \left[e^{-ik\eta} \Pi(k, k) + e^{ik\eta} \Pi(-k, k) \right]
\]

The gravitational wave energy density is given by

\[
\rho_{gw}(\eta, x) = \frac{1}{32\pi G a^2} \langle \partial_\eta h_{ij}(\eta, x) \partial_\eta h_{ij}^*(\eta, x) \rangle
\]
If the gravitational wave source is active only for a short duration $\Delta \eta$ (less than one Hubble time), we can neglect the damping term $2H$ in the equation of motion for h. The solution with vanishing initial conditions is then

$$h(k, \eta) = \frac{8i \pi G \alpha^3}{6ak} \left[e^{-i k \eta} \int_{\eta_*}^{\eta_* + \Delta \eta} d\eta' e^{i k \eta'} \Pi(\eta', k) + e^{i k \eta} \int_{\eta_*}^{\eta_* + \Delta \eta} d\eta' e^{-i k \eta'} \Pi(\eta', k) \right]$$

$$= \frac{8i \pi G \alpha^3}{6ak} \left[e^{-i k \eta} \Pi(k, k) + e^{i k \eta} \Pi(-k, k) \right]$$

The gravitational wave energy density is given by

$$\rho_{gw}(\eta, x) = \frac{1}{32 \pi G a^2} \left\langle \partial_{\eta} h_{ij}(\eta, x) \partial_{\eta} h^*_{ij}(\eta, x) \right\rangle$$

If the Universe is radiation dominated during the phase when the gravitational waves are generated, this gives on large scales, $k < k_c$

$$\frac{d\Omega_{gw}}{d \ln(k)}(\eta_0) = \frac{12 \Omega_{rad}(\eta_0)}{\pi^2} \left(\frac{\Omega_X(\eta_*)}{\Omega_{rad}(\eta_*)} \right)^2 \mathcal{H}_*^2 k^3 \text{Re}[P(k, k, k)] .$$
The spectrum

\[\frac{d\Omega_{gw}}{d \ln(k)} = \frac{12 \Omega_{\text{rad}}}{\pi^2} \left(\frac{\Omega_X}{\Omega_{\text{rad}}} \right)^2 \mathcal{H}^2 k^3 \text{Re}[P(k, k, k)] . \]

Here

\[P(\omega, \omega', k) \equiv \int_{-\infty}^{-\infty} d\eta \int_{-\infty}^{-\infty} d\eta' P(\eta, \eta', k) e^{i(\omega \eta - \omega' \eta')} . \]
The spectrum

\[
\frac{d\Omega_{gw}}{d \ln(k)} = \frac{12 \Omega_{rad}}{\pi^2} \left(\frac{\Omega_X}{\Omega_{rad}} \right)^2 \mathcal{H}_*^2 k^3 \text{Re}[P(k, k, k)].
\]

Here

\[
P(\omega, \omega', k) \equiv \int_{-\infty}^{-\infty} d\eta \int_{-\infty}^{-\infty} d\eta' P(\eta, \eta', k) e^{i(\omega \eta - \omega' \eta')}.\]

On large scales, \(k < k_c > \mathcal{H}_* \) the GW energy density from a 'causal' source always scales like \(k^3 \). This remains valid also for long duration sources. \(1/k_c \) is the correlation scale which is smaller than the co-moving Hubble scale \(1/\mathcal{H}_* = \eta_* \).
The spectrum

\[\frac{d\Omega_{gw}}{d \ln(k)} = \frac{12\Omega_{\text{rad}}}{\pi^2} \left(\frac{\Omega_X}{\Omega_{\text{rad}}} \right)^2 \mathcal{H}_*^2 k^3 \text{Re}[P(k, k, k)]. \]

Here

\[P(\omega, \omega', k) \equiv \int_{-\infty}^{\infty} d\eta \int_{-\infty}^{\infty} d\eta' P(\eta, \eta', k) e^{i(\omega\eta - \omega'\eta')} . \]

On large scales, \(k < k_c > \mathcal{H}_* \) the GW energy density from a 'causal' source always scales like \(k^3 \). This remains valid also for long duration sources. \(1/k_c \) is the correlation scale which is smaller than the co-moving Hubble scale \(1/\mathcal{H}_* = \eta_* \).

