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Long list of features … 

Long list of applications … 
!  It characterizes d.o.f. of the theory and anomalies. 

!  Ties with renormalization group flows. 

!  Probe of phase transitions (e.g. confinement/decofinement). 

!  Useful characterization of excited states (quenches). 

!  Leading contribution yields area law. 
!  In a pure state, S(X)=S(Xc). 
!  Strong subadditivity and other inequalities. 
!  Recover known results. 
!  Generalizations: susy, higher spins, … 
!  There is a derivation from first principles in holography. 



!  Interplay between anomalies and entanglement entropy 

!  Anomalies probe other aspects of the dual bulk geometry 

GOAL for TODAY 



!  Gravitational anomalies in AdS3/CFT2 

!  Generalization of Ryu-Takayanagi  

!   Test in a dynamical setup 

FOCUS 



3. Dynamics:  
Gapped systems in AdS3 
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2. AdS3:  
Spinning probes   

1.  CFT2 : 
 EE & anomalies revisited 

with Detournay, 
Iqbal & Perlmutter.  
arXiv:1405.2792  

with Belin & Hung.  
arXiv: soon!  



CFT2 

Entanglement entropy and anomalies revisited 



The relationship between entanglement and anomalies is well known.  
For example, single interval on the vacuum state: 

R 

CFT 

Explicit relation between conformal anomaly 
 and entanglement entropy 

Important assumption here: 
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Is entanglement entropy sensitive to diffeormorphism anomalies? 



Diffeomorphism anomaly 
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Simple examples: chiral matter or holomorphic CFTs. 

In the OPE expansion of the stress tensor: 

The anomaly can be presented in two ways: 

!  Stress tensor is symmetric, but not conserved 

!  Stress tensor is conserved, but not symmetric 
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Twist fields & EE 

CFT 
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Twist field. For simplicity only 
consider a single interval 

Include diff anomaly: Conformal dimensions of the twist fields are 
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Results 
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Vacuum state & boosted interval 

Thermal state: high temperature, finite angular velocity 
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AdS3 

Spinning particles and anomalies 
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Ryu-Takayanagi formula 
X 

C 

CFT 

AdS 

Einstein Hilbert gravity 

It cannot capture the diffeormorphism anomaly: not enough 
data to have unbalanced left/right central charges. 



Topological massive gravity 
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Gravitational Chern-Simons term 

Asymptotically AdS3 spacetime: 



HEE revisited 

Task: find the generalization of R-T in the presence of diff anomalies 

Two routes (that complement each other): 

 

!  Conical singularity method applied to TMG 

!  Design a bulk probe that captures the right CFT physics 

[Lewkowycz & Maldacena; Dong; Camps] 



Spinning probes 

Hint: Recall, twist field has quantum numbers 
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!  Ryu-Takayanagi formula 

Geodesic equation Massive probe 

!  TMG EE formula 

Spinning probe 
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MPD equation 

Motion of a spinning particle is described by the 
Mathisson-Papapetrou-Dixon equations:  
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Action principle 

In addition to the particle trajectory Xµ(s), it appears that we now have a dynamical
degree of freedom corresponding to the rotation of the normal frame along the worldline.
Indeed we have three independent components for each of n and ñ, and five constraints
associated with (3.28), leaving a single degree of freedom. However as it turns out this is
not a true degree of freedom, as the action is only sensitive to its variation up to boundary
terms. To see this, consider the equation of motion arising from variation of S

probe

with
respect to n:

�srñµ + �
1

ñµ + �
2

vµ + 2�
4

nµ = 0 . (3.32)

Contracting with ñµ, vµ and nµ respectively results in

�
1

= s ñ ·rñ �
2

= s v · ñ , 2�
4

= �sn ·rñ . (3.33)

The same analysis for �ñSprobe

= 0 gives

srñµ + �
1

nµ + �
3

vµ + 2�
5

ñµ = 0, (3.34)

and again the appropriate contractions yield

�
1

= sn ·rn �
3

= �s v ·rn , 2�
5

= �s ñ ·rn . (3.35)

(3.33) and (3.35) are six equations, of which five may be satisfied by appropriate choice
of the �i. The equation that remains comes from the fact that �

1

appears in both sets of
equations, and is:

ñ ·rñ = n ·rn . (3.36)

However this is not a dynamical equation: as �n2 = ñ2 = 1, both sides of this equation
are identically zero and this is an identity. Thus (n, ñ) do not have a dynamical equation
of motion: equivalently, S

probe

is insensitive to small variations of the normal frame along
the trajectory, up to boundary terms. As we will see, these boundary terms will be very
important to us.

