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1. Fixed-frequency scalar-wave scattering theory

on Kerr
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The bulk of the literature on classical black hole scattering-theory for scalar waves

on Kerr backgrounds concerns only the fixed-frequency study of solutions

u(ω,m,ℓ)(r∗)

to the radial o.d.e.

u′′ + ω2u = V u,
where V is the potential

V = V(ω,m,ℓ)(r∗),
resulting from CARTER’s remarkable separation of the linear scalar wave equation

◻gψ = 0.

See CHANDRASEKHAR’s monumental monograph.
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At the conceptual level, one of the most interesting new phenomena of black hole

scattering which arises when passing from the Schwarzschild a = 0 to the

rotating a ≠ 0 Kerr case is that of superradiance.
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For each fixed frequency triple (ω,m, ℓ) with ω ∈ R, one can define two

complex-valued solutions Uhor(r∗) and Uinf(r∗) of the radial o.d.e. so that

Uhor ∼ e−i(ω−ω+m)r
∗

as r∗ → −∞, Uinf ∼ eiωr∗ as r∗ →∞,

corresponding to the asymptotic behaviour of the potential V , which is itself real.

Here 2Mω+(M +
√
M2 − a2) = a.

It follows that since Uinf also solves the radial o.d.e., we may writea

Uinf =
ω

(ω −ω+m)
TUhor +RUinf , (1)

where

T = T(ω,m, ℓ), R = R(ω,m, ℓ)
are known as the transmission and reflexion coefficients.

aIf Uhor and Uinf are linearly independent!
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With the above precise normalisation of R and T, the energy identity associated

to the radial o.d.e. yields

∣R∣2 + ω

ω −ω+m
∣T∣2 = 1.

Superradiance, first discussed by ZELDOVICH, corresponds to the fact that, for the

frequency range

ω(ω −ω+m)−1 < 0, (2)

we have

∣R(ω,m, ℓ)∣ > 1. (3)

That is to say, there is a nontrivial energy amplification factor at fixed frequency.
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The above discussion required that Uhor and Uinf are linearly independent, i.e.,

that Uhor does not represent a “resonance” with real frequency ω ∈ R.

Were Uhor(ω0,m, ℓ) to represent a resonance, then R(ω,m, ℓ) would blow up

as ω → ω0 is approached.

Surprisingly, this very basic question was only resolved recently:

Theorem (Y. SHLAPENTOKH-ROTHMAN, 2013). There are no resonances on the

real axis. For all ω ∈ R andm, ℓ, the solutions Uhor and Uinf are indeed linearly

independent and thus R(ω,m, ℓ) is well-defined and finite.

cf. WHITING’s celebrated mode stability which showed that there are no

finite-energy modes for Im(ω) > 0.
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SHLAPENTOKH-ROTHMAN’s “mode stability on the real line” theorem shows that

there indeed exists a well-defined fixed-frequency scattering theory with finite

reflection coefficients R.

What the above does not resolve is whether the reflection coefficients are

uniformly bounded in frequency, i.e. whether the constant

S(a,M) ≐ sup
(ω,m,ℓ)

∣R(ω,m, ℓ)∣

is finite (cf. STAROBINSKII).

This potential “ultraviolet instability” is a fundamental obstacle in passing from the

formal fixed-frequency scattering theory to a genuine time-domain scattering

theory of finite-energy wave packets.
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2. The set-up for scalar-wave scattering theory

in the time-domain
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We will fix subextremal Kerr parameters ∣a∣ <M and consider the Kerr metric

ga,M defined on a “domain of outer communications”D.

H −

I−
I +

H
+

B
D

The boundary componentsH± correspond to past and future event horizons and

meet in the so-called bifurcation sphere B. We can also associate two

“asymptotic” boundary components future and past null infinity I±.
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Cauchy problem for smooth data

Define

Σ = {t = 0} ∪ B,
where t is the usual Boyer-Lindquist coordinate.

We can consider smooth compactly supported data (ψΣ,ψ
′
Σ
) on Σ for the wave

equation

◻gψ = 0.

We shall call the map from smooth initial data to solution forward evolution:

(ψ,ψ′)↦ ψ. (4)

We have

Proposition. If data (ψ,ψ′) are smooth of compact support on Σ, then the

solution rψ extends to a smooth function φ on I+.
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The “restriction” φ of rφ to I+ given by the above Proposition is known as the

Friedlander radiation field .