The behavior or the spectrum close to the peak and its decay rate on smaller scales depends on the source characteristics, on its temporal behavior and its power spectrum.
The spectrum

\[
\frac{d\Omega_{gw}}{d \ln(k)} = \frac{12\Omega_{\text{rad}}}{\pi^2} \left(\frac{\Omega_X}{\Omega_{\text{rad}}} \right)^2 \mathcal{H}_* k^3 \text{Re}[P(k, k, k)].
\]

Here

\[
P(\omega, \omega', k) \equiv \int_{-\infty}^{-\infty} d\eta \int_{-\infty}^{-\infty} d\eta' P(\eta, \eta', k) e^{i(\omega \eta - \omega' \eta')}.\]

On large scales, \(k < k_c > \mathcal{H}_* \) the GW energy density from a 'causal' source always scales like \(k^3 \). This remains valid also for long duration sources. \(1/k_c \) is the correlation scale which is smaller than the co-moving Hubble scale \(1/\mathcal{H}_* = \eta_* \).

The behavior or the spectrum close to the peak and its decay rate on smaller scales depends on the source characteristics, on its temporal behavior and its power spectrum.

In the following we consider a discontinuous \((g_1) \), a continuous but not differentiable \((g_2) \) and a once differentiable \((g_3) \) time behavior.
\[P(\eta, \eta', k) = \delta(\eta - \eta') F(k) g^2(\eta). \]

Hence
\[P(k, k, k) = F(k) \int_{\eta_*}^{\eta_* + \Delta \eta_*} g^2(\eta) d\eta. \]

\[k_c = \pi \beta / \nu \]

Caprini, RD, Konstandin and Servant, 2009
A coherent source

\[P(\eta, \eta', k) = \sqrt{P(\eta, \eta, k)} \sqrt{P(\eta', \eta', k)} . \]

Hence

\[P(k, k, k) = \left(\int_{\eta_*}^{\eta_* + \Delta \eta_*} \sqrt{P(\eta, \eta, k)} d\eta \right)^2 . \]

\[\nu = 1 \]

\[\nu = 0.01 \]

\[k_c = \frac{\pi \beta}{\nu} \]

\[\omega_c = \pi \beta \]

Caprini RD, Konstantin and Servant, 2009
For a totally incoherent source the peak position of the GW spectrum is determined by the peak of the spatial Fourier transform of the source.
Peak position

- For a totally incoherent source the peak position of the GW spectrum is determined by the peak of the **spatial** Fourier transform of the source.
- For a coherent source with $P(\eta, \eta, k) = g(\eta)^2 F(k)$, the peak position depends on the time structure of $g(\eta)$:
Peak position

- For a totally incoherent source the peak position of the GW spectrum is determined by the peak of the spatial Fourier transform of the source.
- For a coherent source with $P(\eta, \eta, k) = g(\eta)^2 F(k)$, the peak position depends on the time structure of $g(\eta)$:
 - If $g(\eta)$ is discontinuous, hence $g(\omega) \propto \omega^{-1}$ beyond the peak, $P(k, k, k) \propto k^{-2} F(k)$, the peak position of the GW spectrum $\propto k^3 P(k, k, k) \propto k F(k)$ is again determined by the peak of the spatial Fourier transform of the source.
For a totally incoherent source the peak position of the GW spectrum is determined by the peak of the spatial Fourier transform of the source.

For a coherent source with $P(\eta, \eta, k) = g(\eta)^2 F(k)$, the peak position depends on the time structure of $g(\eta)$:

1. If $g(\eta)$ is discontinuous, hence $g(\omega) \propto \omega^{-1}$ beyond the peak, $P(k, k, k) \propto k^{-2} F(k)$, the peak position of the GW spectrum $\propto k^3 P(k, k, k) \propto k F(k)$ is again determined by the peak of the spatial Fourier transform of the source.

2. If $g(\eta)$ is continuous but not differentiable, hence $g(\omega) \propto \omega^{-2}$ beyond the peak, $P(k, k, k) \propto k^{-4} F(k)$, the peak position of the GW spectrum $\propto k^3 P(k, k, k) \propto k^{-1} F(k)$ is determined by the peak of the temporal Fourier transform of the source.
For a totally incoherent source the peak position of the GW spectrum is determined by the peak of the spatial Fourier transform of the source.

