Rigid Holography and 6d (2,0) Theories on 5d AdS Space

Ofer Aharony
Weizmann Institute
of Science

Eurostrings 2015

March 26, DAMTP, Cambridge OA, Berkooz, Rey, 1501.02904

Field Theories on AdS_pxM_q

Why study them?

Because we should

Because we can

We should:

- Field theories on curved space exhibit new features not visible in flat space.
- On AdS space have new knob to turn: boundary conditions.
- Supersymmetric theories on AdS_pxM_q can preserve (all) supersymmetry. Hope to compute many things exactly. Localization?
- Can hope to learn more about mysterious theories (6d $\mathcal{N}=(2,0)$ SCFTs, Van Rees' talk) we'll encounter some surprises.

We can:

- Can sometimes embed a field theory on AdS_pxM_q into string (M) theory on AdS_mxM_n which is dual to an (m-1) dimensional CFT, and take a decoupling limit. So these FTs are a subsector of (m-1) dimensional CFTs (though not full local CFTs by themselves).
- In flat space string (M) theory with branes /
 defects, decouple low-energy field theory
 by taking M_s, M_P to ∞ keeping energies and
 couplings (g_{YM}) fixed.

Rigid Holography

- In string(M) theory on AdS_mxM_n with branes / defects filling AdS_pxM_q, need to keep R_{AdS} fixed, and again take M_s and M_p to ∞. In dual CFT means taking M_p R_{AdS} ~ N^α to ∞. May or may not be able to also keep couplings fixed (either automatically or by tuning extra parameters). Naturally keep SUSY.
- So field theory on AdS_pxM_q (with specific boundary conditions) = a subsector of the (m-1) dimensional CFT. Rigid Holography

Examples in IIB on AdS₅xS⁵

- NS5-branes on AdS₄xS² (6d SYM, LST):
 M_P R_{AdS} → ∞ requires N → ∞. g₆² ~ α'. Can take M_s → ∞, get free 6d SYM on AdS₄xS².
 Or can keep M_s fixed (g_s ~ 1/N), and get UV completion: N=(1,1) LST on AdS₄xS² (non-local non-conformal example).
- D1-branes on AdS₂ (2d SYM): Again need N→∞. Now g₂² R_{AdS}² ~ (N g_s³)^{1/2}. So can take g_s ~ 1/N and get free 2d SYM, or can keep N g_s³ fixed and get interacting 2d SYM.

Our main example

- 6d A_{n-1} N=(2,0) SCFT on AdS₅xS¹. Recall that this SCFT has no parameters except n. It arises as the low-energy theory on n overlapping NS5/M5-branes, or in type IIB on a C²/Z_n orbifold, at its singular point.
- Moduli space is R⁵ⁿ/S_n (removing the center of mass). In IIB, given by blow-up modes and the two 2-form fields on the 2-cycles.
- On R⁵xS¹ at low-energies get 5d SU(n) SYM with g₅² ~ R_S¹, generally broken to U(1)ⁿ⁻¹.

AdS₅xS¹ embedded in string theory

- Consider type IIB string theory on $AdS_5xS^5/Z_n = near$ -horizon limit of K D3-branes on C^2/Z_n . Dual to 4d N=2 SU(K)ⁿ elliptic quiver with bi-fundamental hypermultipets (Kachru-Silverstein).
- 4d N=2 CFT has n exactly marginal deformations = complex gauge couplings.
 One maps to type IIB dilaton-axion.
- Fixed points : AdS_5xS^1 in AdS_5xS^5/Z_n , locally have a C^2/Z_n orbifold there.

- Other (n-1) to B_2 and C_2 fields on 2-cycles of singularity. Other blow-up modes tachyonic.
- At orbifold point B_2 fields non-zero. When vanish get 6d $\mathcal{N}=(2,0)$ A_{n-1} SCFT on AdS_5xS^1 (coupled to rest of type IIB), with $R_{AdS}=R_S$ and specific boundary conditions.
- Near this point "moduli space" (space of SUSY vacua on AdS₅) is Cⁿ⁻¹/S_n with A_{n-1} (2,0) SCFT arising at the origin. Subspace.
- Preserve 16 supercharges. At generic points
 (n-1) 6d 2-forms → U(1)ⁿ⁻¹ gauge theory on
 AdS₅, dual to U(1)ⁿ global symmetry of
 hypermultiplets (diagonal U(1) geometrical)^a