A more tedious task is to vary (3.31) with respect to Xµ(s); details can be found in
Appendix C. This variation, however, is not trivial and gives rise to

r [mvµ + v⇢rsµ⇢] = �1

2
v⌫s⇢�Rµ

⌫⇢� , (3.37)

where we define the spin tensor sµ⌫ to be

sµ⌫ = s (nµñ⌫ � ñµn⌫) , (3.38)

These equations are known as the Mathisson-Papapetrou-Dixon (MPD) equations, and de-
scribe the motion of spinning particles in classical general relativity [3–5].7 In (2 + 1)
dimensions they follow from the simple and geometric action (3.31).

Next, using (3.29) we see that the spin tensor may be written in terms of the velocity as

sµ⌫ = �s✏µ⌫�v� , (3.39)

7 See as well [67–71] for a more modern treatment and further references.
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Features: 

!  We reproduced it from the cone action. However the 
dynamics is less obvious. 

!  Spin does not add a new bulk d.o.f. We gave life to a pure 
gauge mode to make the answer look covariant. 

!  The action now measures the torsion of the curve. It is  related 
the framing anomaly in Chern-Simons theory as well. 
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Dynamics 
Gapped systems in the presence of anomalies 



Holographic gapped systems 

Two basic properties that we seek in a gapped system are: 

Spectrum 

Entanglement 
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�
+ S

constraints

. (0.27)

e�2AP
x

= mvy@
y

x� s(vy)3e�A@
y

�
eA@

y

t
�
,

e�2AP
t

= mvy@
y

t� s(vy)3e�A@
y

�
eA@

y

x
�
. (0.28)

z
0

(0.29)

R ⇠ z
0

+O(z2
0

) , z
0

small (0.30)

R ⇠ z
1�n/2

0

+ s2z
1+n/2

0

+ · · · , z
0

large (0.31)

�E = �

0

+

#

R2

+ · · · (0.32)

S
EE

= S
0

+ · · · (0.33)

3

Finite and independent 
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Holographic gapped systems 

UV 

IR 

NOT GAPPED: 
Connected solution exists 

for any size R and 
dominates. 

GAPPED: 
Connected path ceases to 
exists above a max length. 

Disconnected solution 
takes over. 
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How to tell if a systems is gapped in the IR using HEE? 
[Klebanov, Kutasov, Murugan; Liu, Mezei] 



Domain walls  

Geometry of the gapped system: 

1 Introduction

Important to emphasise that it is likely that most of what we say about gapped systems is generic

within a class of potentials V (�) for the scalar. What is nice about the example we will study here

is that it is simple and explicit. Hence, we suspect that most of the results regarding the e↵ects of

anomalies for gapped systems can be generalised with little e↵ort.

2 Gapped holographic systems: Entanglement entropy vs Spec-

tral analysis

The search for holographic dual of gapped system is a topic of tremendous interest and it has

been analysed in some detail from various di↵erent point of views. We would like to give a brief

review these various perspectives, and compare the findings in prior literature. There are two

notable routes in testing a holographic system for the presence of gaps. The first route is to study

perturbations, such as metric perturbations about the given background of interest, see for example

[1, 2, 3]. The second route is to study the behaviour of the entanglement entropy, as in [4, 3]. These

are the two approaches we will discuss and summarise below.