For a coherent source with $P(\eta, \eta, k) = g(\eta)^2 F(k)$, the peak position depends on the time structure of $g(\eta)$:

1. If $g(\eta)$ is discontinuous, hence $g(\omega) \propto \omega^{-1}$ beyond the peak, $P(k, k, k) \propto k^{-2} F(k)$, the peak position of the GW spectrum $\propto k^3 P(k, k, k) \propto kF(k)$ is again determined by the peak of the spatial Fourier transform of the source.

2. If $g(\eta)$ is continuous but not differentiable, hence $g(\omega) \propto \omega^{-2}$ beyond the peak, $P(k, k, k) \propto k^{-4} F(k)$, the peak position of the GW spectrum $\propto k^3 P(k, k, k) \propto k^{-1} F(k)$ is determined by the peak of the temporal Fourier transform of the source.

3. Idem if $g(\eta)$ is once continuously differentiable, $g(\omega) \propto \omega^{-3}$, $P(k, k, k) \propto k^{-3} F(k)$.

Ruth Durrer (Université de Genève) Gravitational waves from the ew phase transition Cambridge 2009 12 / 24
For a totally incoherent source the peak position of the GW spectrum is determined by the peak of the spatial Fourier transform of the source.

For a coherent source with $P(\eta, \eta, k) = g(\eta)^2 F(k)$, the peak position depends on the time structure of $g(\eta)$:

1. If $g(\eta)$ is discontinuous, hence $g(\omega) \propto \omega^{-1}$ beyond the peak, $P(k, k, k) \propto k^{-2} F(k)$, the peak position of the GW spectrum $\propto k^3 P(k, k, k) \propto kF(k)$ is again determined by the peak of the spatial Fourier transform of the source.

2. If $g(\eta)$ is continuous but not differentiable, hence $g(\omega) \propto \omega^{-2}$ beyond the peak, $P(k, k, k) \propto k^{-4} F(k)$, the peak position of the GW spectrum $\propto k^3 P(k, k, k)$ is determined by the peak of the temporal Fourier transform of the source.

3. Idem if $g(\eta)$ is continuously differentiable, $g(\omega) \propto \omega^{-3}$, $P(k, k, k) \propto k^{-3} F(k)$.

Caprini, RD, Konstandin and Servant, 2009
$$k_c = \frac{\pi \beta}{\nu}, \quad \nu = 0.01$$

Caprini, RD, Konstandin and Servant, 2009

$$g_1 \not\in C^0, \quad g_2 \in C^0 \text{ but } g_2 \not\in C^1, \quad g_3 \in C^1 \text{ but } g_3 \not\in C^2.$$
According to the standard model, the electroweak transition is not even second order, but only a cross-over. Then, this transition does not lead to the formation of gravitational waves.
According to the standard model, the electroweak transition is not even second order, but only a cross-over. Then, this transition does not lead to the formation of gravitational waves.

However, if the standard model is somewhat modified e.g. in the Higgs sector or in certain regions of the MSSM parameter space, the electroweak phase transition can become first order, even strongly first order and generate gravitational waves by
According to the standard model, the electroweak transition is not even second order, but only a cross-over. Then, this transition does not lead to the formation of gravitational waves.

However, if the standard model is somewhat modified e.g. in the Higgs sector or in certain regions of the MSSM parameter space, the electroweak phase transition can become first order, even strongly first order and generate gravitational waves by

- Bubble collisions
According to the standard model, the electroweak transition is not even second order, but only a cross-over. Then, this transition does not lead to the formation of gravitational waves.

However, if the standard model is somewhat modified e.g. in the Higgs sector or in certain regions of the MSSM parameter space, the electroweak phase transition can become first order, even strongly first order and generate gravitational waves by
- Bubble collisions
- Turbulence and magnetic fields.
According to the standard model, the electroweak transition is not even second order, but only a cross-over. Then, this transition does not lead to the formation of gravitational waves.

However, if the standard model is somewhat modified e.g. in the Higgs sector or in certain regions of the MSSM parameter space, the electroweak phase transition can become first order, even strongly first order and generate gravitational waves by:
- Bubble collisions
- Turbulence and magnetic fields.

The spectrum is supposed to peak at the correlation scale $k_c = \beta \simeq 100/\eta_\ast \sim 10^{-3}\text{Hz}$, which is close to the frequency of the peak sensitivity for the space born gravitational wave antenna LISA, proposed for launch in 2018, a ESA cosmic vision project.
According to the standard model, the electroweak transition is not even second order, but only a cross-over. Then, this transition does not lead to the formation of gravitational waves.