Trivially, we may also define the radiation field on the horizonH+ to be the

restrictionψ ≐ ψ∣H+ .

To summarise, forward evolution gives rise to a map on smooth compactly

supported initial data

(ψ∣Σ, ψ′∣Σ)↦ ψ ↦ (ψ ≐ ψ∣H+ , φ ≐ rψ∣I+). (5)

The forward maps of our scattering theory will be constructed by completing the

above map with respect to suitably defined energies. The states defining

scattering theory are associated to energies, defined in turn by vector fields.
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Vector field energies and their associate Hilbert spaces

Recall that a general vector field X defines an energy current J
X[ψ] and an

energy flux

∫
S
J
X[ψ] (6)

through an arbitrary hypersurface S .

For appropriate causal vector fields X for which (6) is nonnegative, the inner

product induced by the expression (6) defines a Hilbert space

E
X
Σ

by completion of the set of smooth compactly supported data (ψ,ψ′) on Σ.

Similarly, the flux (6) for S =H+,I+ defines Hilbert spaces of asymptotic states

E
X
H+ ⊕ EXI+ ,

via completion of the set of radiation fields arising from the forward map.
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In this picture, the problem of scattering theory translates into finding an

appropriate causal vector field X so that the forward evolution map on smooth

data

(ψ∣Σ, ψ′∣Σ)↦ (ψ∣H+ , φ∣I+).
induces a bounded map of Hilbert spaces

E
X
Σ ⇄ E

X
H+ ⊕ EXI+ .

which is invertible.
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3. The T -energy theory and its limitations
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The Schwarzschild a = 0 case

In the Schwarzschild case a = 0, the stationary Killing field T (corresponding to

∂t in standard coordinates) is timelike in the interior ofD becoming null on

H
+ ∪H− and vanishing on B. Thus the energy density defined by T

degenerates pointwise.

Nonetheless, the completions ET
Σ

, ETH+ and ETI+ define Hilbert spaces.

One can indeed show relatively easily that the forward map on smooth compactly

supproted Cauchy data extends to a unitary isomorphism

E
T
Σ ≅ ETH+ ⊕ ETI+ . (7)

DIMOCK–KAY (see also NICOLAS).
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The case a ≠ 0 and the ergoregion

Turning to the Kerr case a ≠ 0, there is now a non-empty subset S ofD, known

as the ergoregion, where T is spacelike. In particular, the energy-fluxes

∫
Σ

J
T [ψ], ∫

H+
J
T [ψ]

defined by T fail to be nonnegative. This is the true physical-space origin of the

phenomenon of superradiance. Thus we can have

∫
I+

J
T [ψ] > ∫

Σ

J
T [ψ] (8)

and, in fact, a priori the left hand side of (8) can be infinite.

Part of the conceptual difficulty of formulating a scattering theory for Kerr is thus

to find the correct notion of states which replaces those based on ET .

At the same time, one must understand what property replaces the notion of

unitarity as a means of quantifying the good properties of the scattering map.
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4. A scattering theory for Kerr: the main theorems
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The N -energy theory

The first candidate replacement for the (degenerate) Schwarzschild T -energy is

the so-calledN -energy.

Here,N is a globally timelike vector field which is T -invariant outside a

neighbourhood of the bifurcation sphere B and moreover such that N = T in a

neighbourhood of I+.

The energies ∫ JN associated to this vector field are indeed manifestly

positive-definite and pointwise non-degenerate. The energy is no longer

conserved however.
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The N -energy forward map

The first main theorem defines asymptotic states for all solutions arising from

finite N -energy data on the hypersurface Σ for all solutions parametrised by EN
Σ

.

Theorem 1. Forward evolution with data on Σ extends to a bounded map

F+ ∶ ENΣ → ENH+ ⊕ ETI+ .

I
−

I +

H
+

H −

ΣB
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The above theorem is essentially a corollary of a sequence of previous works of

ours (M.D.–RODNIANSKI AND M.D.–RODNIANSKI–SHLAPENTOKH-ROTHMAN) on

the Cauchy problem.

The fundamental point is that the non-degenerateN -energy of a solution of the

wave equation at all times is bounded by the initial N -energy times a constant

depending only on the Kerr parameters.

