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Questions
• If a black hole is in a pure state, where does its 

(horizon) entropy come from? 

• How fast do objects scramble with the black hole 
when they fall into a black hole? -What does 
scrambling mean? 

• How do we answer these questions in holographic 
dual?



Proposal: compute entanglement entropy for our choice of 
initial state for a (as yet to be determined) factorization of 

Hilbert space

H = H1 ⌦H2

Page’s result: the typical state is essentially always 
maximally entangled.



Hilbert space is really big (infinite dimensional)

In this case there is no “canonical” splitting into factors of 
same size: all countable infinite dimensional Hilbert spaces 

are isomorphic. 

We need more.



Need a preferred factorization determined by algebra of 
observables that we care about.

Observables are “simple” variables in a classical limit.



Splitting into sets of smooth variables with vanishing Poisson 
brackets between sets (e.g. product manifold).

One can study dependence on classical  
dimensionality of split.



Question

Is scrambling rate essentially universal?

Or is it extremely sensitive to choices?

How to formulate fast scrambling conjecture (Sekino-Susskind, 
also Hayden, Preskill) rigorously in dual field theory?



Strategy:

Try to understand classical scrambling in general finite 
dimensional Hamiltonian systems first, then understand how 

this relates to quantization.



Outline
• Lyapunov exponents and (classical) topological 

entropy. 

• Toy model of scrambling around periodic 
trajectories. 

• Quantum butterfly effect. 

• Speculations about black holes.



Lyapunov exponents and 
classical entropy
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To define other Lyapunov exponents 
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Entropy

f Take a small cell, and  
count number of hits after f.
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Refine cells and take limit of iteration.



This definition of topological entropy is a rate.



Can be understood in terms of information theory: 
how many new bits of information you need (on average) per 
iteration to determine on which cell one actually lands from a 

given initial condition . 

KS =
X
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Pesin’s formula.



Quantum scrambling?
Need dynamical system associated to a Symplectic manifold 

(maybe with a Hamiltonian flow, but one can measure 
stroboscopically).

Start with a pure state (close to classical), and evolve.

Integrate over half of d.o.f. or more.



Universal toy model
Typical chaotic systems have a dense set of periodic orbits.

Study initial “classical” conditions near one of these orbits.

Measure exactly on period of trajectories.



Classically end up nearby: linearized analysis is valid.

In a double scaled approx w.r.t. T (period)

~ is small

Linear analysis can be done with  
Bogolubov transformations.



Simplest model

2 Harmonic oscillator degrees of freedom mixing with a 
non trivial linear (symplectic) transformation.
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Particle-antiparticle pairs
Preserve a U(1).
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If applied to vacuum of a,b and compare to final  
Hilbert space, we get a squeezed state.

Trace over b, one gets a standard “thermal” density matrix  
for a-type particles. 



In absence of phases upon iteration

Cn/Dn = tanhn⇢

Sn ! log(exp(2n⇢̂)/4) +O(1) = 2n⇢̂+O(1) .

Same result as classical entropy growth.



Lyapunov exponents

r1 = r2 = max(log |Eigenvalues|)

Other two are negative and opposite (Liouville theorem)

Same as eigenvalues of boost



If coefficients not real

Can be conjugated to similar form.

Sn = 2n⇢̂+O(1)

All these choices go into the O(1) piece: 
 asymptotic entropy growth rate is universal, 

but the offset depends on details.

Sn(with phases) > Sn(without phases)



Can do general Bog. transformations without  U(1) charge, 
or with mixing in choice of particle/antiparticle.

⇢a(z, z̄) = B0e
B1(z
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One ends up with a general gaussian density matrix

a† ' z

(a)
acting on right of ⇢ ' z̄

In this notation:
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One shows after some algebra that
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One can start with no mixing

And rotate basis

z = cos(✓)z1 + i sin(✓)w1

w = i sin(✓)z1 + cos(✓)w1



Do algebra
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Again, growth as classical entropy
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If add more d.o.f and integrate all but 1, expect 
growth rate at sum of two largest Lyapunov exponents.

If add more d.o.f and integrate all but 2, expect 
growth rate at sum of four largest Lyapunov exponents.



Max rate is sum over half (positive) Lyapunov exponents

Quantum scrambling rate = classical scrambling rate.



Side comments

• This is usually phrased in quantum control in terms 
of two subsystems with weak interactions between 
them and the problem of decoherence (Zurek, Paz, 
etc) .  

• Tweaking strength of interactions between 
subsystems is roughly the same as fine-tuning the 
angle theta that we saw.



corollary:

Choice of splitting into subsystems (sufficiently smoothly) does 
not really matter too much to define entropy growth 

asymptotically.



Back to black holes
• Scrambling rate universal at intermediate time (in 

collapse problem) 

• Expect saturation at entropy of black hole. 

• Details of which half of degrees of freedom we 
throw away does not seem to matter too much. 

• How to choose “interior degrees of freedom” from 
entanglement is a red herring: roughly anything will 
do so long as we forget enough.



Quantum butterfly effect

• Shenker, Stanford;



[f (n)
(X), Y ] ' ~ exp(r1n)W

Lyapunov exponents show elsewhere:

In growth of commutators.

�Xn�Y � ~ exp(r1n)

We loose predictivity eventually: 
 uncertainty becomes large.



Ehrenfest time

�Xn ' Size of system

t ' 1/r log(~)

Parametrically larger than scale of classical dissipation 
(autocorrelation).



New claim

Can we understand this?

r < T

Maldacena, Shenker, Stanford



Lets start with 
commutators



Simple toy model
Arnold cat maps (well known chaotic system)  

on fuzzy torus

U, V

UV = !V U

Un = V n = 1

!n = 1

~ ' 1/n



Two standard 
automorphisms

T : U ! UV �

V ! V

S : U ! V

V ! U�1

Generate an SL(2,Z) mapping class of torus

SL(2, Zn)



U ! UaV b

V ! U cV d

Up to phases
✓
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c d
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[U (m), U ] ' (1� exp(2⇡ibm/n))U (n)U ' bm/n ' �m/n

When computing

Grows like powers of eigenvalues: also Lyap. exponent.



Estimate in some 
holographic examples



IN BFSS
At high T it is classical physics

X ' T 1/4

P ' T 1/2

Virial theorem:



Exactly near T of order 1 we expect crossover to 
classical black hole. 

No problem saturating inequality.

r ' P/X ' T 1/4



Argument of Wiseman 2013

P ' XT

With right factors of N, and assuming configuration 
approximately diagonal, 

v^4/r^7 potential one can estimate free energy of black hole 
and get things right.



Conclusion

• Scrambling rates can be fairly independent of 
details of “factorization” of Hilbert space, esp. in a 
classical limit. 

• Suggests scrambling in black hole duals is 
sufficiently Universal.



• Can one prove quantum entropy rate is classical 
entropy rate not just about periodic trajectories? 

• Lyapunov exponents also show in commutators: 
there is a butterfly effect in quantum systems. 

• Intriguing maximal rate for Lyapunov exponents in 
very quantum systems.