However, if the standard model is somewhat modified, e.g. in the Higgs sector or in certain regions of the MSSM parameter space, the electroweak phase transition can become first order, even strongly first order and generate gravitational waves by:

- Bubble collisions
- Turbulence and magnetic fields

The spectrum is such that

$$k_c = \beta \simeq 100/\eta_* \sim \frac{10}{3} \text{Hz}$$

which is close to the frequency of the peak sensitivity for the space born ESA cosmic vision project LISA, proposed for launch in 2018.
The peak amplitude of the resulting GW spectrum depends on the strength of the phase transition, $\alpha = \rho V / \rho_{\text{rad}}$ and the velocity of the bubble wall, v_b.
The peak amplitude of the resulting GW spectrum depends on the strength of the phase transition, \(\alpha = \frac{\rho_V}{\rho_{\text{rad}}} \) and the velocity of the bubble wall, \(v_b \).

The spectrum goes like \(\frac{d\Omega_{GW}}{d\ln(k)} \propto k^3 \), \(k < k_c \simeq \pi \beta \) and \(\frac{d\Omega_{GW}}{d\ln(k)} \propto k^{-1} \), \(k > k_c \). The peak sensitivity of LISA is supposed to be about \(h^2 \frac{d\Omega_{GW}}{d\ln(k)} \bigg|_{k=k_p} \simeq 10^{-12} \), \(k_p \sim 10^{-3} \text{Hz} \).
The electroweak phase transition: GW’s from bubble collisions

- The peak amplitude of the resulting GW spectrum depends on the strength of the phase transition, $\alpha = \rho V / \rho_{\text{rad}}$ and the velocity of the bubble wall, v_b.
- The spectrum goes like $\frac{d\Omega_{\text{GW}}}{d\ln(k)} \propto k^3$, $k < k_c \simeq \pi \beta$ and $\frac{d\Omega_{\text{GW}}}{d\ln(k)} \propto k^{-1}$, $k > k_c$. The peak sensitivity of LISA is supposed to be about $h^2 \left| \frac{d\Omega_{\text{GW}}}{d\ln(k)} \right|_{k=k_p} \simeq 10^{-12}$, $k_p \sim 10^{-3}\text{Hz}$.

Caprini, RD, Konstandin, Servant, 2009
Huber & Konstandin 2008

Ω_{GW} from colliding bubbles, numerical results.
The Reynolds number of the cosmic plasma at $T \sim 100\text{GeV}$ is very high. The bubbles of the broken phase expanding into it therefore lead to turbulence.
The Reynolds number of the cosmic plasma at $T \sim 100\text{GeV}$ is very high. The bubbles of the broken phase expanding into it therefore lead to turbulence.

Furthermore, in the broken phase the electromagnetic field does generically not vanish. The high conductivity rapidly damps the electric fields so that we are left with a magnetic field in a turbulent plasma, MHD turbulence.
The electroweak phase transition: GW’s from turbulence and magnetic fields

- The Reynolds number of the cosmic plasma at $T \sim 100\text{GeV}$ is very high. The bubbles of the broken phase expanding into it therefore lead to turbulence.

- Furthermore, in the broken phase the electromagnetic field does generically not vanish. The high conductivity rapidly damps the electric fields so that we are left with a magnetic field in a turbulent plasma, MHD turbulence.

- Because both, the vorticity and the magnetic field are divergence free, causality requires that both, $P_v(k)$ and $P_B(k) \propto k^2$ for small k.

 $$\langle \mathbf{v}(k) \mathbf{v}(k') \rangle = (2\pi)^3 \delta^3(\mathbf{k} - \mathbf{k}') (\hat{k}_j \hat{k}_i - \delta_{ij}) P_v(k),$$

 $$\langle \mathbf{B}(k) \mathbf{B}(k') \rangle = (2\pi)^3 \delta^3(\mathbf{k} - \mathbf{k}') (\hat{k}_j \hat{k}_i - \delta_{ij}) P_B(k)$$

 and the functions $(\hat{k}_j \hat{k}_i - \delta_{ij})P_{\bullet}(k)$ must be analytic because of causality.
The electroweak phase transition: GW’s from turbulence and magnetic fields