Naïve expectation

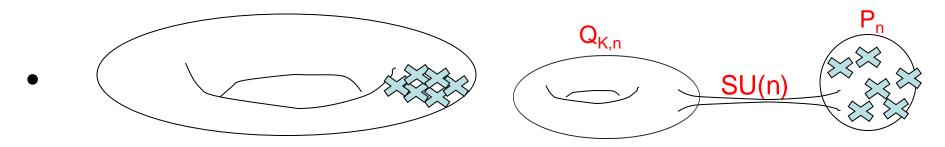
- At origin of "moduli space" expect $\mathcal{N}=(2,0)$ theory on S^1 to give an SU(n) gauge theory on AdS_5 . Would mean global symmetry of 4d $\mathcal{N}=2$ SCFT enhanced to SU(n).
- But can show from 4d N=2 reps that global symmetries in 4d N=2 SCFTs cannot be enhanced as a function of exactly marginal deformations (unlike in 4d N=1), except at free points (high-spin currents). Consistent since W-bosons not BPS.
- What does happen in this 4d N=2 SCFT? 10

Singular limit in 4d N=2 SCFT

Space of couplings of SU(K)ⁿ quiver is the moduli space of n marked points on a torus (Witten). In Gaiotto language obtain this from A_{K-1} 6d (2,0) theory on a torus with n minimal (U(1)) punctures. Has a weakly coupled SU(K)ⁿ limit.

 Origin of "moduli space": n punctures come together – (n-1) couplings go to infinity.

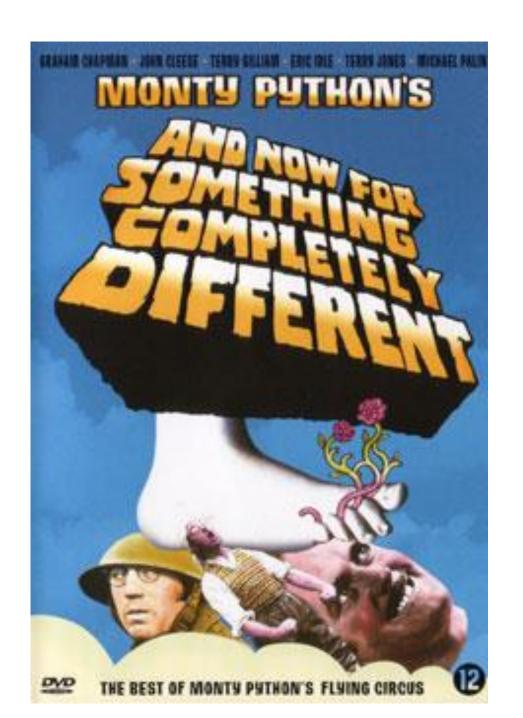
Singular limit in 4d N=2 SCFT



- Studied already (local on Riemann surface).
- Global symmetry not enhanced ②, but get a weakly coupled SU(n) gauge theory, with g_{SU(n)} going to zero at origin, coupled to two different 4d N=2 SCFTs with SU(n) global symmetry: A_{K-1} on a torus with a single SU(n) puncture (Q_{K,n}) and a sphere with one SU(n) puncture and n U(1) punctures (P_n). 12

Singular limit in 4d N=2 SCFT

- New SU(n) is strong-weak dual to original SU(K)ⁿ; similar to Argyres-Seiberg.
- Implies that 4d N=2 SCFT has at singular point an infinite number of conserved high-spin currents (instead of naïve expectation new global SU(n)). These should somehow be part of N=(2,0) theory on AdS₅xS¹.
- Does this local field theory develop massless high-spin fields? Not impossible on AdS₅, but very strange. Would like



Something completely different

- Can we get around inevitable conclusion?
- We propose a simpler picture. The new 4d SU(n) and the P_n theory can live on the boundary of AdS₅; can have 4d $\mathcal{N}=2$ theories living there. The 4d SU(n) theory couples to both Q_{K,n} and P_n, and has a vanishing beta function.
- Identify the bulk theory with the Q_{K,n} theory. The 4d SU(n) gauge theory must couple to 5d SU(n) gauge fields on AdS₅, helping to cancel its beta function.

Something completely different

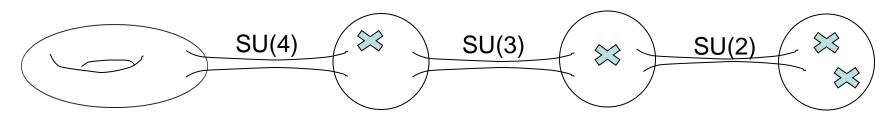
- Should be related by duality (extra AdS/CFT for SU(n)xP_n?) to the picture with high-spin fields in the bulk, but seems much simpler.
- Have SU(n) in AdS₅ but no global symmetry. Usually say unique boundary condition for G gauge fields on AdS₅!? When have global symmetry G can always gauge it = couple to 4d G gauge fields on boundary. When bulk theory is weakly coupled, get large (R_{AdS}/g_G²) contribution to beta function of 4d G, inconsistent with conformal symmetry.

