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The Question: 
What is Quantum Gravity?



Potential Answer: 
String Theory

How about the non-perturbative aspects? 

D-branes

gravitons

open strings



Potential Partial Answer: 
AdS/CFT Correspondence

In some cases, a CFT in d-dimensions is equivalent to a 
gravitational theory in the background of (d+1)-dimensional AdS space. 



central charge ~ AdS radius in Planck units

c =
3 `AdS

2GN

weakly coupled gravity ⇒ c ≫1 

Q: Consider families of 2d CFT with a c→∞ limit.  What are 
the necessary conditions for such a family to admit a weakly 
coupled gravity description at c→∞? 

When does AdS/CFT apply?
Q: What types of CFTs admit a dual gravity description?Q: What types of CFTs admit a dual weakly coupled 
gravity description?
Q: What types of 2d CFTs admit a dual weakly coupled 
gravity description?



Earmark of a 
Weakly Coupled Gravitational Theory

•  Black Hole Solutions

•  Hawking Radiation suggests that black holes are thermodynamical 
objects. 



Weakly Coupled Gravitational Theory
⇒ Black Hole Thermodynamics

Bekenstein–Hawking Entropy

It is universal and does not depend on the details of the theory 
(matter content, UV completion, etc.). 

This simple formula will be our main input. 

S =
Area

4GN



String Theory successfully explain the BH 
entropy in various situations. 

The D-branes making up the black holes are 
described by a 2d CFT in the appropriate regime. 

The black hole entropy can be then explained 
as the number of quantum states with a given 
mass and charges in the CFT. 

[see for instance ’96  Strominger–Vafa]

String Theory and BH Entropy

In fact, the derivation only relies on certain 
very universal feature of the 2d CFT. 



M CHENG

2d CFT Partition Functions are nice. 

time

partition function

The partition functions are computed by identifying the initial and final time. 
This turns the cylinder into a torus.  Moreover, conformal symmetries 
guarantee that we only care about the shape (complex structure) of the 
torus. 

Z(⌧) = TrH e2⇡i⌧Ĥ

They are Modular Forms. 



M CHENG

The SL2(Z) modular action 

leaves the torus the same.

⌧ 7! a⌧ + b

c⌧ + d

Torus and Modular Symmetries



M CHENG

The SL2(Z) modular action generated by 

leaves the torus the same.

⌧ 7! ⌧ + 1 , ⌧ 7! �1/⌧

⌧ + 1

Torus and Modular Symmetries



M CHENG

Torus and Modular Symmetries

The SL2(Z) modular action generated by 

leaves the torus the same.

⌧ 7! ⌧ + 1 , ⌧ 7! �1/⌧

�1/⌧



-1/2 1/2 1-1

Example: the J-function

Modular Forms
are holomorphic functions transforming nicely 

under the modular group SL2(Z).



Modularity ⇒ “Cardy Formula” 
which dictates the growth of density of states with energy.

Z(⌧) =
X

E��c/24

cE e2⇡i⌧E

, cE =

I
d⌧e�2⇡i⌧EZ(⌧)

= Z(�1/⌧)

=

I
d⌧e�2⇡i⌧EZ(�1/⌧)

=

I
d⌧e�2⇡i⌧E(e

2⇡i
⌧

c
24 + . . . )

⌧saddle = i

r
c

24E
) S(E) = logcE ⇠ 2⇡

r
cE

6

ignore these

⇒ a microscopic explanation of BH entropy.

This is the BH entropy for extremal BTZ black holes with                             ! r+ = r� = 2
p
GNE



Black Hole vs. Cardy Regime

Q: Does the Cardy formula imply that all 2d CFT’s have a spectrum 
compatible with BH entropy? 
A: NO!