- The Reynolds number of the cosmic plasma at $T \sim 100\text{GeV}$ is very high. The bubbles of the broken phase expanding into it therefore lead to turbulence.
- Furthermore, in the broken phase the electromagnetic field does generically not vanish. The high conductivity rapidly damps the electric fields so that we are left with a magnetic field in a turbulent plasma, MHD turbulence.
- Because both, the vorticity and the magnetic field are divergence free, causality requires that both, $P_v(k)$ and $P_B(k) \propto k^2$ for small k.
- The behavior of the spectrum on scaler smaller than the correlations scale $k > k_c$ is expected to be a Kolmogorov spectrum for the vorticity field, $P_v \propto k^{-11/3}$ and an Iroshnikov–Kraichnan spectrum for the magnetic field, $P_B \propto k^{-7/2}$.
The electroweak phase transition: GW’s from turbulence and magnetic fields

- The Reynolds number of the cosmic plasma at $T \sim 100\text{GeV}$ is very high. The bubbles of the broken phase expanding into it therefore lead to turbulence.
- Furthermore, in the broken phase the electromagnetic field does generically not vanish. The high conductivity rapidly damps the electric fields so that we are left with a magnetic field in a turbulent plasma, MHD turbulence.
- Because both, the vorticity and the magnetic field are divergence free, causality requires that both, $P_v(k)$ and $P_B(k) \propto k^2$ for small k.

\[
\langle v_i(k)v_j(k') \rangle = (2\pi)^3 \delta^3(k-k')(\hat{k}_j \hat{k}_i - \delta_{ij})P_v(k),
\]

\[
\langle B_i(k)B_j(k') \rangle = (2\pi)^3 \delta^3(k-k')(\hat{k}_j \hat{k}_i - \delta_{ij})P_B(k)
\]
and the functions $(\hat{k}_j \hat{k}_i - \delta_{ij})P_\bullet(k)$ must be analytic because of causality.

- The behavior of the spectrum on scalar smaller than the correlations scale $k > k_c$ is expected to be a Kolmogorov spectrum for the vorticity field, $P_v \propto k^{-11/3}$ and an Iroshnikov–Kraichnan spectrum for the magnetic field, $P_B \propto k^{-7/2}$.
- For the induced GW spectrum this yields

\[
\frac{d\Omega_{GW\bullet}(k, \eta_0)}{d \ln(k)} \simeq \Omega_{\text{rad}}(\eta_0) \left(\frac{\Omega_\bullet(\eta_*)}{\Omega_{\text{rad}}(\eta_*)} \right)^2 \times \begin{cases}
(k/k_c)^3 & \text{for } k < k_c \\
(k/k_c)^{-\alpha} & \text{for } k > k_c
\end{cases}
\]

For $\bullet = v$ we have $\alpha = 11/3 - 1 = 8/3$ and for $\bullet = B$ we have $\alpha = 7/2 - 1 = 5/2$.

(See Caprini & RD, 2006)
The electroweak phase transition:
GW’s from turbulence and magnetic fields

\[\Omega_{GW} \text{ from magnetic fields (red) and turbulence (blue), total (black). Modelling the time-decorrelation of the source (Kraichnan decorrelation) by a 'top-hat' in Fourier space. Sensitivity curves from A. Buonanno 2003.} \]
We also consider a phase transition at $T = 5 \times 10^6$ GeV with $\beta/H = 50$.

Caprini, RD, Servant, in preparation
It is difficult to estimate $\Omega_B(\eta_*)$ or $\Omega_V(\eta_*)$, but since causality requires the spectra to be so blue, \(\frac{d\Omega_B(k,\eta_*)}{d\ln(k)} \propto k^5 \), the limit on gravitational waves (which comes from small scales \(k \simeq k_c \) yields very strong limits on primordial magnetic fields on large scales already from the simple *nucleosynthesis constraint*, \(\Omega_{GW} \lesssim 0.1\Omega_{\text{rad}} \).
The electroweak phase transition: GW’s from turbulence and magnetic fields

It is difficult to estimate $\Omega_B(\eta_*)$ or $\Omega_v(\eta_*)$, but since causality requires the spectra to be so blue, $\frac{d\Omega_B(k,\eta_*)}{d\ln(k)} \propto k^5$, the limit on gravitational waves (which comes from small scales $k \approx k_c$) yields very strong limits on primordial magnetic fields on large scales already from the simple nucleosynthesis constraint, $\Omega_{GW} \lesssim 0.1\Omega_{rad}$.