• In the high frequency regime, to obtain this bound one must understand the

interaction of the difficulties of superradiance and “trapped null geodesics”.

Quite fortuitously, “trapped” frequencies are never superradiant.

• The red-shift effect, which is seen by the vector field N , plays a helpful

stabilising role.

• Moreover, direct appeal to (a quantitative refinement of)

SHLAPENTOKH-ROTHMAN’S mode stability is necessary to deal with low

frequencies.

Interestingly, all these helpful properties degenerate as ∣a∣→M (cf. ARETAKIS).
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A blue-shift instability and the non-existence of an N -energy backwards

map

Satisfactory though the forward theory may be, it turns out that finiteness of the

aboveN -energy is ill-suited for defining the states for a scattering theory.

The fundamental origin of this is that the red-shift effect on the horizon–so

favourable for controlling forward evolution!–under backwards evolution is now

seen as a blue-shift. This fact is familiar from the calculation typically done to

derive Hawking radiation.

One can in fact prove that the map of Theorem 1 fails to be surjective:

Theorem 2. The map F+ of Theorem 1 fails to be surjective.

It follows that there does not exist even a one-sided inverse B− satisfying

F+ ○B− = Id.

Thus, existence of scattering states does not hold in the N -theory.
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Aside

Let us note that by introducing sufficiently high exponential weights in the spaces

defining the scattering data, i.e. considering the spaces Ee
αv+N
H+ and Ee

αu+T
I+ ,

then there indeed exists a bounded one-sided inverse

B− ∶ Eeαv+N
H+ ⊕ Eeαu+T

I+ → E
N
Σ (9)

such that F+ ○B− = id. Thus, we do have existence of a restricted class of

future scattering states.

With this setting, we can prove a stronger version of the above theorem saying

that eαv+ above cannot be replaced by v
p
+ no matter how large p is taken, i.e. the

range of F+ does not contain

E
v
p
+
N

H+ ⊕ {0} or {0}⊕ Eup
+
N

I+ .

The question of the precise characterization of the range of F+ remains open.
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The V -energy theory

To define a forward map which one can indeed hope to show is invertible, we must

pass to a degenerate energy class which does not see the red-shift at the horizon.

Recall that gM,a admits an additional Killing vector field Φ corresponding to

axisymmetry. Although for a ≠ 0, the vector field T fails to be globally timelike in

the interior ofD, the span of T and Φ does form a timelike plane, and the Killing

combinationK = T +ω+Φ is timelike in a neighbourhood ofH+, becoming null

onH+ itself. (Note that if a = 0, then K = T , but if a ≠ 0, then K itself is

spacelike away from the axis of symmetry near I+.)

We define a T -invariant vector field V with the property that

V =K nearH
+, V = T near I

+

and V is timelike in the interior ofD. The energy associated to this vector field is

manifestly non-negative definite, though degenerate analogous to the T -energy in

the Schwarzschild case. (In the case a ≠ 0, there is necessarily a region where

V fails to be Killing.)
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Our third main theorem is a degenerate V -energy analogue of Theorem 1:

Theorem 3. Forward evolution extends to a bounded map

F+ ∶ EVΣ → EKH+ ⊕ ETI+ .
To show this statement one must show that the degenerate V -energy is bounded

by its initial value times a constant depending only on the Kerr parameters.

This requires us to revisit our pevious boundedness theorem for the Cauchy

problem on Kerr, reworking the arguments so as to depend only on the

degenerate energy, i.e. not exploiting the helpful red-shift effect .
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The V -energy backwards map

Our degenerate-energy class is indeed suitable to construct a bounded inverse of

the map of Theorem 3:

Theorem 4. There exists a bounded map

B− ∶ EKH+ ⊕ ETI+ → EVΣ , (10)

inverting the map of Theorem 3, i.e. B− ○F+ = Id and F+ ○B− = Id.

