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The Question:
What is Quantum Gravity?



Potential Answer:
String Theory

Y~ /

gravitons

How about the non-perturbative aspects!?

D-branes M
open strings



Potential Partial Answer:
AdS/CFT Correspondence

In some cases, a CFT in d-dimensions is equivalent to a
gravitational theory in the background of (d+1)-dimensional AdS space.




When does AdS/CFT apply?

Q:What types of 2d CFTs admit a dual weakly coupled
gravity description!?

central charge ~ AdS radius in Planck units
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weakly coupled gravity = ¢ >/

Q: Consider families of 2d CFT with a ¢— o0 limit. VWhat are
the necessary conditions for such a family to admit a weakly

coupled gravity description at c— 00!



Earmark of a
Weakly Coupled Gravitational Theory

 Black Hole Solutions

* Hawking Radiation suggests that black holes are thermodynamical
objects.

EVEINT MORIZON




Weakly Coupled Gravitational Theory
= Black Hole Thermodynamics

Area
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Bekenstein—Hawking Entropy

It is universal and does not depend on the details of the theory
(matter content, UV completion, etc.).

This simple formula will be our main input.



String Theory and BH Entropy

String Theory successfully explain the BH
entropy in various situations.

The D-branes making up the black holes are
described by a 2d CFT in the appropriate regime.

The black hole entropy can be then explained
as the number of quantum states with a given
mass and charges in the CFT.

[see for instance ‘96 Strominger—Vafa]

~In fact, the derivation only relies on certain
1 very universal feature of the 2d CFT.




2d CFT Partition Functions are nice.
They are Modular Forms.
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The partition functions are computed by identifying the initial and final time.
This turns the cylinder into a torus. Moreover, conformal symmetries
guarantee that we only care about the shape (complex structure) of the
torus.



Torus and Modular Symmetries
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The SL;(Z) modular action
at + b

cT +d
leaves the torus the same.
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Torus and Modular Symmetries

T

The SL;(Z) modular action generated by

T—TH+1, T —1/7

leaves the torus the same.



Torus and Modular Symmetries
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The SL;(Z) modular action generated by

T—TH+1, T —1/7

leaves the torus the same.



Modular Forms

are holomorphic functions transforming nicely
under the modular group SL;(Z).

Example: the J-function
=J(r+1)=J(-1/7)
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Modularity = “Cardy Formula”
which dictates the growth of density of states with energy.

Z(r)= Y cpe®™F =Z(-1/7)

E>—c/24

& cp = %dTe_QmTEZ(T) =

:%dTQZWiTE(Q@ﬁ—l—---)
P\

[ ¢ lcE | ignore these
saddle — 2V E)=1 ~ 2 S
Tsaddl () AE — S( ) O(JCE Tr 6

This is the BH entropy for extremal BTZ black holes with ry =r_ =2,/GyE

dre ™ 7(—1/7)

=> a microscopic explanation of BH entropy.



Black Hole vs. Cardy Regime

Q: Does the Cardy formula imply that all 2d CFT’s have a spectrum
compatible with BH entropy?

A: NO!

Range of Validity of Cardy Formula: fixed ¢, E/c> |

recall:

Cp = %dT@QW”E(e@ﬁ +...)
N

these were ignored



Black Hole vs. Cardy Regime

Range of Validity of Cardy Formula: fixed ¢, E/c> |

BH entropy formula should be valid at: c> [, E>c/24

W

when black holes start to be
hermodynamically stable

A weakly-coupled gravity dual
requires that the BH/Cardy formula
to be valid outside the Cardy regime!

N

* * *
o 0 * * o - g
salesnsnnssssssnannnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnndanngbunnngannnwinnnnnnntonns

> C




Main Idea

BH entropy, FE > <

24
a universal “weak gravity polar bound” for the density of states

with energy C
—— < BE <0
24

0

A (Hawking-Page) first-order phase transition

AdS Space |  BTZ black holes

T =1/2n .
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Focussing on 2d SCFT

to obtain a universal bound that is:

* Applicable

Theoretically, supersymmetry lends great computational control.
For instance, so far practically all string theoretic microscopic explanations
for black hole entropy apply to supersymmetric theories.

e Powerful

Supersymmetric theories produce mathematical functions with nice
properties (eg. holomorphicity).

Together with these properties, our weak gravity bound determines a great
deal.



Supersymmetric Index
counting states with signs (/)"

E
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bosons fermions

Such an index is rigid:

It is invariant under deformation for compact theories
and hence more computable.

I'We assume a “non-cancellation hypothesis™!!



SCFT’s with

The symmetry algebra of the theory contains the = and

super-Virasoro algebra, with bosonic generators L, and |, neZ

These include the zero modes Lo and Jo, satisfying [Lo, Jo]=0

Their eigenvalues are useful quantum numbers:
conformal weight~energy, U(|) charge



Elliptic Genus

counts susy states.

Z(,7_7 Z) _ TI'”HRR(—l)FQQWiT(LO_C/QZL) 627TiZJ()
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n>0,¢ 86 Schellekens—VWVarner, Witten]

index counting number of states with a given
conformal weight n and U(I) charge ¢

Note: EG can be defined more generally.