E.g. for $k = (0.1\text{Mpc})^{-1}$ we obtain $k^{3/2}B(k) < 10^{-30}\text{Gauss}$.

![Graph](image_url)

Caprini & RD., 2001
The most optimistic dynamo models for the generation of the magnetic fields of about 10^{-6} Gauss observed in galaxies and clusters, need seed fields of the order of at least 10^{-21} Gauss, which are excluded by this limit.
The most optimistic dynamo models for the generation of the magnetic fields of about 10^{-6} Gauss observed in galaxies and clusters, need seed fields of the order of at least 10^{-21} Gauss, which are excluded by this limit.

There is a possible way out: During the electroweak phase transition parity is broken. Actually, the Chern-Simon winding number of the gauge field, $N_{CS} \propto \int F \wedge A$, which is related to the baryon number, has an electromagnetic part to it which is nothing else than the helicity of the magnetic field, $H = V^{-1} \int_V A \cdot B d^3x$ (Vachaspati, 2001).
The most optimistic dynamo models for the generation of the magnetic fields of about 10^{-6} Gauss observed in galaxies and clusters, need seed fields of the order of at least 10^{-21} Gauss, which are excluded by this limit.

There is a possible way out: During the electroweak phase transition parity is broken. Actually, the Chern-Simon winding number of the gauge field, $N_{CS} \propto \int F \wedge A$, which is related to the baryon number, has an electromagnetic part to it which is nothing else than the helicity of the magnetic field, $H = V^{-1} \int_V A \cdot B d^3x$ (Vachaspati, 2001).

This relates the baryon number the the magnetic helicity.
The most optimistic dynamo models for the generation of the magnetic fields of about 10^{-6} Gauss observed in galaxies and clusters, need seed fields of the order of at least 10^{-21} Gauss, which are excluded by this limit.

There is a possible way out: During the electroweak phase transition parity is broken. Actually, the Chern-Simon winding number of the gauge field, $N_{CS} \propto \int F \wedge A$, which is related to the baryon number, has an electromagnetic part to it which is nothing else than the helicity of the magnetic field, $H = V^{-1} \int_V A \cdot Bd^3x$ (Vachaspati, 2001).

This relates the baryon number the the magnetic helicity.

Such helical magnetic fields lead to T-B and E-B correlations in the CMB, and they also generate gravitational waves with non-vanishing helicity (Caprini, Kahniashvili, RD. 2004).
Contrary to a non-helical magnetic field, helicity conservation for a helical field does lead to an inverse cascade in the evolution of the magnetic field:

\[
\frac{\epsilon_{B(k,t)}(0)}{\epsilon_{B(0)}(0)} \propto \frac{1}{k_B}.
\]

Campanelli, 2007
Contrary to a non-helical magnetic field, helicity conservation for a helical field does lead to an inverse cascade in the evolution of the magnetic field:

\[
\frac{\varepsilon_{\theta}(k,t)}{E_B(0)\sqrt{\gamma}}(0) - \frac{\varepsilon_{\theta}(0)}{E_B(0)\sqrt{\gamma}}(0)
\]

Campanelli, 2007

This can move power from small to larger scales. However, this is not quite sufficient to present a way out for the electroweak phase transition, but it can work for the QCD phase transition (Caprini, RD, Fenu 2009).
Contrary to a non-helical magnetic field, helicity conservation for a helical field does lead to an inverse cascade in the evolution of the magnetic field:

\[
\frac{\epsilon_B(k,t)}{\epsilon_B(0)} \frac{\xi_B(0)}{\xi_B(k,t)} \propto k_B^{-6.3} (k_B^{-1} - 10^9) \]

This can move power from small to larger scales. However, this is not quite sufficient to present a way out for the electroweak phase transition, but it can work for the QCD phase transition (Caprini, RD, Fenu 2009).