Something completely different

- In our case we know contribution to beta function. Implies bulk 5d SU(n) is strongly coupled at R_{AdS}. Thus, no contradiction with standard semi-classical analysis of allowed boundary conditions.
- On the "moduli space" 5d SU(n) behaves very differently from the naïve expectation: not broken to U(1)ⁿ⁻¹ (exactly marginal deformations described by changing couplings of SU(n) and P_n on boundary; U(1)ⁿ⁻¹ acts on boundary P_n theory).

Moduli space of (2,0) on AdS₅xS¹

- At origin of "moduli space" coupling constant of 4d SU(n) goes to zero – infinitely far away (in natural Zamolodchikov metric).
- Moreover, origin of "moduli space" is not just a point but an (n-2)-dimensional space space of moduli of P_n theory = a sphere with (n+1) marked points. Big change...
- The P_n theory has a region in its parameter space where it becomes a weakly coupled 4d SU(n-1)xSU(n-2)x...xSU(2) theory with bi-fundamental hypers + 1+n fundamentals.



- Note all beta functions in this chain vanish. Q_{K,n} (5d bulk) contributes to beta function of SU(n) like (n+1) fundamental hypers.
- In this region it is easy to compute how many d.o.f. we are adding on the boundary (say in sense of conformal anomalies): O(n³). Amusing since bulk 6d (2,0) theory also has O(n³) d.o.f. But no clear relation – for instance, 6d d.o.f. and 4d d.o.f. lead to a different density of states as a function of temperature / energy. 19

- This is all for the specific boundary condition that we get from type IIB. Can also take a "standard" boundary condition for 5d SU(n) gauge fields, and then the (2,0) theory is part of the gravitational dual to the Q_{K,n} theory (which has an SU(n) global symmetry). In this case the (2,0) theory has no "moduli space". How is this dual related to the previous one?
- To decouple should take $K \to \infty$ with couplings as above. Limit of 4d $\mathcal{N}=2$ SCFT contains a sector dual to $\mathcal{N}=(2,0)$ theory on AdS₅xS¹. Not a SCFT. No local correlators:

Summary

- Introduced "rigid holography", and used it to show that A_{n-1} (2,0) theories on AdS₅xS¹ with R_{AdS}=R_S and specific b.c. are different from expected – "moduli space" is singular near origin, have SU(n) gauge fields on AdS₅ but with different behaviour than in flat space.
- This theory appears as a decoupled sector in the large K, strong coupling limit of 4d N=2 SU(K)ⁿ. Can get same theory also from IIA backgrounds with n NS5-branes on AdS₅xS¹, dual to other 4d N=2 quiver SCFTs.

Summary

- In retrospect, the behavior of the A_{n-1} (2,0) theories on AdS₅xS¹ is not so surprising. They have a strongly coupled SU(n) gauge theory on AdS₅, as expected, and this theory does not have a "moduli space", presumably because its' scalars are tachyonic.
- Surprise is that when this theory is coupled to a 4d SU(n)xP_n theory on the boundary of AdS₅, have a very different dual description with U(1)ⁿ⁻¹ gauge fields in the bulk, and nothing on the boundary.

Further questions

- What can we compute (16 supercharges)? Localization in 4d N=2 SCFT? Directly on AdS₅xS¹? (Work in progress Bae+Rey)
- Gravity dual for (2,0) theory on AdS₅xS¹?
- Are "boundary correlators" (computable in principle) enough to characterize A_{n-1} (2,0) theory on AdS₅xS¹? (Is S-matrix enough?)
- Other boundary conditions? "Standard" with SU(n) global symmetry for any R_{AdS}/R_{S} , for specific R_{AdS}/R_{S} can couple to 4d $\mathcal{N}=2$ SU(n) theory on the boundary. Embed in string? ²³

Further questions

- Far on "moduli space", got a description with U(1)ⁿ⁻¹ and "moduli" coming from the bulk; near the origin, have a description where they come from the boundary. What is relation between them ? AdS/CFT ? Strongweak duality (similar to Gaiotto-Witten) ?
- Do other sets of punctures coming together on a Riemann surface also correspond to (2,0) theories on AdS₅xS¹ (b.c.) ? Can we bring together punctures+handles ?

Further questions

- Many possible generalizations. Simple to get generalization to (2,0) LST on AdS₅xS¹.
- Other D_n and $E_n \mathcal{N}=(2,0)$ theories on AdS_5xS^1 can be similarly studied using other orbifolds of type IIB on AdS_5xS^5 .
- Rigid holography should be useful for studying various $\mathcal{N}=(2,0)$ theories on AdS_4xS^2 and AdS_3xS^3 , $6d \mathcal{N}=(1,0)$ theories on AdS_5xS^1 and other manifolds, 5d theories on AdS_4xS^1 , $4d \mathcal{N}=4 SYM$ on AdS_3xS^1 , etc.