Range of Validity of Cardy Formula:

cE =

I
d⌧e�2⇡i⌧E(e

2⇡i
⌧

c
24 + . . . )

recall: 

these were ignored

fixed c,  E/c≫1 

⌧saddle = i

r
c

24E
) log cE ⇠ 2⇡

r
cE

6



fixed c,  E/c≫1 

c≫1,  E>c/24 

Black Hole vs. Cardy Regime

Range of Validity of Cardy Formula:

when black holes start to be 
thermodynamically stable

~~

~ ~ c

1/24

E/c

A weakly-coupled gravity dual
requires that the BH/Cardy formula 
to be valid outside the Cardy regime!   

BH entropy formula should be valid at: 



BH entropy, 

a universal “weak gravity polar bound” for the density of states 
with energy

E >
c

24

� c

24
< E < 0

⇕

⇕
A (Hawking-Page) first-order phase transition

T = 1/2⇡

AdS Space BTZ black holes

Main Idea
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Focussing on 2d SCFT

•  Applicable

•  Powerful

Theoretically, supersymmetry lends great computational control. 
For instance, so far practically all string theoretic microscopic explanations 
for black hole entropy apply to supersymmetric theories. 

Supersymmetric theories produce mathematical functions with nice 
properties (eg. holomorphicity).
Together with these properties, our weak gravity bound determines a great 
deal. 

to obtain a universal bound that is: 



bosons fermions

+1

0

-1
0 E

It is invariant under deformation for compact theories
and hence more computable.

Such an index is rigid: 

counting states with signs (-1)F 
Supersymmetric Index

!!We assume a “non-cancellation hypothesis”!!



The symmetry algebra of the theory contains the → and ←    

super-Virasoro algebra, with bosonic generators Ln and Jn, n∈Z

These include the zero modes L0 and  J0, satisfying [L0, J0]=0 

Their eigenvalues are useful quantum numbers: 
conformal weight~energy, U(1) charge

SCFT’s with N≥(2,2) Susy



index counting number of states with a given 
conformal weight n and U(1) charge `

[’86  Schellekens–Warner, Witten]

Elliptic Genus
counts susy states. 

Z(⌧, z) = TrHRR(�1)F e2⇡i⌧(L0�c/24) e2⇡izJ0

=
X

n�0,`

c(n, `) e2⇡i⌧n e2⇡iz`

Note: EG can be defined more generally. 



Spectral Flow Symmetry

Z(⌧, z) = Z(⌧, z + 1) = e2⇡i
c
6 (⌧+2z)Z(⌧, z + ⌧)

Modular Symmetry

Z(⌧, z) = e�2⇡i c
6

z2

⌧ Z(�1

⌧
,
z

⌧
)

Symmetries of Elliptic Genus

⇒             is a Jacobi form of index c/6.Z(⌧, z)

Z(⌧, z) = TrHRR(�1)F e2⇡i⌧(L0�c/24) e2⇡izJ0 =
X

n�0,`

c(n, `) e2⇡i⌧n e2⇡iz`



`
c

6
� c

6

E0

More precisely,  

Spectral Flow Sym. of Elliptic Genus
The spectrum is invariant when shifting L0 and  J0 while keeping inv.  

It corresponds to a “large gauge transformation” on the gravity side. 

c(n, `) = c(n0, `0) when

Lred
0 = L0 �

c

24
� 3

2c
J2
0

E0 = n� 3

2c
`2 = n0 � 3

2c
`02, ` = `0 (mod c/3)

n



`
c

6
� c

6

Math: The polar part ZP determines the whole function Z! 

Physics: These are the low energy states whose spectrum we will now constrain. 