I
−

I +

H
+

H −

ΣB
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Existence and boundedness of the S-matrix

First, note that applying a discrete isometry ofD which interchanges the future

and past of Σ, we infer analogously to Theorems 3 and 4 the existence of a

bounded past forward map and bounded two-sided inverse

F− ∶ EVΣ → EKH− ⊕ ETI− , B+ ∶ EKH− ⊕ ETI− → EVΣ .
We thus have both existence and uniqueness for past scattering states as well as

past asymptotic completeness.
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The following is then an immediate corollary

Corollary. The composition of S =F+ ○B+ defines a bounded invertible map

S ∶ EKH− ⊕ ETI− → EKH+ ⊕ ETI+ . (11)

I
−

I +

H
+

H −

The boundedness ∥S ∥ ≤ C of the map S in the operator norm is the correct

quantitative replacement for the usual unitarity property.
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A physical space theory of superradiant reflection

Given the scattering map S , we can now give an account of superradiant

reflection in physical space, i.e. in the “time domain”.

Recall the standard physical set-up: One wishes to study the scattering of waves

with no ingoing contribution from the past event horizonH−. We thus pass from

S to the transmission map T and reflection map R defined by

S ∣{0}⊕ET

I−
= T ⊕R

where

R ∶ ETI− → ETI+ , T ∶ ETI− → EKH+ .
The boundedness of S above immediately yields the strictly weaker statement

Theorem 5. The reflection and transmission maps R and T are bounded,

i.e. ∥R∥, ∥T ∥ ≤ C .
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We can show that our physical space operators R and T are related to our fixed

frequency reflection coefficients R and T by a generalised Fourier transform:

Theorem 6. We may represent

R [φ] = 1√
2π
∫ ∞

−∞
∑
mℓ

aI−R e−iuωeimφSmℓ(aω, cosθ) dω
and

T [φ] = − 1√
4Mπr+

∫ ∞

−∞
∑
mℓ

( ω

ω −ω+m)aI−T e
−ivωeimφSmℓ(aω, cos θ) dω.

Here

−iωaI− ≐ 1√
2π
∫ ∞

−∞
∫

S2

∂tφ e
ivωe−imφSmℓ(aω, cosθ) sin θ dv dθ dφ.

In particular, we have

sup
(ω,m,ℓ)

∣R(ω,m, ℓ)∣ = ∥R∥.
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We immediately infer

Corollary. The reflection and transmission coefficients are indeed uniformly

bounded over all frequencies:

sup
(ω,m,ℓ)

∣R(ω,m, ℓ)∣ ≤ C, sup
(ω,m,ℓ)

∣T(ω,m, ℓ)∣ ≤ C. (12)

This resolves thus the question we started with.

Since R(ω,m, ℓ) > 1 for any superradiant frequency we have:

Corollary. For a ≠ 0, the reflection map R has norm strictly greater than 1,

i.e. we have C > ∥R∥ > 1.

The above corollary can be viewed as the definitive time-domain interpretation of

the phenomenon of superradiant reflection.
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Uniqueness of scattering states for ill-posed scattering data

Finally, we note that our scattering theory allows us to make the following

injectivity statements which can be understood as statements just of uniqueness

of scattering states for scattering data determined on any of the four “ill-posed”

pairs of asymptotic boundariesH+ ∪H−, I+ ∪ I−,H+ ∪ I− andH− ∪ I+.

Theorem 7. The maps

F ∶ EVΣ → EKH+ ⊕ EKH− , F ∶ EVΣ → ETI+ ⊕ ETI−
F ∶ EVΣ → EKH+ ⊕ ETI− , F ∶ EVΣ → EKH− ⊕ ETI+

are all injective.
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F ∶ EV
Σ
→ E

K
H+ ⊕ EKH− F ∶ EV

Σ
→ E

T
I+ ⊕ ETI−

I
−

I +

H
+

H −

Σ

I
−

I +

H
+

H −

Σ
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F ∶ EV
Σ
→ E

K
H+ ⊕ ETI− F ∶ EV

Σ
→ E

K
H− ⊕ ETI+

I
−

I +

H
+

H −

Σ

I
−

I +

H
+

H −

Σ
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Together with the previous results, the above implies that finite V -energy solutions

are uniquely determined by their fluxes to any pair of the set {H+,H−,I+,I−}.

In contrast, however, to the forward maps of Theorem 3, it follows already from

general local ill-posedness type results for the wave equation (see e.g. the classic

textbook of HADAMARD) that the above maps F are not surjective. Thus, one

does not have the analogue of “existence of scattering states” (cf. (a)) for

scattering states parameterized as above.