Symmetries of Elliptic Genus
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Spectral Flow Symmetry

Z(1,2) = Z(1,2+ 1) = 2™ T2 Z (1 2 4 1)

= Z(7,2) is a Jacobi form of index c/6.



Spectral Flow Sym. of Elliptic Genus

The spectrum is invariant when shifting Lo and Jo while keeping inv.
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More precisely, c(n, ) = c(n’,£") when
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It corresponds to a “large gauge transformation” on the gravity side.
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Polar Part of Elliptic Genus

Zp(T,2) = Z c(n,t) e2miTn 2mizk (3 tarms
n>0,/¢

Math: The polar part Zp determines the whole function Z!

Physics: These are the low energy states whose spectrum we will now constrain.



From BH Entropy to Free Energy

The Entropy
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An Estimate
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From BH Entropy to Free Energy

Input allowed corrections
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From Free Energy to WG Polar Bound
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Comparing the 2 equations, we obtain the weak gravity polar bound
& ground state dominance

c |/ C 3 o
< _— _ — _
lc(n, f)| < exp (27T(n t5 75 ) + O(log c)> T Ey=n 266 <0




From BH Entropy to WG Polar Bound
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compare the low T expansion with the free energy



Weak Gravity Polar Bound

is a bound on the ~c3 coefficients of

ZP(T, Z) _ Z C(n7€) 627T7j7'n 627m'z€
n>0,/¢

which determines the rest of the spectrum.



From WG Polar Bound to HP Phase Transition

| First order
log Z(73,0) = log Z(——,0) = “Hawking—Page”
B phase transition

black holes

empty AdS space

In fact, there is a more general
(infinite) phase diagram, with each
phase dominated by a distinct
(Euclidean) black hole configuration.

[see also Dijkgraaf—-Maldacena—Moore—Verlinde ‘07]
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WG Polar Bound Test

K3 is the simplest non-trivial Calabi-Yau manifold string theory can live on
with supersymmetry. The SCFT with target space SymN(K3)= K3®N/Sn has

c=6N.
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Indeed, it is widely believed that this theory has a supergravity dual
description. See for instance [de Boer ’98].
It can also be shown that all Sym™(X) satisfy the bound for reasonable X.

[Keller "1 1]



WG Polar Bound Test X

The SCFT with target space K3®N clear violates the bound: an exponential
growth of the ground states.
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The same holds for SymN(Sym™N(K3)). x



WG Polar Bound Test x

The SCFT with target space X4: d-(complex)-dimensional Calabi-Yau given
by the hypersurface of degree d+2 in CP#*!  d+1
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A Question and an Answer

Question:

Consider families of 2d SCFTs with at least (2,2) susy with a
c— o0 |limit.

Is there a necessary condition such a family must satisfy for it to

possibly admit a weakly coupled gravity description at ¢—
somewhere at its moduli space!

Recall, for compact SCFT, the elliptic genus
F _Lo—c/24_ J
Z(T,z) = Try (—1)F glo—c/24y o

e . : : L :
— g c(n, f) q"Y" s an invariant in its moduli space.
n>0,4

Answer: the Weak Gravity Polar Bound
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A Few Comments on the Answer

* The Weak Gravity Polar Bound is effective (not everyone
passes) and useful (the polar terms determines the whole Z).

* It can be seen as a part of the effort to understand universal
features of QFTs with gravity duals, inspired by the universal
character of black hole thermodynamics. See also other
works on HEE and works including [Haehl—Rangamani],
[Bellin—Keller—Maloney], [Headrick—Maloney—PerImutter

—/Zadeh], .......



A Few Further Questions
how general is WC gravity?

* What is the fraction of 2d SCFT that satisfy the WGPB?

polar coefficients .~ -

/ Jacobi forms /

Zamolodchlov magric as measure!

some reasonable measure here?



A Few Further Questions

What happens in the enigmatic limbo 0 < Ej < 2—04 !

stable black holes

—1— c/24

supergravity modes! multi-centered black holes!?
stringy modes!

—+ 0

polar bound

— /24



A Few Further Questions

What happens in the enigmatic limbo 0 < Ej < =2

—1— c/24

— /24

24

A related question is:

Assume that a family of SCFT satisfy our polar bound, then what
type of weakly coupled gravitational dual does it have?

Einstein gravity?! String theory? Higher spin theory!?

A simple (and incomplete) diagnhostic:

A c(n,l) ~ et E0 growth is suggestive of a string theory like
gravity dual. We have quite a few examples of CFT’s with such a
behaviour. For instance the symmetric product of the Monster
CFT. See also other works we mentioned before.



Two Examples: Monstrous Stringy Growth

* The symmetric product SymN/\/l of the Monster CFT M exhibits

Hagedorn growth.
[based on discussions with XiYin]
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stringy Hagedorn growth



Two Examples: D1-D5 Supergravity
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A Few Further Questions

* What is the fraction of 2d SCFT that have Einstein-like
gravity dual? Weakly coupled string theoretic dual?

* How about higher dimensions!?

* Criteria beyond the spectrum!?



Thank you for your attention!



