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𝑹𝝁𝝂 = 𝟎

𝑹𝝁𝝂 = −𝚲𝒈𝝁𝝂



Black holes are very important objects in GR, 

but they do not appear in the fundamental 
formulation of the theory

They’re non-linear, extended field 
configurations with complicated dynamics  



Strings are very important in YM theories, 

but they do not appear in the fundamental 
formulation of the theory

They’re non-linear, extended field 
configurations with complicated dynamics  



Strings become fundamental objects in the 
large N limit of SU(N) YM

In this limit, they are still extended objects, 
but their dynamics simplifies drastically



Is there a limit of GR in which Black Hole 
dynamics simplifies a lot?

Yes, the limit of large D

any other parameter?



Is there a limit in which GR can be formulated 
with black holes as the fundamental 

(extended) objects?

Maybe, the limit of large D
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BH in D dimensions



Large potential gradient:

⟹ Hierarchy of scales

Localization of interactions
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Large-D ⇒ neat separation bh/background

𝐷 = 4 𝐷 ≫ 4

∼ 𝑟0 ∼ 𝑟0/𝐷
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Flat space
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𝑟 ≪ 𝑟0: “Near-horizon” region



Near-horizon geometry
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Soda 1993
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2d string bh

‘string length’ ℓ𝑠 ∼ 𝑟0
𝐷

2d dilaton



2d string bh = near-horizon geometry
of all neutral non-extremal bhs

rotation = local boost 
(along horizon)

cosmo const = 2d bh mass-shift

Near-horizon universality



Does this help understand/solve 
bh dynamics?



Quasinormal modes
capture interesting perturbative dynamics:

-possible instabilities

-hydrodynamic  behavior

but, w/out a small parameter, these modes are 
not easily distinguished from other more boring 

quasinormal modes



Large D introduces a generic 
small parameter

It isolates the ‘interesting’ 
quasinormal modes from the 

‘boring’ modes



The distinction comes from 
whether the modes are 

normalizable or 
non-normalizable

in the near-horizon region



‘Boring’ modes

Non-normalizable in near-zone

Not decoupled from the far zone

High frequency: 𝜔 ∼ 𝐷/𝑟0
Universal spectrum: only sensitive to bh radius

Almost featureless oscillations of a hole in flat 
space



‘Interesting’ modes

Normalizable in near zone

Decoupled from the far zone

Low frequency: 𝜔 ∼ 𝐷0/𝑟0
Sensitive to bh geometry beyond the leading 

order

Capture instabilities and hydro

Efficient calculation to high orders in 
1

𝐷



Black hole perturbations

Quasinormal modes of Schw-(A)dS bhs

Gregory-Laflamme instability

Ultraspinning instability

All solved analytically



Fully non-linear GR @ large D



Replace bh ⟶ Surface in background

What’s the dynamics of this surface?

𝐷 ≫ 4 𝐷 → ∞



Large D Effective Theory

Solve near-horizon equations

→ Effective theory

for the ‘slow’ decoupling modes



Gradient hierarchy

⊥ Horizon:  𝜕𝜌 ∼ 𝐷

∥ Horizon:  𝜕𝑧 ∼ 1

𝑧𝜌

Σ𝐷−3



Static geometry
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Einstein ‘momentum-constraint’ in 𝜌: 

−𝑔𝑡𝑡𝐾 = const

𝐾 = mean curvature of ‘horizon surface’

𝑑𝑠2 ℎ = 𝑔𝑡𝑡 𝑧 𝑑𝑡2 + 𝑑𝑧2 + ℛ2 𝑧 𝑑Σ𝐷−3

embedded in background

Σ𝐷−3

ℛ(𝑧)



Large D static black holes:

Soap-film equation (redshifted)

−𝑔𝑡𝑡𝐾 = const



Some applications



Soap bubble in Minkowski = Schw BH

−𝑔𝑡𝑡𝐾 = const ⇒ ℛ′2 + ℛ2 = 1

𝑧

ℛ(𝑧) ⇒ ℛ 𝑧 = sin 𝑧

𝑆𝐷−3

𝑆𝐷−2



Black droplets

Black hole at boundary of AdS

dual to CFT in BH background

Numerical solution: 

Figueras+Lucietti+Wiseman

AdS boundary

AdS bulk

𝑧



Our numerical code

zmin 0.000001;

zmax 0.67;

r0 .5;