In this case, the GW background would not be parity symmetric. There would be more GW’s of one helicity than of the other.
First order phase transitions stir the relativistic cosmic plasma sufficiently to lead to the generation of a stochastic gravitational wave background.
Conclusions

- First order phase transitions stir the relativistic cosmic plasma sufficiently to lead to the generation of a stochastic gravitational wave background.
- Observing such a background would open a new window to the early Universe and to high energy physics!
First order phase transitions stir the relativistic cosmic plasma sufficiently to lead to the generation of a stochastic gravitational wave background.

Observing such a background would open a new window to the early Universe and to high energy physics!

Generically, the density parameter of the GW background is of the order of

$$\Omega_{GW}(t_0) \sim \Omega_{rad}(t_0) \left(\frac{\Omega_X(t_*)}{\Omega_{rad}(t_*)} \right)^2$$
Conclusions

- First order phase transitions stir the relativistic cosmic plasma sufficiently to lead to the generation of a stochastic gravitational wave background.
- Observing such a background would open a new window to the early Universe and to high energy physics!
- Generically, the density parameter of the GW background is of the order of
 \[
 \Omega_{GW}(t_0) \approx \Omega_{rad}(t_0) \left(\frac{\Omega_X(t_*)}{\Omega_{rad}(t_*)} \right)^2
 \]
- The spectrum grows like \(\frac{d\Omega_{GW}(k,t_0)}{d \ln(k)} \propto k^3 \) on large scales and decays on scales smaller than the correlations scale \(k_c \sim 1/\eta_* \). The decay law depends of the physics of the source.
If the SM holds, the electroweak phase transition is not of first order and does (probably) not generate an appreciable gravitational wave background. However, simple deviations from the SM can make it first order (like adding a Higgs singlet (Ashoorioon & Konstandin 2009).
Conclusions

- If the SM holds, the electroweak phase transition is not of first order and does (probably) not generate an appreciable gravitational wave background. However, simple deviations from the SM can make it first order (like adding a Higgs singlet (Ashoorioon & Konstandin 2009)).

- In this case we expect a GW background which can be detected by LISA.
Conclusions

- If the SM holds, the electroweak phase transition is not of first order and does (probably) not generate an appreciable gravitational wave background. However, simple deviations from the SM can make it first order (like adding a Higgs singlet (Ashoorioon & Konstandin 2009)).

- In this case we expect a GW background which can be detected by LISA.

- It has been proposed that the magnetic fields generated in this case, could represent the seeds for the fields observed in galaxies and clusters.
If the SM holds, the electroweak phase transition is not of first order and does (probably) not generate an appreciable gravitational wave background. However, simple deviations from the SM can make it first order (like adding a Higgs singlet (Ashoorioon & Konstandin 2009)).

In this case we expect a GW background which can be detected by LISA.

It has been proposed that the magnetic fields generated in this case, could represent the seeds for the fields observed in galaxies and clusters.

If there is no inverse cascade acting on the magnetic field spectrum, the limits on the large scale fields coming from the generated GW background are too strong to allow significant magnetic fields even for the most optimistic dynamo mechanism.
If the SM holds, the electroweak phase transition is not of first order and does (probably) not generate an appreciable gravitational wave background. However, simple deviations from the SM can make it first order (like adding a Higgs singlet (Ashoorioon & Konstandin 2009)).

In this case we expect a GW background which can be detected by LISA.

It has been proposed that the magnetic fields generated in this case, could represent the seeds for the fields observed in galaxies and clusters.

If there is no inverse cascade acting on the magnetic field spectrum, the limits on the large scale fields coming from the generated GW background are too strong to allow significant magnetic fields even for the most optimistic dynamo mechanism.

However, if the magnetic field is helical, helicity conservation provokes an inverse cascade which can alleviate these limits.
If the SM holds, the electroweak phase transition is not of first order and does (probably) not generate an appreciable gravitational wave background. However, simple deviations from the SM can make it first order (like adding a Higgs singlet (Ashoorioon & Konstandin 2009).

In this case we expect a GW background which can be detected by LISA.

It has been proposed that the magnetic fields generated in this case, could represent the seeds for the fields observed in galaxies and clusters.

If there is no inverse cascade acting on the magnetic field spectrum, the limits on the large scale fields coming from the generated GW background are too strong to allow significant magnetic fields even for the most optimistic dynamo mechanism.

However, if the magnetic field is helical, helicity conservation provokes an inverse cascade which can alleviate these limits.

In this case we also expect a parity violating gravitational wave background, $|h_+(k)|^2 \neq |h_-(k)|^2$.