The backgrounds of interest are domain wall solutions, which can be parametrised as

ds2 =
⌘ijdxidxj

z2
+

dz2

z2f(z)
, i = 0, . . . , d . (2.1)

As z ! 0, the UV limit, the spacetime asymptotes to AdSd+1

which requires f(z) ! 1. In the

infrared limit, z ! 1, we will take f(z) ⇠ zn for some power n. This geometry can be a solution

of an Einstein-Scalar system where the scalar field adopts a potential V (�) 1. Provided f(z) ⇠ zn,

it is su�cient to have

V (�) ⇠ exp(�4��) , (2.2)

in which case the power n can be expressed in terms of � as

n = (d� 1)�2 . (2.3)

The simplest way to quantify the spectrum, is to consider a massless probe scalar  on the
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UV 

IR 

[Gubser; Freedman et al;  
Kiristis et al; …] 

NOTE: These solutions, for arbitrary f(z), have vanishing Cotton tensor 

A “gapped” domain wall is allowed in a 
theory with a diffeomorphism anomaly! 



Gaps & Diff anomalies 

Chiral anomalies are protected by RG.  
Chiral matter will not become massive in the IR. No gaps! 
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Anomalies are powerful and wise.  

How does holography capture this simple and 
yet robust  statement!?  
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Functional:  

MPD Dynamics:  

Task: Characterize solutions to MPD in the domain wall background  

1 Introduction
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In addition to the particle trajectory Xµ(s), it appears that we now have a dynamical
degree of freedom corresponding to the rotation of the normal frame along the worldline.
Indeed we have three independent components for each of n and ñ, and five constraints
associated with (3.28), leaving a single degree of freedom. However as it turns out this is
not a true degree of freedom, as the action is only sensitive to its variation up to boundary
terms. To see this, consider the equation of motion arising from variation of S

probe

with
respect to n:

�srñµ + �
1

ñµ + �
2

vµ + 2�
4

nµ = 0 . (3.32)

Contracting with ñµ, vµ and nµ respectively results in

�
1

= s ñ ·rñ �
2

= s v · ñ , 2�
4

= �sn ·rñ . (3.33)

The same analysis for �ñSprobe

= 0 gives

srñµ + �
1
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3

vµ + 2�
5

ñµ = 0, (3.34)

and again the appropriate contractions yield

�
1

= sn ·rn �
3

= �s v ·rn , 2�
5

= �s ñ ·rn . (3.35)

(3.33) and (3.35) are six equations, of which five may be satisfied by appropriate choice
of the �i. The equation that remains comes from the fact that �

1

appears in both sets of
equations, and is:

ñ ·rñ = n ·rn . (3.36)

However this is not a dynamical equation: as �n2 = ñ2 = 1, both sides of this equation
are identically zero and this is an identity. Thus (n, ñ) do not have a dynamical equation
of motion: equivalently, S

probe

is insensitive to small variations of the normal frame along
the trajectory, up to boundary terms. As we will see, these boundary terms will be very
important to us.

A more tedious task is to vary (3.31) with respect to Xµ(s); details can be found in
Appendix C. This variation, however, is not trivial and gives rise to

r [mvµ + v⇢rsµ⇢] = �1

2
v⌫s⇢�Rµ

⌫⇢� , (3.37)

where we define the spin tensor sµ⌫ to be

sµ⌫ = s (nµñ⌫ � ñµn⌫) , (3.38)

These equations are known as the Mathisson-Papapetrou-Dixon (MPD) equations, and de-
scribe the motion of spinning particles in classical general relativity [3–5].7 In (2 + 1)
dimensions they follow from the simple and geometric action (3.31).

Next, using (3.29) we see that the spin tensor may be written in terms of the velocity as

sµ⌫ = �s✏µ⌫�v� , (3.39)

7 See as well [67–71] for a more modern treatment and further references.

19

This is a challenge to our spinning probe!  
Does HEE capture anomaly matching correctly? 
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Comments: 

!  Equation highly non-linear.  

!  Exact solutions: either disconnected or only valid in AdS3. 

!  Connected solutions are not static. The probe wants to twist. 

!  Build connected solutions perturbatively in the spin.  
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Connected solution exists for any size of the boundary interval. 



Outlook 
What is next? 



Anomalies 

Gaps 

!  Work in progress: linearized spectrum should corroborate results. 

!  Exact connected solutions to MPD equations. 

!  CFT interpretation to all MPD solutions? 

!  Generalization to higher dimensions: spinning membranes? 

!  Generalization in 4k+2 QFTs 

!  Mixed gauge-gravitational anomalies 

 



Thank you! 