= � c

24
E0

E0 = 0

Polar Part of Elliptic Genus

n

~ c3 termsZP (⌧, z) =
X

n�0,`
(n,`)2P

c(n, `) e2⇡i⌧n e2⇡iz`



[’98  Cvetic–Larsen]
S(n, `) = 2⇡

r
cE0

6
= 2⇡

r
c

6
(n� 3

2c
`2)

replacing sum with integral at large c

⌧� = i
�

2⇡
, z�,µ = �i

�µ

2⇡

�, µ 2 R

From BH Entropy to Free Energy

Z(⌧� , z�,µ) = TrH(�1)F e2⇡i⌧�(L0�c/24)e2⇡iz�,µJ0

=
X

microstates

e�(µQ�E)

⇠
Z

dn

Z
d` e2⇡i⌧�n e2⇡iz�,µ` eS(n,`)

The Entropy

An Estimate



⌧� = i
�

2⇡
, z�,µ = �i

�µ

2⇡

Free Energy:

saddle point at: 

From BH Entropy to Free Energy

n =
c

6

✓
⇡2

�2
+ µ2

◆
, ` =

cµ

3
) E0 =

c

24
(
2⇡

�
)2

S(n, `) = 2⇡

r
cE0

6
= 2⇡

r
c

6
(n� 3

2c
`2)

Z(⌧� , z�,µ) ⇠
Z

dn

Z
d` e2⇡i⌧�n e2⇡iz�,µ` eS(n,`)

with

Input

Output

� 1

�
logZ(⌧� , z�,µ) = � c

6

✓
⇡2

�2
+ µ2

◆

valid when

� < 2⇡
+O(log c)

+O(log c)

allowed corrections

E0 > c/24



HIGH T  
BH 

LOW T 
polar states, gas of particles

modular property 

From Free Energy to WG Polar Bound

Z(⌧� , z�,µ) = exp

✓
c

6

✓
⇡2

�
+ �µ2

◆
+O(log c)

◆
, Im⌧� < 1

= e
�2⇡i c6

z2�,µ
⌧� Z(� 1

⌧�
,
z�,µ
⌧�

) = exp

⇣ c
6

�µ2
⌘X

n,`

c(n, `)e
� 2⇡i

⌧�
n
e
2⇡i`

z�,µ
⌧� , Im(� 1

⌧�
) > 1

Comparing the 2 equations, we obtain the weak gravity polar bound 

|c(n, `)|  exp

✓
2⇡(n+

c

12

� |`|
2

) +O(log c)

◆
, � c

24

< E0 = n� 3

2c
`2 < 0

⇔ ground state dominance  



From BH Entropy to WG Polar Bound

BH entropy formula for S(n, `)

use modular property

compare the low T expansion with the free energy 

Z(⌧� , z�,µ) ⇠
Z

dn

Z
d` e2⇡i⌧�n e2⇡iz�,µ` eS(n,`)

� 1

�
logZ(⌧� , z�,µ) = � c

6

✓
⇡2

�2
+ µ2

◆
, � < 2⇡

Z(⌧� , z�,µ) = exp

✓
c

6

✓
⇡2

�
+ �µ2

◆
+O(log c)

◆
, Im(⌧�) < 1

|c(n, `)|  exp

✓
2⇡(n+

c

12

� |`|
2

) +O(log c)

◆
, � c

24

< E0 = n� 3

2c
`2 < 0

= e
�2⇡i c6

z2�,µ
⌧� Z(� 1

⌧�
,
z�,µ
⌧�

) = exp

⇣ c
6

�µ2
⌘X

n,`

c(n, `)e
� 2⇡i

⌧�
n
e
2⇡i`

z�,µ
⌧� , Im(� 1

⌧�
) > 1



`
c

6
� c

6

= � c

24
E0

E0 = 0

Weak Gravity Polar Bound
is a bound on the ~c3 coefficients of 

which determines the rest of the spectrum. 

ZP (⌧, z) =
X

n�0,`
(n,`)2P

c(n, `) e2⇡i⌧n e2⇡iz`

n



logZ(⌧� , 0) = logZ(� 1

⌧�
, 0) =

n
c⇡

12

2⇡

�
, � < 2⇡

c⇡

12

�

2⇡
, � > 2⇡

First order 
“Hawking–Page”
phase transition

E0 = �@� logZ =

n
c

24

� c

24 empty AdS space

black holes

In fact, there is a more general 
(infinite) phase diagram, with each 
phase dominated by a distinct 
(Euclidean) black hole configuration.  