NDSolve r' z
z

r z

1 r z
2

z
2

1 r z
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1 z
2

,r zmin r0 ,r, z,zmin,zmax



Black droplets



Non-uniform black strings

Numerical solution: Wiseman

𝑧

ℛ 𝑧



Non-uniform black strings

𝐾 = const

⟹  ℛ′′ +  ℛ′2 +  ℛ = const

𝑧

ℛ 𝑧 = 1 +
2  ℛ(𝑧)

𝐷

∼ 1/ 𝐷



Non-uniform black strings

 ℛ 𝑧

𝑧

ℛ 𝑧 = 1 +
2  ℛ (𝑧)

𝐷



At NLO we find a critical dimension 𝐷∗

for black strings (from 2nd order to 1st order)

at 𝐷∗ = 13

Numerical value 

𝐷∗ ≃ 13.5 E Sorkin 2004



We’ve also solved for stationary black holes

Ultraspinning bifurcations of 

(single-spin) Myers-Perry black holes at

𝑎

𝑟+
= 3, 5, 7, …

Numerical (D=8): 
𝑎

𝑟+
= 1.77, 2.27, 2.72 … Dias et al



Limitations

1/D expansion breaks down when 𝜕𝑧 ∼ 𝐷

• Highly non-uniform black strings

• AdS black funnels

1/𝐷1/𝐷



Time evolution

Long wavelength, slow evolution 𝜕𝑡,𝑧 ∼ 𝐷0

can lead to 

large gradients, fast evolution 𝜕𝑡,𝑧 ∼ 𝐷

if so, breakdown of expansion



Conclusions



1/D expansion of GR is very efficient at 
capturing dynamics of horizons

Reformulation of a sector of GR: bhs

in terms of surfaces (membrane-like)
decoupled from bulk (grav waves)



1/D: it works
(not obvious beforehand!)



End



Spherical reduction of Einstein-Hilbert
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Spherical reduction of Einstein-Hilbert
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Small expansion parameter:   
1

𝐷−3

not quite good for 𝐷 = 4 …

But it seems to be 
1

2(𝐷−3)

not so bad in 𝐷 = 4, if we can compute to 
higher order

(in AdS:  
1

2(𝐷−1)
)

BH perturbations: How accurate?



Small expansion parameter:   
1

𝐷−3

not quite good for 𝐷 = 4 …

But it seems to be 
1

𝟐(𝐷−3)

not so bad in 𝐷 = 4, if we can compute 
higher orders

(in AdS:  
1

2(𝐷−1)
)

BH perturbations: How accurate?



Quite accurate

−Im 𝜔𝑟0 − 4D calculation

− Large D @ D=4

Calculation up to 
1

𝐷3 yields 6% accuracy in 𝐷 = 4

Quasinormal frequency in 𝐷 = 4 (vector-type)

ℓ (angular momentum)

6% =
1

2 𝐷 − 3
4  

𝐷=4



Dimensionful scale:

𝐿𝑃𝑙𝑎𝑛𝑐𝑘 = 𝐺ℏ
1

𝐷−2

Quantum effects governed by  
𝑟0

𝐿𝑃𝑙𝑎𝑛𝑐𝑘

Quantum effects?



If  
𝑟0

𝐿𝑃𝑙𝑎𝑛𝑐𝑘
∼ 𝐷0 the bh is fully quantum:

Entropy → 0

Temperature → ∞

Evaporation lifetime → 0

But other scalings are possible



Scaling  
𝑟0

𝐿𝑃𝑙𝑎𝑛𝑐𝑘
with D:

how large are the black holes, 

which quantum effects are finite at large D

Finite entropy:  𝑟0 𝐿𝑃𝑙𝑎𝑛𝑐𝑘 ∼ 𝐷  1 2

Finite temperature:  𝑟0 𝐿𝑃𝑙𝑎𝑛𝑐𝑘 ∼ 𝐷

Finite energy of Hawking radn:  𝑟0 𝐿𝑃𝑙𝑎𝑛𝑐𝑘 ∼ 𝐷2



Black hole perturbations

Given the general master equation, it’s a 
straightforward perturbative analysis

Leading order is simple and universal 

(solving in 2D string bh): static modes 𝜔 ∼
1

𝐷

𝐷

𝑟0
→ 0

Higher order perturbations are not universal, but 
organized by simple leading order solution


