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“D1vergent series are  the invention of
the . and it is shameful to base on

”

them any demonstration whatsoever




“Divergent series are the 1invention of
the , and it 1is to base on

»

them any demonstration whatsoever ...

“That most of these things | |

are- correct, 1n spite
of that, 1s extraordinarily surprising. I
am trying to find a reason for this; it
1s an exceedingly interesting question.”



Some physical motivations:

Perturbatlon Theory 1N

*Asymptotlc Nature of OM,QFT,String Theory

+ TR Renormalon Puzzle in asymptotitally Free QFTs

-z.Non4per‘tur'bati\)e-phys. /wo Instantons
\ Role of non-BPS saddles?
The B1gger scheme:

+ Non-pert. definition of asthptotically free QFTs

+ Analytic continuation of path integmls
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most general ansatz soln to a non-linear problem
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Perturbative Fluctuations
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“New’

Unification of Perturbative and

Non-Perturbative Physics

“Philosophical® shift:
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“New” Idea ——p Resurgence

Unification of Perturbative and
Non-Perturbative Physics

“Philosophical® shift:

Semi-classical expansion
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quasi-zero-modes




What 1s Resurgence?

“..resurgent functions display at each of their

singular points a behaviour closely related to
their behaviour at the “origin”. Loosely

speaking, these functions resurrect, or surge
up - 1h a slightly different guise, as i1t were

- at their singularities..”



What 1s Resurgence?

“..resurgent functions display at each of their

singular points a behaviour closely related to
their behaviour at the “origin”. Loosely

speaking, these functions resurrect, or surge
up - 1n a slightly different guise, as 1t were

- at their singularities..”

reconstruct NP
physics from the perturbative series



Back to the Basics:
_How-do we compute physical quantities?
— Unless Magic Happens (i._e".

localization, integrability,..) :

Perturbation Theory Just by diagram counting
RS - (Dyson, Lipatov)’

flg)=> cang® —>
=0 -
: . , 1 T W o=t
IN (oM Tnsert factor 1= = dt t" e
: | 1! 0

Commute Sum w/ Integral



Borel Transform:

O

Take' ' f(g) - Z Cngn\A
' n=0

n—l
nzl

Consider

Obtain Analytic Continuation for f(g)

S =6 / " dte 9 Bl

Laplace transform back: Analytic for %(g) > ()



 Different analytic continuations of the SAME

physical observable (in pert.theory)

QOO

Sl ot / - dtetIBIA()

Borel t-plane




 Different analytic continuations of the SAME
physical observable

QOO

Silflg) =co+ [ dte B0

Different

: : ——>  Ambiguities
continhudtions

On a Stokes line

S+1fl(g) — S_[fl(g) ~2mie /9



 Different analytic continuations of the SAME
physical observable

QOO

Sl ot / - dtetIBIA()

Different

: : ——>  Ambiguities
continhudtions

On a Stokes line

S+1f1(g) — S—[fl(g) ~2mie >/9

Non-perturbative - non-analytic
and Imaginary



 Different analytic continuations of the SAME
physical observable

On a Stokes ‘'line

S+1f1(g) = S_[f](g) ~ 2mie 5/




- Higher-orders Perturbatlve

Expansion
oM Exampies: Ground State Energy FE(g ) ch g"
| n=0

—> Anharmonic Oscillator

3"\/6

D

Alternating in signs —> Borel transform has

Poles on the negative axis
Borel summable



- Higher-orders Perturbatlve

Expansion
QM Examples: Ground State Energy FE(g) = ch g"
. n—=~0
——> Anharmonic Oscillator
——— (Cubic Oscillator Crp ™~ —
- 27r3/2

Non-Alternating in signs: Poles on the positive axis

/ Ambiguity

Ei(g)—E (g) ~ %i(...)e '3




- Higher-orders Perturbatlve

Expansion
QM Examples: Ground State Energy FE(g) = ch g"
. n—=~0
——> Anharmonic Oscillator
——— (Cubic Oscillator Crp ™~ —
- 27r3/2

Non-Alternating in signs: Poles on the positive axis

/ Ambiguity

| ; “ Quantum
Ei(g) = E_(g) ~ £il-..)e V! — Tunnelling




- Higher-orders Perturbatlve

Expansion
oM Examples: Ground State Energy Z?(:) EE:Cmgfl
| n=0

—> Anharmonic Oscillator
— > (Cubic Oscillator
—> Double-well ¢€n o~ n!

Non- Alternatlng 1h signs: Poles on the positive axis
Ambiguity



- Higher-orders Perturbatlve

Expansion
QM Examples: Ground State Energy FE(g) = ch g"
n=>0

—_ Double—well Cri > n!

Poles on the positive axis

Ambiguity
) L S’ins

Ey(g) — B_(g) ~ i(...)e™ Sinst/s

Instanton/anti-Instanton Pérturbation theory knows

Events do contribute! —> about them!



QFT: :
Q +SUCN) YM onR*
IR renormalons problem: = CP"onR?

+PCM on R?