This is of course in sharp distinction to the fixed-frequency theory, for which

“existence of scattering states” associated toH+ ∪ H− and I+ ∪ I−,

respectively, corresponds precisely to the existence and linear independence of

the pairs Uhor, Uhor or alternatively Uinf , U inf) described in the beginning of

this introduction, on which the whole theory is based.
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5. Epilogue: taming blue-shift instabilities and the

relation with black hole interiors
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We make a few comments on scattering theory for non-linear generalisations of

the scalar wave equation ◻gψ = 0.

Perhaps the ultimate nonlinear such generalisation is provided by the Einstein

vacuum equations

Ric(g) = 0 (13)

themselves, where the background geometry is now itself unknown.

The problem of characterizing all “admissible” solutions by appropriate asymptotic

scattering states may turn out to be too ambitious for equations as nonlinear

as (13).
The construction of a restricted class, however, can serve as an important way of

obtaining non-trivial examples of solution spacetimes which cannot otherwise

easily be inferred to exist.
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A result in that direction has recently been provided by

Theorem (M.D.–G. HOLZEGEL–I. RODNIANSKI). Consider asymptotic data on

H
+ ∪ I+ for the Einstein vacuum equations, decaying towards exact Kerr data

corresponding to ga,M with ∣a∣ ≤M at a sufficiently fast exponential rate. Then

there exists a vacuum (M, g), with regular horizonH+, attaining the data.

The spacetimes (M, g) constructed in the above are in fact the first known

examples of dynamical vacuum black holes settling down to Kerr.

The above theorem can be thought of as a non-linear analogue of the map

B− ∶ Eeαv+N
H+ ⊕ Eeαu+T

I+ → E
N
Σ

We note that the special structure present in the nonlinearities of the Einstein

vacuum equations is essential for the proof. The analogue of the above theorem

does not hold even say for the general scalar semilinear equation of the form

◻gψ = Q(∇ψ,∇ψ).
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Enforcing exponential decay to Kerr is perhaps undesirable because generic

solutions of the Cauchy problem are expected to decay only inverse polynomially.

But we already know (from our previous aside) that at least for the scalar wave

equation, were we to start with generic scattering data in

E
v
p
+
N

H+ ⊕ Eu
p
+
T

I+

and solve backwards, we would generically arrive at something which is not in

EN
Σ

, i.e. which is singular at the horizon.

For the “generic” non-linear equation, because of backreaction, this would mean

that one would not be able to solve at all the backwards problem.
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Stability of the Kerr Cauchy horizon

For the Einstein vacuum equations things are much better. Indeed, the situation is

very similar with what happens for forward evolution in the interior of black holes.

Theorem (M.D.–J. LUK). Consider arbitrary characteristic initial data on a

bifurcate horizonH+A ∪H+B such that the data are globally close to and in fact

approach Kerr with 0 < ∣a∣ <M at an inverse polynomial rate. Then, just as in

exact Kerr, the vacuum spacetime (M, g) evolving from data is bounded to

the future by a bifurcate Cauchy horizon accross which g is continuously

extendible. The proof leaves open the possibility that Christoffel symbols fail to

be square integrable at the Cauchy horizon, making it an essential null singularity.

Corollary. If Kerr is indeed non-linearly stable in the exterior, then its causal

structure is stable in the interior. In particular, spacetimes arising from data

sufficiently close to Kerr data will not form spacelike singularities.
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Event horizon-singular spacetimes

The above theorem on the nonlinear stability of a (possibly singular) Cauchy

horizon (together with the existence of a degenerate V -scattering theory for the

linear wave equation) gives support to the following conjecture:

Conjecture. Consider asymptotic data onH+ ∪ I+ as before but which decay to

ga,M only at a sufficiently fast inverse polynomial rate. Then there exists a

vacuum spacetime (M, g) attaining the data. For generic such data,H+ is a

“weak null singularity” across which the metric extends continuously but with

Christoffel symbols which fail to be locally square integrable.

Lesson: When solving the Einstein equations forward from smooth initial data,

asymptotic data onH+ and I+ decay polynomially but are also correlated . If one

starts with generic uncorrelated “scattering” data onH+ and I+, one can indeed

solve backwards and construct a dynamic black hole spacetime, but the event

horizon will turn into an essential null singularity.
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