[see also Dijkgraaf–Maldacena–Moore–Verlinde ‘07]

From WG Polar Bound to HP Phase Transition

� = 2⇡
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FIG. 2. Here, we plot the polar coe�cients of Sym20(K3) versus polarity, and also the coe�-

cients allowed by the bounds. We see that at this value of c (=120), the bounds are satisfied

by the symmetric product conformal field theory, after allowing minor shifts due to the O(logm)

correction.

Again, this exhibits polynomial growth in N and is allowed by (III.32). Any term a finite

distance away from the most polar term (e.g. yNm�xq0 for constant x) will grow as a

polynomial in N of degree cX(0,m)� 1.

For Calabi-Yau manifolds X with �
0

= 2, we have cX(0,m) = 2 so the two most polar

terms simplify to

c
Sym

NX(0, Nm) = N + 1

c
Sym

NX(0, Nm� 1) =

8
><

>:

NcX(0,m� 1), if m > 1

NcX(0, 0) + 2(N � 1), if m = 1.
(IV.9)

For the special case of X = K3, we have m = 1 and cX(0, 0) = 20, so the penultimate

polar piece grows as 22N � 2.

We can do a similar calculation to find the coe�cient in front of yN�x for SymN(K3)

with x > 1. We find the asymptotic large N value for the coe�cient, presented in Table

I. In Figure 2, we plot the polar coe�cients of Sym20(K3) against the values allowed by

the bound. Although some very polar terms exceed e2⇡(n�
|`|
2 +

m
2 ) in (III.32), the deviation

is of the order O(logN) in the exponent, which is allowed in our analysis. For terms with

polarity close to zero, the O(logN) corrections are less important, and we see that the bound

is subsaturated as expected.

22

K3 is the simplest non-trivial Calabi-Yau manifold string theory can live on 
with supersymmetry.  The SCFT with target space SymN(K3)= K3⊗N/SN has 
c=6N.  

Indeed, it is widely believed that this theory has a supergravity dual 
description. See for instance [de Boer ’98]. 
It can also be shown that all SymN(X) satisfy the bound for reasonable X.

 [Keller ’11]

Sym20(K3)
log|c(n, `)|

�80E0

WG Polar Bound Test ✔



The SCFT with target space K3⊗N  clear violates the bound: an exponential 
growth of the ground states. 
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FIG. 3. Here, we plot the polar coe�cients of the product conformal field theory with target K320.

translation symmetry which must be saturated by the insertion of a suitable number

of fermion currents. The relevant modification of the genus is worked out in [28]. It

should be fairly straightforward to generalize our considerations to situations such as

this where extra insertions are required to define a proper index.

2. Another simple example that violates the bound is the iterated symmetric product

SymN1(SymN2(K3)). Taking, for simplicity, N
1

= N
2

= N , so m = N2, the coe�cient

of the most polar term is
�
2N
N

� ⇠ 1p
⇡N

4N = 1

⇡1/2m1/44
p
m for large m. Indeed, the

iterated symmetric product is an example of the more general class of permutation

orbifolds. It would be interesting to check whether our bound singles out the oligomor-

phic criterion of [26, 27]. (Both results are based on the existence of a Hawking-Page

phase transition, so the answer should be positive.)

C. Calabi-Yau spaces of high dimension

To provide a slightly more nontrivial test, we discuss the elliptic genera of Calabi-Yau

sigma models with target spaces X(d) given by the hypersurfaces of degree d + 2 in CPd+1,

e.g.
d+1X

i=0

zd+2

i = 0. (IV.15)

We have chosen these as the simplest representatives among Calabi-Yau manifolds of dimen-

sion d; as they are not expected to have any particularly special property uniformly with

dimension, we suspect this choice is more or less representative of the results we could obtain

25

The same holds for SymN(SymN(K3)). 