Planar diagrams

hon—alternating factorial growth

Leadihg ambiguity

_QSinst/

-7 e \




QFT: :

Q +SUCN) YM onR*

IR renormalons problem: = CP"onR?
+PCM on R?

t-Plane




- Systematic IR renormalons:

2d Models w/ Exact
solutions:

Integmbilit;// - \I‘_arge—N
Expa;3 inf;mall
coupling
c.onla
a > (
a.= 0[N}



- Systematic IR renormalons:

2d Models w/ Exact

solutions:
oM | _:_O(N)ln.the
~ resurgent
OCN) context

@ Large N

OPE expansion



PrincipallChiral-Modelz
CP" ' '
1

D 53 d2:1:' Tr@ U@“’UT U(:z:)'é SU(N)
g . i

* Asymptotically Free — no WZW
*MatriXLarge—Nlmodel_' .
*Confinihg/Deconfining “Phase” trangitioh
+ can be made SUSY

+ IR Renormalons ——

WQ(SU(N)) i



- Saddle Points: Uhitons

> Full Characterization of soln. to PCM eom

CP" ' c SU(N) geodesic embedding

Al
ViU

vl - v

Uani = €™ Y (1y —2P) . w/ Projector P =

vi embedding of CP" lumps
- _

T X o

(and integers multiples)

Genuine SADDLES!
W8R8 NON-BPS obj. w/ quantized actions!




- Compactification w/ a twist:

w/ particular twisted BC U(t,z + L) = €i_HLU(t,:l:)€iHR |

Volume Independence

on small S Unitons fractionalize
into N fundamental objects:

Fractons:

on small S! we can use effective QM to

study vacuum energy or partition
function




Fractons:

take SUC2) in T cos @ e*¢1 i sin @ e'®2

| Hopf coords oy i sin (9 e_ing e 9 6_,L-¢1
0(t;tg) = 2arcCot o—E(t—to) L= =

s - v ONT

0(t; to) =71 — 2arcCot {6_5(’5_’50)]

o Suni 'Correct dction to give semiclassical
o AL realization of' IR renormalons
2 I D)




Fractons:

g __*Sﬁni Correct action to give semiclassical
e N realization of IR renormalons
take SUC2) in cos 0 e'?1 i sin 6 92

i

HOR T CODES isinf@e "2 - cosfe ‘¥

N-1 simple roots of SUCN)
SUCN): N-types of Fractons

\\\\* KK-Fracton -> affine root

Same as KK monopoles
1n compactified YM
w/ non-trivial holonomies



Fractons:

g __.E%mmi Correct action to give semiclassical
e N realization of IR renormalons

take SUC2) in o cos 0 e'?1 i sin 6 92
R epne - \isin@e "2 - cosfe W1

SUCN): N-types of Fractons

As in QM, the divergence of perturbation

theory tells us that FFbar events seem
to play a role!



- Fracton/Anti-Fractons

Centre of mass
(t1 +12)/2
Exact zero-mode

Relative Separation

T =t —ta)/2
Quas1i zero-mode
Subtle!

—>  Support from
small separations!

FFbar attract each others



'Lerchétlehimbles:

|

Functional steepeSt descent

contours _ | | ﬁ‘]}‘l)lﬁm‘ﬁf
0  6S[¢] _ On the thimble J;
ds o 50 - —> Im(S) constant
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thimbles 1



'Lerchétlehimbles:

|

Functional steepeSt descent
contours

- : . | . o
/D¢6 Q.QSW]: Z N, e 9-21 S

thimbles 1

+*Finite dim 1integrals . Hyperasymptotics
+*Complexified CS
+Complexified QM in phase space

+*Complexified Liouville

=




Lefschétz'Thimbles:

|

Functional steepeSt descent
contours

/D¢ S~ slel _ Z BB =1 S8 [ py e ReSl

thimbles 1

Stokes phenomehon: interSection numbers Ni can
change with phdse of parameters

Resurgence: asymptotic expansions about different

saddles are closely related.
Natural transseries expansion




- FFbCII"Z Critical point at infinity!

as A — 0 all but two directions along thimble
| become Gaussian,

~easy to
cenm’carseS of - R
(Morse-Bott)
relative : tricky part
separation but effectively reduces the
~ flow to a finite dimensional
one

Only “relevant” direction in field space 1s the
separation modulus



Reduced Flow equations 1in field space give rise
to correct integrations “contours?”

Saddle 1s still at “Infinity” but
contours do depend on arg \



- FFbar:

Performing the 1ntegral over
the correct thimble

i (327
FFle=— (—log ks 7E> gD

According to argA = 0> ——— > see Airy



- FFbar:

Performing the 1ntegral over
the correct thimble

i (327
FFle=— (—log ks 7E> gD

Same multi-instantons factor
from uniform WKB




Performing the 1ntegral over
the correct thimble |

Note that the correct thimble lives now 1n the

complexification of the fields space but it still
has real dimension = 1



Resumming Pert and Non-Pert:

Leading renormalon ambiguity of perturbation
~ theory cancels against the contour Jumps 1h the
thimble decomp051t10n

Im [S:-Ep( 1 [.7'_.7'_] _} —{} up to-Ole 7]

Path integral is not just perturbation theory! |

It is only when we sum over the correct saddles
decomposition that  we find unique and
unambiguous answer!






- Conclusions & Outlook:

+ Recovering non-perturbative info from the
perturbative expansion (and vice-versa)

+ Reinterpret exact quantities as transseries

+ Why phys. observables are-resurgeht'
functions? |

+ What 1f we have only a finite number of
terms?



Thanks for Listening!