K3⊗20

log|c(n, `)|

�80E0

WG Polar Bound Test ✘

✘



The SCFT with target space Xd:  d-(complex)-dimensional Calabi-Yau given 
by the hypersurface of degree d+2 in CPd+1 d+1X

i=0

zd+2
i = 0

elliptic genus =

FIG. 4. Here, we plot the polar coe�cients of Zd=10

RR .

by surveying a richer class of Calabi-Yau manifolds at each d. In any case we will settle with

one Calabi-Yau per complex dimension. Since m = d/2, and we have been assuming m is

integral, we restrict to even d.

The elliptic genus for these spaces is independent of moduli, and can be conveniently

computed in the Landau-Ginzburg orbifold phase. This yields the formula [10]

Zd
R,R(⌧, z) =

1

d+ 2

d+1X

k,`=0

y�`
✓
1

�
⌧,�d+1

d+2

z + `
d+2

⌧ + k
d+2

�

✓
1

�
⌧, 1

d+2

z + `
d+2

⌧ + k
d+2

� (IV.16)

Many further facts about elliptic genera of Calabi-Yau spaces can be found in [29].

First, we discuss the explicit data. To facilitate this we computed all polar coe�cients

numerically for d = 2, 4, ..., 36. Then, we provide a simple analytical proof of bound violation

valid for all values of d (just following from the behavior of the subleading polar term).

In Figures 4, 5, and 6 we plot the coe�cients of the polar pieces against polarity for

Calabi-Yau 10-, 20-, and 36-folds, respectively. In Figure 7, we plot the subleading polar

coe�cients of these Calabi-Yau spaces as a function of their dimension. In all cases, we see

that the bounds are badly violated.

Numerics aside, it is easy to give a simple analytical argument proving that these Calabi-

Yaus will violate the bound. Consider the subleading ym�1 polar piece of Zd=2m
RR .

The coe�cients cX(d)(0, p) of the elliptic genera of Calabi-Yau spaces are determined

simply by topological invariants:

cX(d)(0,m� i) =
X

k

(�1)i+khk,i, (IV.17)

26

FIG. 5. Here, we plot the polar coe�cients of Zd=20

RR .
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FIG. 6. Here, we plot the polar coe�cients of Zd=36

RR .

so the coe�cient in front of ym�1 is

��
1

=
X

p

�(�1)ph1,p. (IV.18)

We know h1,d�1 is given by the number of complex structure parameters of the hypersurface,

or

h1,d�1 =
(d+ 2)⇥ (d+ 3)⇥ . . .⇥ (2d+ 3)

1⇥ 2⇥ . . .⇥ (d+ 2)
� (d+ 2)2

=

✓
2d+ 3

d+ 2

◆
� (d+ 2)2. (IV.19)

By a standard application of the Lefschetz hyperplane theorem, the remaining h1,p vanish

except for h1,1 = 1. Thus we get (recall d = 2m is even)

cX(d)(0,m� 1) =

✓
2d+ 3

d+ 2

◆
� (d+ 2)2 + 1. (IV.20)

27

log|c(n, `)|
CY36

�72E0

WG Polar Bound Test ✘
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Question: 
Consider families of 2d SCFTs with at least (2,2) susy with a 
c→∞ limit. 
Is there a necessary condition such a family must satisfy for it to 
possibly admit a weakly coupled gravity description at c→∞ 
somewhere at its moduli space? 

Z(⌧, z) = TrH(�1)F qL0�c/24yJ0

=
X

n�0,`

c(n, `) qny`

Recall, for compact SCFT, the elliptic genus 

is an invariant in its moduli space. 

|c(n, `)|  exp

✓
2⇡(n+

c

12

� |`|
2

) +O(log c)

◆
, � c

24

< E0 = n� 3

2c
`2 < 0

Answer: the Weak Gravity Polar Bound

A Question and an Answer



A Few Comments on the Answer

•  The Weak Gravity Polar Bound is effective (not everyone 
passes) and useful (the polar terms determines the whole Z).

•  It can be seen as a part of the effort to understand universal 
features of QFTs with gravity duals, inspired by the universal 
character of black hole thermodynamics.  See also other 
works on HEE and works including [Haehl—Rangamani], 
[Bellin—Keller—Maloney], [Headrick—Maloney—Perlmutter
—Zadeh], ……. 



A Few Further Questions

•  What is the fraction of 2d SCFT that satisfy the WGPB? 

2d SCFT

w. WGPB
Zamolodchikov metric as measure? 

Jacobi forms

polar coefficients

some reasonable measure here? 

how general is WC gravity? 



E0

-c/24

c/24

0

stable black holes

polar bound

supergravity modes? multi-centered black holes? 
stringy modes? 

A Few Further Questions
What happens in the enigmatic limbo                   ? 0 < E0 <

c

24



E0

-c/24

c/24

0

?

A Few Further Questions
What happens in the enigmatic limbo                   ? 0 < E0 <

c

24

A related question is: 
Assume that a family of SCFT satisfy our polar bound, then what 
type of weakly coupled gravitational dual does it have?  
Einstein gravity? String theory? Higher spin theory?

A simple (and incomplete) diagnostic: 
A                            growth is suggestive of a string theory like 
gravity dual.  We have quite a few examples of CFT’s with such a 
behaviour. For instance the symmetric product of the Monster 
CFT.  See also other works we mentioned before.

c(n, `) ⇠ econst·E0



[based on discussions with Xi Yin]

Two Examples: Monstrous Stringy Growth
•  The symmetric product                   of the Monster CFT       exhibits 

Hagedorn growth.
SymNM M

ZM(⌧) = J(⌧) = e�2⇡i⌧ + 196884e2⇡i⌧ + · · · =
X

n>�c/24

cne
2⇡in⌧ , c = 24

X

N

pNZSymNM(⌧) =
Y

n>0,m2Z

1

(1� pnqm)cnm

) ZSymNM(⌧) = q�N +
X

n
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Two Examples: D1-D5 Supergravity
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FIG. 8. Here, we plot the normalized coe�cients of yN�x terms in elliptic genus of SymN (K3) for

x = 1, . . . 40 in the large N limit. Note the subexponential growth in the plot. Numerical values

for the first twenty terms are given in Table I.

for ↵ < 1 which correspond to states parametrically below the Planck mass in the NS sector

as N ! 1. Relabelling gives us

an < e4⇡n
1
2↵ . (V.9)

We therefore find states parametrically lighter than the Planck mass with a subexponential

growth of states. Note that there may be other states at the same energy level that we

neglect due to only considering O(q0) terms in the elliptic genus. However, as we expect

the entropy to be a function of polarity up to small corrections, taking terms with positive

powers of q into account would only multiply our expression in (V.9) by some polynomial

factor without changing the leading order.

Because we expect the only relevant scales (other than supergravity KK scales) to be the

string scale and Planck scale, and we do not get stringy growth in this regime, we expect

subexponential growth throughout the polar terms. We now provide further (weak) numer-

ical evidence in favor of this hypothesis. We include a plot of the normalized coe�cients of

yN�x for x = 1, . . . 40 in the large N limit in Figure 8 (these numbers do not change past

some N since they only involve twisted sectors of permutations of some fixed length).

These examples suggest a criterion that distinguishes between theories with low-energy
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log(
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N

)

n

no exponential growth



A Few Further Questions

•  What is the fraction of 2d SCFT that have Einstein-like 
gravity dual? Weakly coupled string theoretic dual?  

•  How about higher dimensions? 

•  Criteria beyond the spectrum? 



Thank you for your attention!


